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Abstract

Background: The results of Randomized Controlled Trials (RCTs) on time-to-event outcomes that are usually
reported are median time to events and Cox Hazard Ratio. These do not constitute the sufficient statistics required
for meta-analysis or cost-effectiveness analysis, and their use in secondary analyses requires strong assumptions
that may not have been adequately tested. In order to enhance the quality of secondary data analyses, we
propose a method which derives from the published Kaplan Meier survival curves a close approximation to the
original individual patient time-to-event data from which they were generated.

Methods: We develop an algorithm that maps from digitised curves back to KM data by finding numerical
solutions to the inverted KM equations, using where available information on number of events and numbers at
risk. The reproducibility and accuracy of survival probabilities, median survival times and hazard ratios based on
reconstructed KM data was assessed by comparing published statistics (survival probabilities, medians and hazard
ratios) with statistics based on repeated reconstructions by multiple observers.

Results: The validation exercise established there was no material systematic error and that there was a high
degree of reproducibility for all statistics. Accuracy was excellent for survival probabilities and medians, for hazard
ratios reasonable accuracy can only be obtained if at least numbers at risk or total number of events are reported.

Conclusion: The algorithm is a reliable tool for meta-analysis and cost-effectiveness analyses of RCTs reporting
time-to-event data. It is recommended that all RCTs should report information on numbers at risk and total
number of events alongside KM curves.

Keywords: Survival analysis, Individual Patient Data, Kaplan-Meier, algorithm, life-table, Cost-Effectiveness Analysis,
Health Technology Assessment

Background
Normal practice in the reporting of results from RCTs is
to publish the sufficient statistics for each arm: means
and standard deviations for continuous outcomes,
numerators and denominators for binary outcomes.
CONSORT guidelines recommend that for each primary
and secondary outcome “study results should be
reported as a summary of the outcome in each group,
together with the contrast between the groups, known
as the effect size” [1]. The publication of sufficient

statistics facilitates the inclusion of the trial in subse-
quent meta-analysis or economic assessments. However,
reporting results of trials with survival time outcomes
almost never follows these principles [2]. Due to censor-
ing, time-to-event outcomes are not amenable to stan-
dard statistical procedures used for analysis of
continuous outcomes: the average survival time is a
biased estimate of expected survival in the presence of
censored observations. Consort guidelines recommend
instead, that for survival time, the measure of effect
could be the hazard ratio or difference in median survi-
val time. The Cochrane handbook also advises that the
effect measure for time-to-event outcomes should be
expressed as a hazard ratio. This severely limits the way
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in which RCTs with survival time data can be included
in any kind of secondary data analyses, whether as part
of a cost-effectiveness analyses (CEA) or in an analysis
of treatment efficacy.
In the case of CEA, what is required is an estimate of

the difference between arms in expected survival: this
cannot be reconstructed from the reported, or pooled,
hazard ratio or medians without further assumptions.
This demands that the survival curves are extrapolated
for each treatment with a lifetime horizon, which is
clearly impossible based solely on a hazard ratio or a
median estimate.
For the evidence syntheses, i.e. meta-analyses or net-

work meta-analyses, pooling the treatment effect over
several trials must either use estimates of median survi-
val, which has been shown to be unsatisfactory [3], or
fall back on estimates of the hazard ratio. This is also
limiting and unsatisfactory, as it requires proportional
hazards, an assumption that is seldom checked and
sometimes implausible on inspection. These issues are
examined further in the discussion.
As a response to the poor, limited, and inconsistent

reporting of results from survival data, several authors
have attempted to extract data from the published
Kaplan-Meier (KM) curves in order to carry out meta-
analysis [4-11]. However, in this earlier work the survi-
val probabilities were extracted from the graphs or the
text at a relatively small number of follow-up times in
order to approximate aggregate or life-table data, and
they did not use all of the information reported to help
identify the censoring pattern.
In this paper, we develop an algorithm that attempts

to reproduce the sufficient statistics in detail, by recon-
structing the Kaplan-Meier data on which the survival
curves are based. The KM curves are in effect pictorial
representations of these data. We use digital software to
read in the coordinates of the KM curves from the pub-
lished graph and we use the information on numbers at
risk, often published at four or five time points under
the x-axis of the KM graph, and total number of events,
where available, to reconstruct the Kaplan-Meier data
for each arm. A key feature of our approach is the use
of iterative numerical methods to solve the inverted KM
equations, which is necessary to obtain consistent results
and make the best use of the information available.
The paper is organised as follows. In the illustration

section, we apply the algorithm to one published
Kaplan-Meier curve. In the reliability and accuracy sec-
tion, we compare the summary measures reported in
the original publications with those obtained by the ana-
lysis of the reconstructed Kaplan-Meier data on six pairs
of KM curves reconstructed by three observers each on
two occasions. We conclude with a discussion of the
potential of this technique in meta-analysis and health

technology assessment based on cost-effectiveness analy-
sis. In the method section, we briefly describe the
Kaplan-Meier estimation method. We then describe the
inputs required for the algorithm, before presenting the
algorithm itself. The general principle of the algorithm
is developed as well as solutions to some particular pit-
falls that may be encountered in practical applications.
The R-code for the algorithm is provided in the Addi-
tional file 1.

Results
Illustration
The illustrative example uses KM curves, reproduced in
Figure 1, on locoregional control events in head and
neck cancer [12]. The numbers at risk were available
every 10 months, from zero to fifty months. There was
no total number of events reported in the publication.
The tables 1 and 2 illustrate the input data needed to

run the algorithm for this figure. Table 1 shows the
extracted co-ordinates for the arm ‘radiotherapy’
between 0 and 10 months using the DigitizeIt software.
Table 2 presents the format required for the numbers at
risk provided in the publication. The first column is the
interval, the second column shows the time, the third
column shows the row of the extracted co-ordinates
that the time corresponds to, the fourth column is the
upper row of the extracted co-ordinates for which the
time is less than the following time at which we have a
number at risk and the last column is the number at
risk. Time 0 always corresponds to the 1st row. In this
example, row 30 corresponds to the largest time
extracted from the graph-reading software that is less
than 10 months. Time 10 corresponds to row 31 (i.e.
the 31st “click” from the graph-reading software). And
so on.
Using the algorithm, we obtain reconstructed IPD and

it allows us to reconstruct the KM curves as shown in
Figure 2. The original publication reported, in addition
to the KM curves, the following summary results: the
survival rates at one, two and three years, the median
duration and the hazard ratio with its uncertainty.
These published summary results and their correspond-
ing reconstructed summary results are presented in
Table 3.

Reproducibility and accuracy of the algorithm
The validation results are summarised in Table 4.
Survival probabilities
Using full information, we found a mean error of
-0.103% (95%CI:-0.260; 0.055). This means that if the
original survival probability estimate was 50%, we would
expect survival probability based on reconstructed data
to be 49.897% (95% CI: 49.740: 50.055). There is there-
fore no significant systematic error. The mean absolute
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error (MAE) is 0.272%. Thus, if the original estimated
survival was 50% we would expect any estimate to be
0.272% on either side (i.e. 49.728 or 50.272), with a 95%
CI going up to 1.544%. Thus 97.5% of the time the
error would be less than 1.544%. The reproducibility
standard deviation was 0.270% (95% CI: 0.234, 0.577).
One way to consider this is that about 68% of observa-
tions will be within 0.270% of their mean value, either
way. The variation due to exemplar differences is of the
same order.
As the level of information available is decreased by

successively removing data on numbers at risk and
number of events, the ME and the reproducibility stan-
dard deviation remain unaltered. There is, however, a
slight fall in accuracy as assessed by MAE and exemplar
variance.
Medians
The ME on the log scale was 0.011 (95%CI: 0.004;
0.018). By taking the exponentials of these values, we
obtain that the mean error is on average a factor of exp
(0.011), or 1.1% (95%CI: 0.4%; 1.8%). The mean error is
statistically different from zero, but still extremely small.
For example, if the median survival in the original data

was reported as 2 years, the expected median in the
reconstructed data would be 2.022 years (95%: 2.008,
2.036). The MAE error is of the same order. Reproduci-
bility variation is also exceptionally low at 0.006 on the
log scale, corresponding to a 0.6% geometric standard
deviation. Thus, we would expect that 68% of the obser-
vations are within 0.6% (95% CI: 0.4%; 1.2%) either side
of the original median. Similar results are seen at all the
levels of information.
Hazard ratios
With full information we obtained a ME on the log
scale of 0.008 (95%CI:-0.015; 0.030). By taking the expo-
nentials again, we can infer that if the original HR is 1.5,
or 0.667 for its inverse, then we would expect to obtain
a reconstructed HR of 1.512, or 0.661 for its inverse.
The confidence intervals for the ME span zero, indicat-
ing no statistically significant systematic error. Looking
at the MAE of 0.017 (95%CI: 0.002; 1.222), we can infer
that if the original HR was 1.5, or 0.667 for its inverse,
we would expect the reconstructed HR would be within
a factor or exp (0.017) = 1.017 either side of the original
values, i.e. 1.475 or 1.525, or 0.656 or 0.678 for its
inverse. Based on the upper confidence limit we would

Figure 1 Example of published Kaplan-Meier curves [13].
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expect 97.5 of reconstructed HRs to be within a factor
of exp (0.122) = 1.13 either side of the original values:
for an original value of 1.5, or 0.667 for its inverse, this
means that 97.5% of reconstructed values will be
between 1.33 and 1.69, or between 0.59 and 0.75 for its
inverse. With full information the reproducibility is

good: 68% of values are expected to be within exp
(0.021) = 1.02 of their mean value, or 1.04 if we take the
upper confidence limit. The variation due to choice of
exemplars is of similar magnitude to the MAE.
In contrast to survival probabilities and medians, both

the MAE and the exemplar variance deteriorate mark-
edly as less and less information is provided. If neither
numbers at risk nor number of events is available, then
for an original HR of 1.5, or 0.667 for its inverse, we
would expect the reconstructed HR to be within a factor
of exp (0.198) = 1.2 either side of the original value, i.e.
1.23 or 1.83, or 0.55 or 0.81 for its inverse. The upper
confidence limit would allow as much as a factor of exp
(1.556) = 4.7 on either side of the original, in other
words reconstructed HRs as low as 0.32 or as high as
7.11 for an original HR of 1.5, or as low as 0.14 or as
high as 3.16 for its inverse.
Standard errors of the log hazard ratios
The ME was not significantly different from zero when
using full information. The ME on the log scale was
estimated to be 0.002 (95%CI: -0.035; 0.040). In the
‘neither’ case, the ME became significantly negative,
meaning that the uncertainty in the reconstructed HRs
was underestimated. This is due to the assumption of
no censoring which was made in this case.

Discussion
For CEA, an estimate of expected (mean) survival time
is needed, therefore reported or pooled HRs are clearly
insufficient. A reliable analysis can only be conducted if
access to IPD for each source of efficacy evidence is
available. This allows investigation of a range of para-
metric models and selection of an appropriate model for
the underlying distribution and for the treatment effect.
Unfortunately, IPD is only rarely available, particularly

if the secondary analysis is to be a meta-analysis of sev-
eral trials or where several different treatments have
been examined. If a meta-analysis of time-to-event-out-
comes is being considered for use in a CEA, this should
be an IPD meta-analysis.
There is a strong case to be made that the same statis-

tical model should be used for both efficacy and CEA
analyses [13]. But even if the secondary analysis is
focussed purely on efficacy, it is noteworthy that IPD

Table 1 Example of x-axis (time) and y-axis (Locoregional
control) co-ordinates extracted with DigitizeIt
(corresponding to Figure 1, radiotherapy arm, between 0
and 10 months)

Extracted co-ordinate,
k

Time in months,
Tk

Locoregional control,
Sk

1 0 1

2 0.18 0.994

3 0.42 0.989

4 0.91 0.979

5 1.39 0.974

6 1.88 0.969

7 2.6 0.964

8 2.85 0.959

9 3.33 0.933

10 3.34 0.923

11 3.58 0.901

12 3.83 0.865

13 4.07 0.85

14 4.56 0.828

15 4.8 0.817

16 5.29 0.777

17 5.54 0.767

18 5.78 0.759

19 6.02 0.749

20 6.51 0.716

21 6.75 0.711

22 7.73 0.671

23 7.97 0.661

24 8.21 0.651

25 8.46 0.638

26 8.7 0.628

27 8.7 0.626

28 8.95 0.621

29 9.43 0.616

30 9.92 0.61

31 10 0.608

Table 2 Example of number at risk file (corresponding to Figure 1, radiotherapy arm)

Interval, i Time in months, triski Lower, loweri Upper, upperi Number at risk, nriski

1 0 1 30 213

2 10 31 58 122

3 20 59 83 80

4 30 84 102 51

5 40 103 120 30

6 50 121 128 10
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meta-analysis of time-to-event outcomes has been
described by many authors as the gold standard
[5,6,11,14]. One reason for this is that it allows a more

informative analysis of time-dependent data [15]. First,
aggregated results from time-to-event trials may be
reported as medians or as HRs, but it is hard to com-
bine trials reporting medians with trials reporting HRs
without making distributional assumptions. Secondly, if
HRs are reported one is obliged to accept the propor-
tional hazards assumption, even though this is seldom
checked [13] in the primary analysis. Third, although it
is often believed that PH provides an approximate “aver-
age” HR in cases where PH does not hold, such esti-
mates are clearly vulnerable to bias. If, for example, the
HR is diminishing over time, the procedure will over-
estimate the HR whenever the trials differ in follow-up
time. Finally, even in the best possible case for meta-
analysis based on HRs, where every study reports the
HR and every study tests the null hypothesis of PH and
fails to reject it, it should be remembered that trials are
not powered to detect departure from PH [16], and a
superior test of PH can always be achieved by an IPD
meta-analysis of the entire set of trials.
The algorithm suggested here allows investigators to

re-create KM data, allowing them to explore the propor-
tional hazards assumption, and freeing them to fit a
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Figure 2 Example of reconstructed Kaplan-Meier curves.

Table 3 Example of summary measures collected from
the original publication example [7] and their
corresponding estimates obtained from the
reconstructed IPD

Original publication Reconstructed IPD

Radiotherapy arm

survival rate (1 year) 55 56.1 (49.6; 63.3)

survival rate (2 years) 41 41.1 (34.7; 48.6)

survival rate (3 years) 34 34.7 (28.4; 42.5)

median duration 14.9 14.9 (11.9; 23.0)

Radiotherapy plus cetuximab arm

survival rate (1 year) 63 64.0 (57.8; 70.9)

survival rate (2 years) 50 50.4 (43.9; 57.8)

survival rate (3 years) 47 46.7 (40.1; 54.4)

median duration 24.4 24.3 (15.7; 45.7)

Hazard ratio with 95%CI

0.68 (0.52; 0.89) 0.73 (0.57; 0.94)
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richer class of survival distributions to the reconstructed
data. Access to the IPD, or to reconstructed data, allows
a huge liberalization in modelling survival. Multiple
parameter distributions can be implemented [17-19], or
flexible spline approaches [20]. Methods to adjust for
“cross-over” of treatment can also be applied [21]. In
the context of synthesis, treatment effects can be put on
shape and scale parameters [8] or fractional polynomials
can be used [9].
The validation exercise established that reproducibility

and accuracy of reconstructed statistics was excellent,
especially for median survival and probability of survival.
In addition these reconstructed statistics were relatively
insensitive to deterioration in the level of information
used. Reproducibility and accuracy of reconstructed
Hazard Ratios was less good but certainly adequate with
complete information, but became increasingly inaccu-
rate with less information, and frankly unusable when
neither numbers at risk nor number of events were
available.
The reason why the HR is generally reconstructed

with less accuracy and more vulnerable to the level of

information is because it is in effect a weighted average
of ratios along the entire risk period, while survival
probabilities and medians are simple point estimates.
The reconstruction algorithm must make assumptions
about the degree of censoring within each segment and
these assumptions must affect the relative weighting of
different portions of the curve. As the level of informa-
tion is reduced, the assumptions become increasingly
unrealistic. As it has been noted previously, though in a
slightly different context [22], we might anticipate that
reconstructed HRs will be less accurate in cases where
the data departs more from proportional hazards. It
should be emphasised that our purpose in reconstruct-
ing the KM data is not to obtain an estimate of the HR,
when it is not reported, but instead to allow investiga-
tors access to a good approximation of the Kaplan-
Meier statistics.
Previous work using published KM curves in second-

ary analysis have approached the issue in several differ-
ent ways [4-11]. In most cases, it is clear that the
information has been extracted from the curves [6-11],
but only a few authors [8-10] report that they carry out

Table 4 Reproducibility and accuracy results for the survival probabilities, the medians, the HRs and their
uncertainties; ME: mean error; MAE: mean absolute error; sr : standard deviation due to reproducibility; se : standard
deviation due to exemplar

Survival probabilities

ME (95%CI) MAE (95% CI) sr (95% CI) se (95% CI)

All information -0.103% (-0.260; 0.055) 0.272% (0.021; 1.544) 0.270% (0.234; 0.577) 0.226% (0.138; 0.410)

No numbers at risk -0.051% (-0.186; 0.083) 0.279% (0.019; 1.321) 0.294% (0.253; 0.411) 0.205% (0.113; 0.383)

No total events 0.079% ( -0.111; 0.269) 0.358% (0.035; 2.504) 0.316% (0.283; 0.600) 0.396% (0.293; 0.579)

Neither 0.101% (-0.069;0.270) 0.328% (0.031; 2.233) 0.289% (0.259; 0.547) 0.373% (0.277; 0.547)

Medians

ME (95%CI) MAE (95% CI) sr (95% CI) se (95% CI)

All information 0.011 (0.004; 0.018) 0.011 (0.001; 0.036) 0.006 (0.004; 0.012) 0.005 (0.001; 0.037)

No numbers at risk 0.010 (0.005; 0.014) 0.010 (0.001; 0.027) 0.006 (0.005; 0.021) 0.002 (0.000; 0.021)

No total events 0.005 (-0.001; 0.012) 0.010 (0.001; 0.045) 0.011 (0.009; 0.015) 0.008 (0.003; 0.019)

Neither 0.004 (-0.001; 0.010) 0.011 (0.001; 0.045) 0.015 (0.012; 0.021) 0.005 (0.000; 0.016)

Hazard ratios

ME (95%CI) MAE (95% CI) sr (95% CI) se (95% CI)

All information 0.008 (-0.015; 0.030) 0.017 (0.002; 0.122) 0.021 (0.017; 0.041) 0.021 (0.009; 0.085)

No numbers at risk 0.007 (-0.036; 0.049) 0.036 (0.003; 0.242) 0.037 (0.028; 0.058) 0.041 (0.019; 0.164)

No total events 0.021 (-0.004; 0.045) 0.028 (0.002; 0.167) 0.018 (0.015; 0.029) 0.029 (0.017; 0.074)

Neither 0.037 (-0.190; 0.264) 0.198 (0.021; 1.556) 0.016 (0.013; 0.028) 0.284 (0.177; 0.699)

Standard errors of the log hazard ratios

ME (95%CI) MAE (95% CI) sr (95% CI) se (95% CI)

All information 0.002 (-0.035; 0.040) 0.021 (0.002; 0.149) 0.024 (0.017; 0.114) 0.023 (0.005; 0.764)

No numbers at risk -0.010 (-0.034; 0.014) 0.016 (0.001; 0.095) 0.016 (0.012; 0.060) 0.016 (0.002; 0.526)

No total events -0.022 (-0.057; 0.014) 0.033 (0.003; 0.204) 0.018 (0.014; 0.055) 0.035 (0.019; 0.133)

Neither -0.143 (-0.262; -0.023) 0.143 (0.010; 0.736) 0.039 (0.031; 0.100) 0.121 (0.067; 0.452)

Note that the study 1 did not report the total number of events.
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the data extraction using digitizing software. Dear [4]
extracts the survival probabilities and their variance and
estimates their covariance using normal approximations
under the assumption of no censoring. Arends [5]
adopts a similar strategy but uses a complementary log
log link to model the probabilities. Earle [10] provides a
comparison of several methods [4,23-25] by extracting
the survival probabilities and estimating the number of
patients at risk and number of events in successive time
intervals by using the actuarial equations, using informa-
tion on censoring if reported and ignoring censoring
otherwise. Williamson [11] uses the survival probabil-
ities and the numbers at risk provided below the curves
to estimate the number of events on the intervals
defined by the numbers at risk provided, using the
actuarial method. Parmar’s method [7], frequently cited
and used in the meta-analysis literature, uses informa-
tion on the minimum and maximum of follow-up to
inform the censoring pattern, in addition to the
extracted survival probabilities, to estimate numbers of
events and numbers at risk in successive time intervals,
and then produce estimates of hazard ratios in cases
where these are not available in the published papers.
Fiocco [6] assumes a Poisson distribution and uses log-
linear modelling based on estimated data using the
same approach as Parmar. Finally, Ouwens [8] and Jan-
sen [9] digitise the KM graphs at particular time points
and use the number at risk at the beginning of the
interval, if this is reported, or conservatively assume no
censoring if it is not. The life-table data is then recon-
structed as a series of conditionally independent bino-
mial distributions.
The primary objective of this previous work was

neither the reconstruction of Kaplan Meier data nor the
reconstruction of life-table data, but was a necessary
step that had to be taken in order for the authors to
illustrate methods for combining survival data from sev-
eral studies. All these previous attempts reconstructed
the data in the form of life-table data at a limited num-
ber of time points, whereas we have tried to reconstruct
the original KM intervals. Published survival curves are
almost always based on the KM method justifying our
approach of using inverted KM equations instead of life-
table equations and solving at the same time the pro-
blem of pre-specification of intervals. For the ‘all infor-
mation’ and ‘no total events’ cases, the censoring
pattern varied by numbers at risk published intervals as
in Williamson [11]. For the ‘no number at risk’ case, the
censoring pattern is assumed constant over the interval
and for the ‘neither’ case, no censoring is assumed.
Except for the ‘neither’ case where there is no informa-
tion on number at risk or total number of events, we
believe that our method represents an improvement
over the other approaches described above. This is

because we used an iterative numerical approach to
solve the inverted KM equations, not described else-
where, which is required to ensure consistency between
the successive estimates of numbers at risk and reported
values, and/or estimate of total number of events and
reported value. Without such a procedure, it is not pos-
sible to make the change in survival probabilities over
an interval and number of events and censorings within
the interval consistent with the number at risk at the
start of the next interval. We therefore believe that the
methods proposed here are likely to be the most accu-
rate of the methods proposed so far, when at least num-
bers at risk or total events are reported.
Very few authors [7,10] reported any assessment of

their reconstruction of data. Earle [10] evaluated the
reproducibility of using digitized software to extract the
data by reporting an intraclass correlation coefficient.
Parmar [7] calculated the ME on 48 studies between
reconstructed HR using published survival curves and
reconstructed HR using more direct estimates from
either the Cox model or the logrank test results. He
found no systematic bias for the HR and a slight sys-
tematic underestimation for their variance. We have
provided a more complete evaluation of our method by
reporting not only good reproducibility and lack of sys-
tematic error, but also information on MAE which tells
us about the accuracy of the reconstruction that can be
expected in a given instance.
Limitations of the new method should be mentioned.

To the extent that published KM curves tend to pool
data over different covariates that might affect survival,
the method is still not quite the same as having true
IPD. The inability to derive separate KM curves for dif-
ferent subgroups or to model the joint effects of covari-
ates and treatment can impact on the estimated
treatment effect due to aggregation bias [26]. Even if the
arms are well balanced on a covariate, and even if the
covariate is not an effect-modifier, aggregation over the
covariate will tend to bias the treatment effect towards
the null, and the extent of the bias increases with the
strength of the covariate effect. However, this is an issue
for all meta-analysis where a covariate adjustment could
not been performed.
A second limitation is that the reliability of the recon-

structed data depends on two related elements: the
quality of the initial input and the level of information
provided by the publication. The figure extracted from
the .pdf should not be of low quality (for instance,
blurry figure and/or poor numerical axis scale); other-
wise the user may struggle to extract accurate data via
the digitising software. Furthermore, the extracted data
needed to run the algorithm should be consistent and
sufficient. We encourage users to undertake the initial
digitization and pre-processing with scrupulous care. In
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our experience, although little training is required, it
takes about half an hour to obtain the initial input for
one curve. If incorrect data are entered this may trap
the algorithm. The algorithm has been developed to be
used for the large amount of RCTs reporting KM
curves. However, as we have seen in the results section,
if the total number of events and the numbers at risk
other than at time zero are not provided, the algorithm
may produce poor results. We recommend that all the
information available is used, and wherever possible the
reconstructed KM data should be compared with all
results (survival probabilities, medians, hazard ratio)
reported in the original publication. We recommend
that all RCTs with time-to-event outcomes publish KM
curves together with information on numbers at risk
and total number of events.

Conclusion
The objective of this article was to present a reliable
algorithm permitting the reconstruction of data based
on KM curves reported in the literature. The algorithm
is implemented with the help of a few basic equations.
The complete program is available in the appendix in
the R syntax. This method has the potential to trans-
form secondary analysis of survival data, whether for
CEA or efficacy analysis.

Methods
The Kaplan-Meier (KM) estimation method
The Kaplan-Meier (KM) method is used to estimate the
probability of experiencing the event until time t, SKM (t),
from individual patient data obtained from an RCT that
is subject to right-censoring (where some patients are
lost to follow-up or are event-free at the end of the study
period). The method works by summarising the IPD in
the form of a series of r time intervals [0, t1), [t1, t2),..., [tr,
∞). These intervals are designed to be such that at least
one event occurs at the start of each interval. For each
time interval m = 1, 2,.., r, the Kaplan-Meier data consist
of the number of events that occur at the start of the
interval, dm, the number of individuals censored on the
interval, cm, and the number of patients still at risk just
before the start of the interval, nm, so that

nm+1 = nm − dm − cm. (1)

The Kaplan-Meier data then provide the sufficient sta-
tistics required to form the Kaplan-Meier estimate of
the survival function [17]SKM (tm) at event time tm:

SKM(tm) =
m∏
j=1

nj − dj
nj

= SKM(tm−1) ∗ nm − dm
nm

m = 1, 2, . . . , r

(2)

The Kaplan-Meier data reconstruction algorithm
Data inputs required
The first input data file required for the algorithm con-
tains the extracted x-axis coordinates, Tk, and y-axis
coordinates, Sk, for k = 1,..., N points on the KM curve.
Several software packages exist to do this, and we found
that the software DigitizeIt (http://www.digitizeit.de/)
performed well. The KM curves, extracted from a .pdf
article, are read into the software, the axes are defined,
and then the analyst uses mouse-clicks to select points
to read off from the curve. The resulting Tk and Sk
coordinates are then exported into a text file. This preli-
minary work needs to be performed carefully. The data
should be sufficient: every step seen in the figures
should have been captured during the data extraction.
The location and the number of clicks are therefore
important. The data should also be consistent: the prob-
ability of experiencing the event decreases with time,
and it should be verified that this is always the case for
the data points extracted. Anomalies may occur due to
the publication quality of the curve, and human error in
controlling the clicks. Any anomalies should be cor-
rected before running the algorithm below. The times,
at which the numbers at risk are reported in the publi-
cation, must be included in these initial data. As a con-
vention, the first data point is T1 = 0 and probability of
experiencing the event to time 0 is therefore S1 = 1.
Each KM curve is extracted separately.
The second input data file required for the algorithm

contains information on the reported numbers at risk.
The curve is split into i = 1,.., nint intervals, for each we
have the reported number at risk at the start of that
interval, nriski, the time at which the number at risk is
provided, triski, the first row number of the extracted
co-ordinates for that time interval loweri, and the last
row number of the extracted co-ordinates for that time
interval upperi. nriski and triski come from the original
publication, while loweri and upperi come from the
number of clicks done on each interval, in order to cre-
ate the first input data file. For each i, loweri is equal to
k when Tk = triski and upperi is equal to k when Tk+1 =
triski+1.
The final input data required is the total number of

events, totevents.
We begin by describing the algorithm for the case where

the number at risk is reported at the start of the study and
at least one other time-point and when the total number
of events is reported (’all information’ case). We then
show how the algorithm can be adapted when the number
at risk is only reported at the beginning of the study (’no
numbers at risk’ case), when the total number of events is
not reported (’no total events’ case), and when neither of
these are reported (’neither’ case).
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The algorithm for the ‘all information’ case
The number of censored individuals is not available
from the reported data. We therefore use the reported
numbers at risk, nriski, to approximate the number of
censored individuals on each time-interval i. We cannot
identify the exact censoring pattern within each interval,
and so we are forced to make an assumption. We have
assumed that censoring occurs at a constant rate within
each of the time intervals, which seems reasonable if the
censoring pattern is non-informative (each subject has a
censoring time that is statistically independent of their
failure time).
The algorithm is made up of the following steps (also

illustrated in Figure 3).
STEP 1. We first form an initial guess for the number

censored on interval i. If there were no individuals cen-
sored on interval i then the number at risk at the begin-
ning of the following interval, nrisknocensori+1 , would be the
number at risk at the beginning of interval i, multiplied
by the probability of experiencing the event at interval i
conditional on being alive at the beginning of interval i:

nrisknocensori+1 = nriski ∗ Sloweri+1/Sloweri

rounded to the nearest integer.
Our initial guess for the number censored on interval

i is the difference between the reported number at risk
at the beginning of interval i + 1, nriski+1, and the num-
ber at risk under no censoring:

ncen̂sori = nrisknocensori+1 − nriski+1
ncen̂sori = Sloweri+1/Sloweri ∗ nriski − nriski+1

(3)

STEP 2. We distribute the c = 1, . . . ,ncen̂sori censor
times, cen̂tc , evenly over interval i:

cen̂tc = Tloweri + c ∗ (Tloweri+1 − Tloweri)/(ncen̂sori + 1)

c = 1, . . . ,ncen̂sori
(4)

The number of censored observations between
extracted KM co-ordinates k and k + 1 is found by
counting the number of estimated censor times, cen̂tc ,
that lie between time Tk and Tk+1:

cênk =
ncen̂sori∑
c=1

(cen̂tc ∗ I{cen̂tc∈[Tk ,Tk+1]}) (5)

where I{cen̂tc∈[Tk,Tk+1]} is an indicator returning 1 if cen̂tc
lies on the interval [Tk, Tk+1] and 0 otherwise.
STEP 3. The number of events, d̂k , at each extracted

KM co-ordinate, k, and hence number of patients at risk
at the next co-ordinate, n̂k+1 , can then be calculated.

Re-arranging Eq. 2, we obtain that d̂k is equal to the

number of patients at risk at the extracted KM co-ordi-
nate, k, multiplied by one minus the probability of
experiencing the event at the extracted KM co-ordinate,

k, divided by ŜKMlast(k) the estimated KM survival probabil-

ity at the previous co-ordinate where we estimate that
an event occurred, last(k). The intervals of KM esti-
mates are designed to be such that at least one event
occurs at the start of each interval, but this is not neces-
sarily the case for our extracted co-ordinates, and so we
need to track the time of the last event:

last(k) =
{
1 if k = 1
k′ otherwise

where k’ is such that d̂k′ > 0

but d̂j = 0for j = k’ + 1,..., k - 1

Using eq.2, we have:

ŜKMk =

⎧⎨
⎩

1 if k = 1

ŜKMlast(k) ∗ (1 − d̂k
n̂k

) otherwise

Therefore:

d̂k = n̂k ∗ (1 − Sk

ŜKMlast(k)
)

k = loweri, . . . , upperi

(6)

rounded to the nearest integer.
The number of patients at risk at each extracted co-

ordinate, k, is then obtained by using Eq.1:

n̂k+1 = n̂k − d̂k − cênk
k = loweri, . . . , upperi

(7)

where at the start of the interval we set n̂loweri = nriski .
This produces an estimated number at risk at the start

of the following interval nrîski+1 = n̂upperi+1.

STEP 4. If nrîski+1 �= nriski+1 then we re-adjust the

estimated number of censored observations in interval i,
ncenŝor , by:

ncenŝori = ncen̂sori + (n̂upperi+1 − nriski+1) (8)

We repeat steps 2-3 iteratively until estimated and
published number at risk match (i.e. nrîski+1 = nriski+1 ).
STEP 5. If i + 1 is not the last interval, we repeat steps

1-4 for the following interval.
STEP 6. In published RCTs, there is generally no

number at risk published at the end of the last interval,
nint. We first assume that the number censored on the
last interval is equal to the total number censored
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Figure 3 Flowchart of the algorithm (’all information’ case).
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estimated prior to the last interval,
nint−1∑
i=1

ncenŝori ,

weighted by the remaining time relative to the time
already elapsed, rounded to the nearest integer. But if
this number was seen to be greater than the number of
patients still at risk at the beginning of the last interval,
this number at risk was chosen instead. This assumption
is formally written in the equation below:

ncen̂sornint

= min(
Tuppernint − Tlowernint
Tuppernint−1 − Tlower1

∗
nint−1∑
i=1

ncen̂sori;nrisknint)

And we run step 2-3.
STEP 7. We then use the reported total number of

events, totevents. We calculate the estimated total num-
ber of events obtained by the beginning of the last inter-

val,
uppernint−1∑

k=1
d̂k . If this is greater or equal to totevents we

assume that no more events or censoring occurs:

d̂k = 0, cênk = 0, n̂k = nuppernint−1

k = lowernint , . . . , uppernint

STEP 8. If
uppernint−1∑

k=1
d̂k is less than totevents we re-

adjust the estimated number of censored observations in
interval nint, ncen̂sornint , by the difference in total num-
ber of events:

ncen̂sornint = ncen̂sornint + (
uppernint∑
k=1

d̂k − totevents) (9)

We then re-run steps 2-3,8 for the last interval, nint,

until the estimated total number of events,
uppernint−1∑

k=1
d̂k ,

is equal to the reported total number of events, totevents
or until the estimated total number of events is less than
the reported total number of events but the total num-
ber of censoring in the last interval, ncen̂sornint , becomes
equal to zero.
Adjustments to the algorithm for the ‘no numbers at risk’
case
In this case there is only one interval nint = 1. We first
assume that the total number censored is equal to zero
and then we proceed as in step 8.
Adjustments to the algorithm for the ‘no total events’ case
In this case, we proceed as for the ‘all information’ case
except that no re-adjustment using the total number of
events can be done and we therefore stop at step 6.

Adjustment to the algorithm for the ‘neither’ case
When neither total number of events nor numbers at
risk beyond the start of the study are reported, we
assumed that there were no censored observations. This
is a strong assumption, but as strong as any other
assumption that we could make about the censoring
without further information. Due to the lack of informa-
tion, a lower quality of results is expected.
Obtaining the individual patient data (IPD) from the
reconstructed Kaplan-Meier data
From our reconstructed Kaplan-Meier parameters

d̂k, cênk, n̂k for each extracted KM co-ordinate k = 1,...,
N, we can derive the IPD that would generate that data.
This last piece of coding is in fact quite straightforward.
Each time, that an event or a censoring is estimated, the
corresponding time is recorded as well as an event indi-
cator (one for event and zero for censoring).

Evaluation of reproducibility and accuracy
Six pairs of Kaplan-Meier curves were used in the vali-
dation exercise. These were drawn from a subset of
publications [12,27-29] that formed part of a look-back
review of survival time analysis methods used in eco-
nomic evaluations [13]. We carried out a reconstruction
of twenty-two survival probabilities, seven median survi-
val times, six hazard ratios and four standard errors of
the log hazard ratios that were reported in these four
publications. Each was reconstructed on two occasions
by the same three observers. Two of the three observers
were not involved in the development of the algorithm.
Reproducibility and accuracy of the method was evalu-

ated for each of the 4 different levels of information (’all
information’, ‘no numbers at risk’, ‘no total events’ and
‘neither’). To assess the differences between the recon-
structed statistics and the original ones, the natural
scale was used for the survival probabilities, while the
log scale was used for medians, HRs and their uncer-
tainties. Kaplan Meier curves and Cox HRs based on
reconstructed data were estimated using the R routines
survfit and coxph.
We fitted a standard two-way ANOVA with repeated

measures to the differences between the reconstructed
outcomes and the original outcomes, either on the nat-
ural or the log scale depending on the statistic consid-
ered. The components of variance were exemplar,
observer, exemplar × observer interaction, and within-
cell error. Because the p-value from the F-ratio test for
the interaction was in all cases above 10%, we pooled
the interaction term with the within-cell error term.
The approach chosen is similar to what is referred to in
engineering applications as ‘gauge repeatability and
reproducibility’ [30,31].
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The reproducibility represents the error if a single
observer does a single reconstruction for a specified sta-
tistic. This was estimated as the sum of the within-
observer and between-observer error. Monte Carlo
simulation from the fitted ANOVA model was used to
obtain the 95% confidence intervals around the standard
deviations. The degrees of freedom for the within, the
between and the outcome variations were assumed to
follow chi-square distributions. To ensure robust infer-
ence, 150 000 samples of degrees of freedom were
drawn from each of these distributions, i.e. for each
source of variation. Then, the mean squares estimates
were calculated, using the sum of squares obtained by
the ANOVA and the sample obtained by the simulation,
for each of the 150 000 samples and for each of the
sources of variation. The corresponding 150 000 within,
between and outcome standard deviations were subse-
quently estimated and we finally extracted the 2.5 and
97.5 percentiles to obtain the confidence intervals
estimates.
To assess accuracy we examined the mean difference

between the reconstructed statistics and the original
ones. The resulting mean bias, or mean error (ME)
reflects systematic over- or underestimation. The 95%
confidence intervals are obtained directly from the esti-
mation of the standard deviations given by the ANOVA.
We also recorded absolute bias or mean absolute error
(MAE). This ignores the direction of the errors and
measures their magnitude, giving a measure of the abso-
lute accuracy of the reconstructed outcomes. A simula-
tion method was again used to obtain the 95%
confidence intervals, which assumed that MEs were nor-
mally distributed. For each statistic, to ensure robust
inference, 150 000 samples were drawn from the normal
distribution with the observed mean and variance, as
given by the ANOVA. We then calculated the corre-
sponding 150 000 absolute values of these numbers and
we finally extracted the 2.5 and 97.5 percentiles to
obtain the confidence intervals estimates.
Finally we recorded the variation in the difference

between reconstructed and original statistics that was
due to the choice of exemplars, i.e. to the 22 survival
probabilities, 7 medians, 6 HRs and 4 standard errors of
the log HRs. This gives a further indication of the accu-
racy of the method.

Additional material

Additional file 1: The algorithm (R coding).pdf.
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