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Abstract

Background: IMPACT is an epidemiological model that has been used to estimate how increased treatment
uptakes affect mortality and related outcomes. The model calculations require the use of case fatality rate estimates
under no treatment. Due to the lack of data, rates where treatment is partially present are often used instead,
introducing bias. A method that does not rely on no-treatment case fatality rate estimates is needed.

Methods: Potential Impact Fraction (PIF) measures the proportional reduction in the disease or mortality risk, when
the distribution of a risk factor changes. Here, we first describe a probabilistic framework for interpreting quantities
used in the IMPACT model, and then we show how this is connected with PIF, facilitating its use for the estimation
of the relative reduction of mortality caused by treatment uptake increase. We compare the proposed and standard

disease interventions was increased to the level of 90%.

Multivariate bernoulli

methods to estimate the reduction of cardiovascular disease deaths in Ontario, if utilization of coronary heart

Results: Using the proposed method, we estimated that increasing treatment to benchmark levels uptake results in
a reduction of 22.5% in cardiovascular mortality. The standard method gives a reduction of 20.8%.

Conclusions: Here we present an alternative method for the estimation of the effect of treatment uptake change
on mortality. Our example suggests that the bias associated with the standard method may be substantial. This
approach offers a useful tool for epidemiological and health care research and policy.

Keywords: IMPACT model, Potential impact fraction, Treatment uptake, Cardiovascular mortality, Case fatality rate,

Background

Clinicians and researchers are often interested in esti-
mating the potential effect that a change in the type (e.g.
surgical procedure vs. medication), intensity (e.g. size or
frequency of medication dose) or uptake of treatment
has on mortality or related outcomes. For policy makers,
this is especially relevant in order to set priorities in the
allocation of scarce health care resources. For example,
comparing the potential decreases in cardiovascular
mortality when utilization of particular treatments such
as surgery, angioplasty, drug treatment, or prevention
are optimized may allow decision makers to target
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scarce resources to interventions with the largest poten-
tial health gain. Such effect estimation exercises may in-
clude the introduction of a new treatment, in which case
the uptake is increasing from 0 to a new, “target” value,
u;, and may also include the more common scenario
that involves the increase of the uptake from a “baseline”
value u, to a target u,.

A tool that has been extensively used to estimate the
potential decrease in mortality from cardiovascular dis-
eases following a hypothetical increase in the uptake of
relevant treatments or decrease of risk factors is the epi-
demiological model IMPACT [1-8]. The estimations are
performed using simple mathematical formulas that
utilize integrated estimates of disease prevalence and
mortality, baseline and target treatment uptakes and risk
factor levels, and relative risk estimates for treatments

© 2013 Mitsakakis et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:n.mitsakakis@theta.utoronto.ca
http://creativecommons.org/licenses/by/2.0

Mitsakakis et al. BMC Medical Research Methodology 2013, 13:109
http://www.biomedcentral.com/1471-2288/13/109

and risk factors. In this paper we review the calculations
behind the estimation method of the IMPACT model.
We show that when the baseline treatment uptake level
is not zero, the method imposes additional data de-
mands and requires accurate estimates of the case fatal-
ity rate (mortality rate under no treatment) in order for
the method to be valid. In contemporary practice, it is
typically not possible to acquire mortality rate estimates
under no treatment, thereby introducing potential error
into these calculations. Here we show that impact esti-
mates can be obtained following a different approach
that involves the Potential Impact Fraction [9-11] but
does not require estimates of the case fatality rate.

The rest of this paper is organized into 4 sections.
Firstly, we review the traditional IMPACT model
method of estimation in detail, for both single and mul-
tiple treatments, specifically highlighting data needs.
Secondly, we propose a probabilistic framework and an
estimation method that uses the Potential Impact Frac-
tion. Thirdly, we use a synthetic example and a case-
study to contrast the two methods, and fourthly, we
offer a summary of our findings and recommendations
for health service researchers.

Methods

Current method of estimation in the IMPACT model

Single treatment

In this section we review the method used by the IM-
PACT model to estimate the impact of the increase in
treatment uptake on mortality. The IMPACT model has
been previously used to estimate the proportion of bene-
fit, in terms of mortality reduction, of a number of inter-
ventions introduced to a population, such as reduction
of risk factors and increase of uptake over a period of
time [2-4,7]. It has been also used to estimate the benefit
generated by a hypothetical counterfactual scenario
where the uptake of a number of treatments offered to a
diseased population at-risk of death was to be increased
to a specific value [1,5,6,8]. Here we deal with the sec-
ond type of application. The population of interest con-
sists of the patients who have the disease and are eligible
for a treatment. The term uptake signifies the propor-
tion of this population who is actually using the treat-
ment. In order to estimate the benefit of a change in the
uptake of a treatment from the baseline or current value
u, to the target value u,;, the hypothetical number of
deaths prevented or postponed due to this change needs
to be estimated. The authors and users of the IMPACT
model use this term (denoted as DPP) to estimate the
number of deaths in the specific population of interest
that would have been prevented (or postponed) if the
intervention (here the increase of treatment uptake) had
been implemented. This estimation assumes that all of
the other parameters and factors that could affect the
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outcome remained unchanged, including the number of
patients that are diseased and eligible for the treatment.

In the remainder of this subsection and the next, we
present a formalization of the calculations of the IM-
PACT model as used by Wijeysundera et al. [8]. This
formalization is used in the remainder of the manu-
script. We note here that the parameters involved in the
model are assumed to be the true statistical parameters
and not estimates from data. We therefore do not dis-
cuss any sampling errors.

Under the scenario where 1, = 0, i.e. no treatment dur-
ing baseline, the number of deaths prevented or post-
poned can be estimated by the difference between the
hypothetical number of deaths under the absence of
treatment (during a specific time period S following the
disease diagnosis) and the number of deaths if the treat-
ment was present with target uptake u,. That is

DPP = Ry-N—[Ry -u; + Ry-(1-11,)]-N
:Ro~ut~N—R1~ut~N: Mt~N~(RQ—R1), (1)

where Ry, R; are the risks of death within time period S
after diagnosis under the absence and presence of treat-
ment respectively, and N is the number of people diag-
nosed with the disease and eligible for the treatment.
Commonly, this equation is expressed using the case fa-
tality rate (cf) associated with time period S, which is an
estimate of R, and the relative risk (RR) associated with
the treatment, defined as R;/R,. As such, using this no-
tation, one can derive from Equation 1 that:

DPP = ¢f -u;-(1-RR)-N (2)

When the baseline involves a treatment with uptake
u, >0, and the target uptake is u,, the number of deaths
prevented by the increase in uptake is given by the dif-
ference between the number of deaths prevented under
the “target” and baseline uptakes:

ADPP = DPP,~DPP, = cf -(us-up)-(1-RR)-N  (3)

The relative effect on disease mortality can then be
calculated as the percentage of decrease. This can be es-
timated if the total number of deaths from the disease
at baseline, d, is available, and is given by 4222 See, for
example, the calculations provided by Wijeysundera

et al. [7].

Combination of treatments

Many diseases are treated with a combination of medical
and surgical therapies, so changes in uptake may involve
all of them. In many cases, drugs and other treatments
interact or have other intermediate effects that pose ser-
ious obstacles for the estimation of the total effect on
the outcome.
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The IMPACT model makes the assumption of a multi-
plicative effect, under which the relative risk associated
with a number of treatments is equal to the product of
the relative risks of each treatment. This approach,
sometimes called the Mant-Hicks model [12], assumes
that there is no interaction between the treatments.
Multiplicative effect assumptions have been found to be
valid in cardiovascular diseases, which makes the IM-
PACT model plausible [1-8,12]. However, these assump-
tions are not guaranteed to be valid for other diseases or
conditions. It is therefore important to investigate the
validity of these assumptions prior to the application of
the multiplicative risk model.

The underlying risk equation for a multiplicative risk
model is

R(t1,....,tx) = Ro-(RR))" -+ -(RRy )™, (4)

Where R, denotes the risk of death under the absence
of any treatment, RR; denotes the relative risk for the
treatment i and ¢; is the indicator variable taking the
value 1 when treatment i is present and the value 0
when the treatment i is absent. This model implies that
the “relative benefit” (i.e. relative risk reduction) of the
treatment combination is equal to RB = 1—1_[?_1 (1-RRR;),
Where RRR; indicate the relative risk reduction for
treatment .

In previous applications of the IMPACT model the
number of DPPs under the scenario of increased treat-
ment uptake was calculated based on an adjustment of
the sum of the DPPs from the individual treatments
after taking into account the overall relative benefit of
the treatment combination according to the model
expressed in Equation 4 [Harindra Wijeysundera, per-
sonal communication].

Following an approach similar to the single treatment
case, in order to correctly calculate the deaths prevented
or postponed under the scenario of the target uptake for
the different treatments in the treatment combination,
we note that the formula in Equation 1 subtracts the
weighted estimate of the number of deaths under the tar-
get situation (where uptake is equal to u) from the esti-
mated number of deaths under the baseline. For this
weighted estimate of the number of deaths, the risks of
death under treatment and no treatment have weights
equal to u and 1-u respectively. This essentially divides
the population into two groups: those who are receiving
the treatment and constitute #:100% of the eligible
population, and those who are not receiving the treat-
ment, constituting (1-#)-100% of the eligible population.
When the number of treatments is greater than 1, this
division must take into account any possible combina-
tions of presence or absence of any of the treatments
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included in the combined treatment. For example, if we
have two treatments, the number of deaths prevented or
postponed is equal to

DPP = Ryy-N~[Roo-thoo + Rig-tt10 + Ror-tior + Ry -un]-N,  (5)

where R;; denotes the risk of death and u; denotes the
uptake, with i,/ taking values 0 or 1, indicating the ab-
sence or presence of treatments 1 and 2, respectively.

DPP calculation and case fatality rate

It is therefore apparent (see also Equation 2) that the es-
timation of DPP requires the case fatality rate under no
treatment. In the early iterations of the IMPACT model
developed using patient data from the 1970’s many
current cardiac therapies were not available. Thus, the
case fatality rate observed at that time was indeed under
no treatment. However, when evaluating a more con-
temporary cohort, data for the ¢f under no treatment is
often not available because the treatments are already
introduced and offered to eligible patients. In previous
studies where those estimates were not available, case fa-
tality rates under the presence of some level of treatment
have been employed instead [6-8]. This practice poten-
tially introduces bias since the case fatality rate is likely
to be underestimated.

Here we describe a method to calculate the DPP for a
particular treatment or combination of treatments that
does not require an estimate of the case fatality rate
under no treatment.

Description of the proposed method

In this section we propose a framework for the estima-
tion of the number of DPPs and consequently of the
benefit on mortality, without the need of the case fatality
rate. We first describe a probabilistic framework for
interpreting the deaths prevented and postponed. Then
we show how this is associated with the Potential Impact
Fraction and facilitates its use for the estimation of the
measures of interest.

Probabilistic framework

Here we introduce a probabilistic framework which pro-
vides a base for the estimation of the number of deaths
prevented or postponed. This framework, although using
classic probabilistic expressions, offers a novel view of
the calculations used in the IMPACT model. Advantages
of this approach are that a) it is compatible with the
traditional calculations of the IMPACT model for the
single treatment case, b) it can be extended easily to in-
corporate treatment combinations, and c) it is closely re-
lated to a popular epidemiological tool, the Potential
Impact Fraction. In order to estimate the number of
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deaths prevented or postponed we establish a framework
based on the following components:

1) Each eligible patient (patient with the disease) is
potentially receiving k treatments (k> 1) and each
treatment i is associated with a random binary
variable T}, indicating whether the treatment is being
received or not.

2) In case of a single treatment, the uptake (the
percentage of number of patients receiving the
treatment) is an estimate of the probability of the
treatment being received by a randomly selected patient,
ie. u=P(T=1). As T, follows a Bernoulli distribution,
this probability is equal to the expected value of T;. In
the case of a combination of treatments, the random
vector T = (T1, ..., Ty) of treatment-indicator variables
follows a multivariate Bernoulli distribution [13].

3) Risk of death is the expected value of the binary
Bernoulli random variable indicating the occurrence
of death in the eligible diseased patients. This risk is
conditional on the values of the treatment-indicator
variables T, ..., T}.

Following this framework, the number of deaths
prevented or postponed under the uptake u, of a single
treatment with indicator variable T is the difference be-
tween the expected number of deaths under two differ-
ent “probabilistic scenarios” for the random variable T:
a) p(T'=1) =0, i.e. no patient is receiving the treatment,
and b) p(T'=1) = u,, i.e. there is a u, chance of an eligible
patient receiving the treatment. We therefore have

DPP = N -p(death|T = 0)-N-Er|p(death|T)]
= N -p(death|T = 0)-N {p(death|T = 0)-p(T = 0)
+ p(death|T = 1)-p(T =1)}.

If we replace p(death|T =0) with cf, p(death|T = 1) with
¢fRR, p(T=1) with u, and p(T=0) with 1-u, we
have DPP=N.-¢f-N-[cf- (1 -u)+cf-RR -u]=N-cf-
u; - (1 - RR). This quantity is the same as in Equation 2,
which confirms that the presented probabilistic ap-
proach is compatible with the previously presented
method of DPP calculation.

The major benefit of using the probabilistic approach
concerns the case of a combination of treatments. In that
case, the estimation requires the expected value Er[p
(death|T)], which depends on the risk function p(death|T)
and the distribution of the random vector T indicating the
presence/absence of all treatments. It is then equal to

DPP = N -p(death|T; =0,..., Ty = 0)-
N- Zp(death‘Tl :tla°";T/(:t/() (6)
(£t )e{0,1}F
p(T1 =ty ..., Tk = &),
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where T, ..., T are the indicator random variables for the k
treatments. From Equation 6 we can see that in order to es-
timate the number of DPP, the distribution of absence/pres-
ence of all the treatments in the combination is needed.

A significant simplification can be achieved under the as-
sumption of uptake independence among the treatments.
This means that the uptake of one treatment (or the prob-
ability of receiving it) does not depend on the uptake of
any other treatment. If we denote with u; the marginal up-
take of a treatment i (equal to the marginal probability of
receiving the treatment, P(T;=1)) regardless of the pres-
ence or absence of other treatments, under the assumption
of independence among treatments, we have that

k ) L
p(Tl = tl, veey Tk = tk) = Hizlu?'(l_ui)l t; (7)

For the scenario in which baseline does not involve
any treatment (i.e. the baseline uptake is equal to 0 for
all treatments) it can be proven (see Additional file 1)
that the number of deaths prevented or postponed
under the target uptake is equal to

DPP = ¢f N. [1—Hf:1(1—u,» ‘RRR;) (8)

where RRR; denotes the relative risk reduction for treat-
ment ¢; , which is equal to 1 minus the relative risk.

Moving from the baseline uptake u;;, to a target up-
take u;,, for treatment i, i =1,...,K, the difference in the
DPP is given by

4DPP = of N-[[ ., (1-mp-RRR)-] ]~ (1-;, RRR;)
)

For the more general case, one could use the
parameterization for the multivariate Bernoulli distribu-
tion found in the paper by Tuegels [13], in which case
PIF can be computed if the multivariate (ordinary) joint
moments of the treatment-indicator random vector are
known. Joint moments are generalizations of the means
measuring the dependency among two or more random
variables, which can be estimated if appropriate data are
available. More information can be found in the paper
by Tuegels [13]. An example of this computation for 3
treatments is shown in Additional file 2.

Potential impact fraction and single treatment

We now present the proposed method for the estimation
of the DPPs and the relative decrease in mortality that
does not require the case fatality rate. This method
builds on the calculation of the Potential Impact Frac-
tion (PIF), an epidemiological measure that is equal to
the proportional reduction in the risk of a disease or
mortality resulting from a specific change in the distri-
bution of a risk factor in the population and/or in the
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risk associated with this factor [9-11]. This measure has
also been called generalized attributable fraction [10],
since it is a generalization of the classic population at-
tributable fraction measure [14-16] that refers to the
proportional risk reduction resulted from the elimin-
ation of a risk factor. PIF has been extensively used in
research to measure potential gains in mortality and
burden of diseases under hypothetical counterfactual
scenarios of elimination or reduction of risk factors re-
lated to the outcome of interest [17-21].

Although this measure accommodates changes in the
risk values, here we assume that the risks remained un-
changed and only the distribution of the factors changes.

For the simple case of a single categorical risk factor
of n levels the PIF value is given by

Zn: P;-RR; —zn: P.RR;
_ =1 i=1
Zn: P;.RR;
i=1

where are the proportions of eligible subjects with the
risk factor at the i-th level, before and after the change
respectively, and is the relative risk for the i-th level ,
with reference to a chosen “reference” level (equation 2b
in the paper by Murray et al. [11]. PIF can be extended
to continuous risk factors (such as levels of diastolic
blood pressure) [10,11].

In an analogous fashion, we want to estimate the pro-
portional reduction in mortality as a result of a specific
change in the uptake of a treatment or a combination of
treatments. The administration of the treatment plays
the role of “exposure”, constituting a protective risk fac-
tor (as it is clear that the relative risk RR; associated with
treatment i has a value larger than 1), while the counter-
factual scenario refers to an increase of the proportion
of patients taking the treatments, i.e. a higher uptake.

For the simple case of a single treatment, the “distribu-
tion” of the treatment corresponds to the proportion of
the individuals receiving the treatment. Using Equation 10
and assuming that level 1 (not receiving the treatment) is
the reference level, we can replace P;, P,, P’;, P’, RR;, and
RR, with 1-uy, up, 1-uy, u,, 1, and RR, respectively, drawing
the analogy between baseline and target treatment uptake
with current and modified (or counterfactual) probability
of exposure. Equation 10 then gives

PIF

; (10)

(I-up)-1 4 up-RR-[(1-u4;)-1 + 14, -RR)]
(1-up)-1 + up-RR
(—up) - (1-RR)  (u;—up)-RRR

= 11
1-u,-(1-RR) 1-u, RRR (11)

PIF =

where 1, 1, denote the baseline and target uptakes, and
RRR denotes the relative risk reduction, which is assumed
to be unchanged.
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An estimate of the marginal risk of death under the
baseline treatment uptake is given by d/N=N - [c¢f- (1 -
up) +¢f-RR -up) =N - ¢f - (1 —uy, - RRR), where d is the
number of deaths under the baseline scenario. Thus, by
combining equations 3 and 11 we find that the differ-
ence in DPP is given by.

ADPP = PIF -d. (12)

As we observe in the expression above, the change in
the DPP due to the increase in treatment uptake does
not require an estimate of the case fatality rate. This is a
significant benefit when estimates of the case fatality rate
cannot be obtained from available data.

Combination of treatments

In order to accommodate changes in the uptake of a
combination of treatments we employ a generalized ver-
sion of PIF, previously described by Eide and Heuch
[10], which is compatible with and requires naturally the
probabilistic framework presented in a previous section
of the manuscript. We assume that the risk of death de-
pends on a number of factors which could be treated as
random variables, e.g. exposure risk factors or treat-
ments. Here, we specifically focus on treatments, be-
cause we are investigating the effect of treatment uptake
changes rather than risk factors.

The risk itself is the expected value of a binary variable
indicating death. We therefore assume a model where
the expected value of the random variable death is a
mathematical function of the treatments, themselves be-
ing random variables. If we denote the indicator vari-
ables for treatments I,.k (here playing the role of
“exposure” variables) with 77, ..., T}, the risk of death as-
sociated with the values t, ..., (where t; is 1 when
treatment i is taken and 0 otherwise) is equal to R(¢;, ...,
t) = E(death =1|T, =ty, ..., Ty =t). This has previously
referred to as the conditional probability of death or
disease [10].

We now consider the marginal risk defined as the
expected value of the random quantity R(77, ..., Tx)over
all the random variables-factors T, ..., T}. If we denote
with T the random vector (77, ..., T), the marginal risk
is equal to ET[R(T)]. We note here that this quantity has
been previously called unconditional probability of dis-
ease or death (see for instance Equation 17 in the paper
by Eide and Heuch [10]).

Under the scenario of a change in the uptake of the
treatment combination, the distribution of the T changes
to T*, which is a multivariate Bernoulli distribution with
each component taking the values 0 or 1, but with other
parameters (e.g. means and variances) being different.
On the other hand, the hypothetical change involves
only the uptake of the treatments (and therefore the
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distribution of the indicator random variables), but not
the absolute or relative risk. Therefore the risk function
R(t) is assumed to be the same before and after the
change. The relative impact of such a change is mea-
sured by the Potential Impact Fraction, which is then de-

fined as the ratio W We note here that this

ratio is equivalent to what has been previously described
using integral representation and termed generalized at-
tributable fraction in the paper by Eide and Heuch [10].

Under parametric model assumptions the expressions
can be further developed. If we assume the log-linear
risk model of Equation 4, the risk function is equal
to R(t) = R(¢y, ..., i) = exp(Bo + B1 - t1+, ..., + Bi - t), where
Bo, B1s - P are equal to log(Ry), log(RRy), ..., log(RRy)
respectively, and the marginal risk becomes

Er|exp(By+BiT1+ ... + B Tx)]
= exp(ﬁo) -Et [exp(/)’1 Ty + ... —l—,Bka)}
= Ry-E7[RR]"-....RR*]
= Ry-PGF1(RRy, ..., RRy),

where PGFy(xy, ..., x) denotes the probability generating func-

tion of the random vector T, being equal to Et (xlTl x,fk)

[22]. PIF then becomes PGEy <RR1PG£TR{;;GF;R<SRI woRR)

The probability generating function of the multivariate
distribution depends on the way in which the distribution
is parameterized. In Additional file 2 we provide an ex-
pression that uses the parameterization based on the mar-
ginal means of the individual components-treatments
(corresponding to the uptakes of the individual treat-
ments) and the multivariate ordinary joint moments of the
components.

Under the strong assumption that the treatment up-
takes are independent of each other, we can prove (see
Additional file 3) that PIF is given by the expression

k k
PIF = Hi:l (l_ui’b .fRRi) _Hl':1 (l_ui,t 'RRRi)
1., (1-us-RRR;)

)

(13)

where u;,, u;,, RRR; indicate the marginal baseline up-
take, target uptake and relative risk reduction, respect-
ively, for treatment i, with i=1, ..., k, where k is the
number of treatments.

Often data and estimates are available for different
strata of the population (defined by factors such as age
and gender). In those cases, PIF can be calculated for
each individual stratum. In order to obtain the DPP due
to a change in uptake of a treatment for a specific
stratum j, we need to multiply the stratum-specific PIF
value PIF; with the observed number of deaths d; under
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the current uptake conditions. The total number of
ADPP due to treatment uptake increase is then equal to
J
ADPP = " PIF; dj, (14)
=1

where ] is the total number of strata. One can then cal-
culate the reduction in mortality as the ratio of ADPP
over the total number of deaths.

Similar to the single treatment case, the expressions
above do not involve estimates of the case fatality rate.

Comparison of the two methods

Single treatment

In the case of one single treatment, there is a simple re-
lationship between the numbers of DPP as calculated
from the standard and the PIF-based method. If proper
estimates of the case fatality rate under no treatment are
used, then the two methods produce identical results.
This can easily be seen since the number of deaths
under baseline condition d is equal to N times the
weighted risk of death, u;, - R+ (1 - up) - ¢f, where R is
the risk of death under treatment. This becomes d =N -
of (up - RR+1-up)=N-cf [1-uy-(1-RR)], and from
Equations 11 and 12 we have

(ts~up)-RRR
ADPPpp = ———— N ¢f -(1-up-RRR
PIF 11, RRR Cf( Up )

= (uy~up)-RRR-N -¢f

which is equal to the right hand side of Equation 3.
If the “no-treatment” case fatality rate is instead estimated
by mortality data under the baseline condition where some

treatment is present (using the notationcf ), the difference
in DPP from Equation 3 is estimated by

ADPP; = cf -(u;~up)-RRR-N
= ¢f -(1-up-RRR) -(u;-1p)-RRR-N ,

because ¢f = ¢f-(1-u,-RRR), as discussed in the previous
paragraph.

Therefore the saved deaths are underestimated by a fac-
tor equal to u, - RRR. The magnitude by which DPP is
underestimated is directly proportional to the values of
baseline uptake and relative risk reduction, the larger the
uptake and RRR, the larger the amount of underestimation.

When the number of treatments is greater than one,
the discrepancies between the two methods are more
difficult to determine. We explore this further first with
a simple synthetic example involving two treatments and
then with a case study based on real-world epidemio-
logical data from the province of Ontario, Canada.
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Results
Synthetic example
In a hypothetical scenario of a population of N = 2500
diseased patients eligible for a combination of treat-
ments 1 and 2, with baseline uptakes u; , =50%, uy, =
60% we observe 750 deaths. We assume that the relative
risk reductions for treatments 1 and 2 are 0.07 and 0.1
respectively. We are interested in calculating the in-
crease in DPP (ADPP) associated with a hypothetical tar-
get uptake increase u;,=80%, u,,=80%.We make the
assumptions of a multiplicative treatment effect and in-
dependence between treatment uptakes. If we follow the
method used by the IMPACT model we estimate the
case fatality rate to be c¢f=750/2500=0.3 and from
Equation 9 we have ADPP;»=0.3-2500-[(1-0.5-
0.07)-(1-06-0.1)-(1-0.8-0.07) -(1-0.8-0.1)] =28.97.
On the other hand, if we follow the proposed PIF-based
method, we first use Equation 13 and calculate PIF to be

_ (1-0.5.0.07)-(1-0.6.0.1)~(1-0.8-0.07)-(1-0.8-0.1) __
PIF = (1-05007)-(1-0.6.0.1) =0.04258. Then

using Equation 12 we calculate ADPPp;- =750 - 0.04258 =
31.93. We therefore observe an important difference of al-
most 3 DPP between the two methods.

Reducing cardiovascular mortality in Ontario: a case study

A recently published study [8] investigated the potential
impact of achieving recommended benchmarks in cardio-
vascular quality indicators on cardiovascular mortality.
More specifically, the impact of increasing treatment
utilization from 2005 levels to the recommended bench-
mark level of 90% was modeled. Briefly, the IMPACT
model was utilized to estimate the relative reduction of
cardiovascular mortality if the utilization targets were to
be met, integrating population data on disease prevalence,
mortality, utilizations for various surgical and medical
treatments, and published relative risk estimates for those
treatments. In this study the DPP numbers were calcu-
lated per treatment as well as collectively for a combin-
ation of treatments for each disease. In the traditional
method, case fatality rate estimates were used from the
base year of 2005. Table 1 compares the results of the two
methods. The traditional method gives a reduction of
20.8%. In contrast, using the proposed PIF-based method,
we estimated that increasing treatment uptake to bench-
mark levels would result in a total reduction in cardiovas-
cular mortality of 22.49%. The difference is mainly due to
the underestimation of the case fatality rate using the trad-
itional method. This underestimation occurs because the
case fatality rates used in the original calculations were es-
timated from 2005 data in which the treatments were uti-
lized. These case fatality rates are obviously lower than the
no-treatment case fatality rates that are needed for the cal-
culations. As demonstrated in a previous section, the dif-
ference between the DPP results from the traditional
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method and the proposed PIF-based method depends on
the “baseline” treatment utilization (here the 2005 values),
as well as on the relative risk reduction associated with the
treatment. For example, statins for acute myocardial in-
farction have a high relative risk reduction (0.22) and a
high baseline utilization (0.883), which resulted in a large
difference between the methods. The PIF-based method
gives 15.78% more DPPs than the original method.

An additional issue to note is that in the aforementioned
study the aggregate disease level DPPs were calculated as
the sum of the individual treatment-level DPPs. This will
likely inflate the calculated effects. For the proposed PIF
method, the Mant-Hicks model for polypharmacy is
adopted [12], and the uptakes of multiple treatments are
assumed to be independent. As such, the differences in
DPP that we observed between the traditional and PIF
methods for combination treatments (Table 1) are poten-
tially under-estimations of the true differences.

Discussion

In this paper, we have presented an alternative to the
standard IMPACT method of estimation of the effect of
treatment uptake increase on reduction of mortality.
This alternative method is based on the Potential Impact
Fraction (PIF) and has fewer data requirements than the
currently used method. Most notably, it does not require
an estimate of case fatality rate without treatment. Our
example suggests that the magnitude of bias associated
with the standard method may be substantial.

Modeling or forecasting scenarios are of substantial
benefit to health policy makers, in order to aid with prior-
ity setting. A common obstacle with model development
is the unavailability of data with which to make accurate
predictions. In our experience, the rapid adoption of new
treatments makes it especially difficult to obtain estimates
of case-fatality rate in the absence of treatment. Indeed, in
many circumstances, current uptakes of treatment in areas
such as cardiovascular disease are already quite high, as
seen in our case-study. In this setting, the use of case-
fatality rate estimates in prediction models may grossly
under-estimate the survival benefit of further improve-
ments in utilization. Our proposed method overcomes this
limitation. Without intending to disprove or discredit the
IMPACT model, which we consider an important epi-
demiological tool, we propose an alternative approach to
calculate the deaths prevented or postponed, avoiding the
use of case fatality rate estimates.

Calculations using the PIF-based method may be
slightly more involved than those used in the traditional
IMPACT method, but they can easily be performed with
a spreadsheet software package such as Microsoft Excel
or programming languages such as R or Matlab.

It is important to recognize the assumptions and data
requirements of the proposed PIF-based method. Similar
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Table 1 Comparison of mortality reduction estimates using the standard and the proposed method
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Disease Treatment Original method PIF-based method Percentage
DPP % mortality DPP % mortality difference
reduction reduction in DPP
AMI 223.05 222 236.16 2.35 5.88
Beta blockers 713 0.07 729 0.07 224
ACE inhibitors 43.98 044 45.25 045 2.89
Reperfusion 164.78 1.64 179.59 2.04 8.99
Statins 7.16 0.07 829 0.08 1578
2' Prevention post AMI 176.82 1.76 178.50 177 0.95
Beta blockers 8.08 0.08 9.36 0.09 15.84
ACE inhibitors 31.83 032 35.12 035 1034
Statins 258 0.03 298 0.03 15.50
Rehabilitation 13433 1.34 138.11 137 2.81
ACS 21.26 021 22,66 0.23 6.59
Beta blockers 1.77 0.02 1.81 0.02 226
ACE inhibitors 9.56 0.10 9.82 0.10 2.72
Statins 9.93 0.10 11.29 0.11 13.70
Chronic angina and CHD: medical therapy 703.81 7.00 74331 739 561
Aspirin 106.61 1.06 116.16 1.16 8.96
ACE inhibitors 436.83 434 463.12 4.60 6.02
Statins 160.37 1.59 182.27 1.81 13.66
Chronic angina and CHD: PCl 7.06 0.07 751 0.08 6.37
Aspirin 0.64 0.01 0.70 0.01 9.37
ACE inhibitors 5.70 0.06 6.06 0.06 6.32
Statins 0.72 0.01 083 0.01 15.28
Chronic angina and CHD- CABG 14.10 0.14 15.16 0.15 752
Aspirin 2.09 0.02 229 0.02 9.57
ACE inhibitors 10.33 0.10 1.1 0.1 7.55
Statins 1.68 0.02 1.94 0.02 1548
Hospital heart failure 149.80 149 165.17 1.64 10.26
ACE inhibitors 47.00 047 5146 0.51 949
Beta blockers 102.80 1.02 118381 1.18 15.57
Community heart failure 601.33 598 686.99 6.83 1425
ACE inhibitors 199.61 1.98 22130 2.20 10.87
Beta blockers 401.72 3.99 48061 4.78 19.64
Hypertension Treatment 60.25 0.60 62.10 0.62 3.07
all treatments 60.25 0.60 62.10 062 307
Hyperlipidemia Treatment 135.15 1.34 145.02 144 7.30
Statins 1" prevention 135.15 1.34 145.02 144 7.30
Total 2092.63 20.80 2262.59 22.49 8.12

Single treatment and treatment combination level data for deaths prevented or postponed, under the standard and the PIF-based method. ACE angiotensin-converting
enzyme, ACS acute coronary syndrome, AMI acute myocardial infarction, ARB angiotension receptor blocker, CABG coronary artery bypass grafting, DPP deaths prevented

or postponed, PCl percutaneous coronary intervention.

to the traditional method, it is valid when the number of
eligible patients and the risk ratio do not change from
baseline to the target scenario. In reality this is never the

case as the number of eligible patients and risk ratios
can be influenced by other (e.g. environmental) factors.

However,

this limitation does not undermine the
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usefulness of the method. Usually the main objective of
this type of analysis is not the precise estimation of the
absolute impact on mortality (expressed for instance as
relative reduction), but rather the relative impact com-
paring interventions involving different treatments of-
fered for different diseases. In those cases, the findings
can be used by policy makers to prioritize the allocation
of scarce resources.

Importantly, there must be no confounding effects be-
tween treatments and no interaction between treatments
used in combination. This latter point is unlikely to be
true in all cases, which poses a limitation. However, it is
known that in some medical areas (e.g. cardiovascular
diseases) treatments offered in combination do not have
a negative interaction, and therefore the estimates gener-
ated with the PIF-based method do not grossly depart
from the true values. When confounding and interaction
effects are known to exist among treatments, approaches
which model “chain reaction” of changes [21,23] are
more appropriate.

In the case of combination treatment, it is important
also to point out that estimates of the joint uptakes of
the different treatments are necessary for the PIF-based
method. The calculation given in Equation 13 is valid
only under the strong assumption of independence be-
tween the treatment uptakes. Clearly this condition is
unlikely, because behavioural factors such as adherence
and compliance will affect uptake of more than one
treatment. We would therefore expect that if a patient
who is eligible for combination treatment does not re-
ceive one treatment of the combination, he or she is
more likely to not receive another one as well. Our ap-
proach using multivariate Bernoulli distribution with the
appropriate parameterization provides a tool that could
employ estimates of the “dependence” between uptakes
if they were available. Further investigation of the
method under different scenarios of uptake inter-
dependencies is required, in order to measure the extent
to which its applicability can be generalized. It would
also be of interest to explore how existing methods for
estimation of attributable fractions under groups of risk
factors, such as in [24], could be extended to the PIF
method and its application to the IMPACT model that
we propose here.

Conclusions

In summary, in this paper we have highlighted the im-
portance of reassessing underlying assumptions and data
requirements for methods that model the effects of
changes in treatment uptake, given the potential for
error. We believe our newly proposed PIF method will
be a useful tool for health care policy makers and epi-
demiological and health care researchers.
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