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Abstract

Background: Case-cohort studies are increasingly used to quantify the association of novel factors with
disease risk. Conventional measures of predictive ability need modification for this design. We show how
Harrell’s C-index, Royston’s D, and the category-based and continuous versions of the net reclassification
index (NRI) can be adapted.

Methods: We simulated full cohort and case-cohort data, with sampling fractions ranging from 1% to 90%, using
covariates from a cohort study of coronary heart disease, and two incidence rates. We then compared the accuracy and
precision of the proposed risk prediction metrics.

Results: The C-index and D must be weighted in order to obtain unbiased results. The NRI does not need
modification, provided that the relevant non-subcohort cases are excluded from the calculation. The
empirical standard errors across simulations were consistent with analytical standard errors for the C-index
and D but not for the NRI. Good relative efficiency of the prediction metrics was observed in our examples,
provided the sampling fraction was above 40% for the C-index, 60% for D, or 30% for the NRI. Stata code is
made available.

Conclusions: Case-cohort designs can be used to provide unbiased estimates of the C-index, D measure and NRI.

Keywords: Case-cohort, Risk prediction, Discrimination, Reclassification, Cardiovascular disease
Background
The case-cohort sampling design, initially introduced by
Prentice [1], reduces the amount of data collection re-
quired compared to full cohort studies by efficient sam-
pling of the non-diseased individuals. Information is
collected on a random sample of the original cohort (the
subcohort) as well as all additional cases. Together, the
subcohort and the extra cases form the case-cohort set.
Although follow-up for disease is still necessary for the
full cohort, covariate information (which is often costly
to obtain) is only required for the case-cohort set. Fur-
thermore, if the subcohort is chosen at random (i.e. an
unstratified design) then it can be used as a comparison
group for multiple diseases of interest, offering an advan-
tage over the nested case–control design. Hazard ratios
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for case-cohort studies are typically estimated using a
weighted version of the Cox proportional hazards model
[1]. Different weighting methods have been proposed and
these methods are well documented in the literature [2].
Similarly, the baseline hazard can be estimated using a
weighted version of the standard Breslow estimator, al-
lowing estimation of absolute risks.
Although investigation of the bias in resulting hazard

ratio estimates has been the subject of previous research
[3], there has been little work on the accuracy and preci-
sion of risk predictions made using a model in which
both the hazard ratios and baseline survival estimates
have been derived using case-cohort data. Measures to
quantify the predictive ability of risk models have been
adapted and applied to case-cohort designs by Ganna
et al [4] who describe the use of the C-index, reclassifi-
cation and calibration for both stratified and unstratified
case-cohort designs.
Time-dependent area under the ROC curve methods

[5] have also been used in the case-cohort setting [6,7]
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and C-statistics and the net reclassification index (NRI)
have been applied by Vaarhorst et al [8]. However, any
resulting bias in the estimates and their standard errors
(SEs) has not been extensively investigated and the use
of other measures of predictive ability has so far, to our
knowledge, not been considered. The use of predictive
measures in case-cohort designs is of increasing rele-
vance, as technological advances permit routine meas-
urement of many novel biological and genomic markers
for risk prediction. Large studies with various disease
outcomes can be utilised efficiently by adopting a case-
cohort design [9].
In this paper we describe methods for deriving risk

prediction models from case-cohort data and focus on
relevant adaptation of commonly used measures to as-
sess their predictive ability: Harrell’s C [10,11], Royston
and Sauerbrei’s D [12], and the NRI [13,14]. The pro-
posed methods are extensively assessed through simu-
lation, in which estimates from case-cohort data are
compared to those which would have been seen in a full
cohort study.

Methods and results
Data and simulations used
Our methods are illustrated using case-cohort samples
which have been randomly sampled from a full cohort, and
risk prediction models for coronary heart disease (CHD,
defined as first ever non-fatal myocardial infarction or cor-
onary death). For the full cohort we use the 6773 males
from the Reykjavik prospective cohort study [15], yielding
1827 events from 153,428 person-years of follow-up (me-
dian follow-up was 24.5 years). Deaths from causes other
than CHD are regarded as censoring events; we return to
this point in the Discussion. Descriptive statistics and haz-
ard ratios of CHD for the key covariates measured at study
entry are provided in Table 1. Our initial examples use risk
models including age, smoking, systolic blood pressure and
total cholesterol (model 1 of Table 1). The NRI is assessed
considering the addition of HDL-cholesterol to this model
(model 2 of Table 1).
Table 1 Descriptive statistics and hazard ratios of CHD in the

Mean (SD) or n (%)

Age at survey (years) 52.3 (7.6)

Smoking status (smoker vs non-smoker)* 3,609 (53.3)

Systolic blood pressure (mmHg) 141.8 (20.6)

Total cholesterol (mmol/l) 6.3 (1.0)

HDL-cholesterol (mmol/l) 1.4 (0.2)

Hazard ratios are based on a Cox proportional hazards model involving 6773 men (
entry as the time scale.
*reference category for smoking is non-smokers.
To encompass the variability that might be seen in prac-
tice, new outcome data were generated for the full cohort
using original covariate values and observed parameters
from a fitted Weibull model. New event times (using
time from study entry as the time scale) were simulated
following

Ti ¼ − log Uið Þð Þ1γ̂ exp β̂xi
� �

ð1Þ

where β̂xi is the linear predictor of each individual, γ̂ is
the Weibull shape parameter, and Ui is a randomly gener-
ated Uniform (0,1) variable. Staggered entry was imposed,
permitting individuals to enter the study randomly be-
tween 0 and 5 years, and event times were censored at
25 years.
Our simulation procedure, designed to test the effective-

ness of case-cohort methods compared to those utilising
the full cohort, is as follows: 1) A new realisation of the full
cohort is generated by simulating new outcome data as de-
scribed above. In the simulated full cohort we derive a
CHD risk prediction model, and calculate subsequent mea-
sures of predictive ability, thereby providing a “gold stand-
ard” to which results achieved with case-cohort samples
can be compared. 2) A random subsample of the full co-
hort, with proportion α, and all the CHD cases, are se-
lected to form the case-cohort set. The prediction model
and appropriate measures of interest are then calculated in
this subsample using case-cohort methods (described in
later sections). This procedure (both steps 1 and 2) is re-
peated 1000 times for each of 18 choices of sampling frac-
tion, α, with values 0.01, 0.02, … 0.1, 0.2, … 0.9.

Deriving a risk prediction model using case-cohort data
We assume use of the Cox proportional hazards (CPH)
model [16] as the risk prediction model. For full cohort
data this takes the form

SðtjxÞ ¼ S0 tð Þ exp βxð Þ ð2Þ
where t represents time from study entry, S(t|x) is the
probability of surviving beyond time t given covariates x
Reykjavik prospective cohort study

Hazard ratio (95% CI) for CHD per 1 standard deviation
higher value or in comparison with reference category*

Model 1 Model 2

1.68 (1.60, 1.77) 1.65 (1.57, 1.74)

1.54 (1.40, 1.70) 1.51 (1.37, 1.66)

1.22 (1.17, 1.28) 1.22 (1.17, 1.28)

1.31 (1.26, 1.37) 1.27 (1.22, 1.33)

0.80 (0.76, 0.85)

1827 events) with information on all risk factors, and using time from study
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Figure 1 Mean error in 10-year predicted absolute risk. Figure
shows the difference between risk predictions obtained using a
prediction model derived on the case-cohort set, and those
obtained using the model derived on the full cohort (case-cohort
minus full cohort estimates). Solid lines show mean error, averaged
over all individuals in the case-cohort set, and averaged over
simulations, for three case-cohort weighting methods. Dashed lines
show upper and lower fifth percentiles of the distribution of average
differences across 1000 simulations.
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and S0(t) is the baseline survival function at time t. The
vector β = (β1, β2,⋯, βp) represents the multivariable ad-
justed log hazard ratios (HRs) per unit increase in the

risk predictors xTi ¼ xi1; xi2;⋯; xip
� �T

. An individual’s

estimated linear predictor is β̂xi ¼ ∑
j
β̂jxij and their esti-

mated absolute risk of experiencing an event by time t is

1– Ŝ0 tð Þ exp β̂xið Þ . Due to the over-representation of cases
in the case-cohort design, two adaptations are needed in
risk model derivation as follows.

Estimating hazard ratios from case-cohort data
With case-cohort data a pseudolikelihood is used to esti-

mate β̂ from a weighted Cox regression, with cases outside
the subcohort not considered ‘at risk’ until immediately be-
fore their event. Three commonly used weighting methods
have been proposed: Prentice [1], Self & Prentice [17], and
Barlow [2]. The Prentice and Self & Prentice methods dif-
fer only in the contribution of a non-subcohort case at the
time of their event: with the Self & Prentice formula-
tion only subcohort individuals are included in the risk set.
The Barlow weighting scheme takes a different approach,
weighting the subcohort controls and future cases by the
inverse of the subcohort sampling fraction. This aims to
mimic the proportions that would have been present in the
full cohort analysis. These weighting methods have been
previously described in detail and compared by simulation.
The methods were shown to provide similar results with
the Prentice method generally being preferred for small
subcohort sizes [3].
The usual SE estimates for the CPH model are not

valid in the case-cohort situation. A robust jackknife es-
timator was proposed [2] and can be implemented in
most standard software. (Although the SE itself is not
necessary for risk estimation, it may be influential in
choice of risk predictors to include in the risk model).

Estimating baseline hazard from case-cohort data
In order to provide absolute risk predictions it is neces-
sary to estimate the baseline survival function, S0(t). For
case-cohort data this is achieved via a weighted version
of the Breslow estimator of the cumulative baseline haz-
ard [17,18]. This additional weighting applies to the
Prentice and Self & Prentice weighting methods but
not Barlow. The Barlow method mimics the propor-
tions observed in the full cohort sample and so can be
used for the estimation of absolute risk without any fur-
ther rescaling [19].

Example: Absolute predictions using models derived
with case-cohort data
The mean error in 10-year absolute risk predictions, as
estimated using the three case-cohort weighting methods,
in comparison to the full cohort estimates, is summarised
in Figure 1 for a range of sampling fractions. For each
individual in the case-cohort set, the risk predictions are
produced using the model derived on the full cohort data
and the model derived on the case-cohort set. The differ-
ence between the risk predictions is averaged over all indi-
viduals in the case-cohort sample.
On average the absolute risk tends to be overestimated

at low subcohort sampling fractions, and the variability
at low subcohort sampling fractions is also greater.
Overall the three weighting methods provide very similar
estimates of absolute risk (as evidenced by overlapping
lines in Figure 1), although at very low sampling frac-
tions the Prentice method is slightly more accurate. This
is reflected by slightly more accurate estimates in both
the baseline hazard and the log hazard ratios (Additional
file 1: Figure S1 and Additional file 1: Figure S2) and
concurs with previous findings [3]. Since the different
weighting methods show little difference in terms of the
resulting risk predictions, further results are presented
based on the Prentice scheme only.

Measures of predictive ability
We describe three measures of predictive ability: Harrell’s
C-index [10,11], Royston and Sauerbrei’s D [12], and the
net reclassification index (NRI) [13,14]. Although many
other measures exist [20-22], these were selected because
of their relevance and familiarity for the intended clinical
and epidemiological audience. Adaptations for case-cohort
data deal with the over-representation of cases compared
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to the original cohort design. Application of standard mea-
sures of predictive ability without considering the sampling
of the data will result in bias.

C-index for case-cohort designs
The C-index estimates the probability that the pre-
dicted order of events is correct in a randomly selected
pair of participants. It is estimated by examining all
“relevant” pairs of participants for which the participant
with the shorter participation time has an observed
event. Pairs are classed as concordant (nc), discordant
(nd) or undecided (nu) according to whether they agree,
disagree or tie respectively, in rank of predicted risk
and order of events. Since the predicted survival in
(2) is a monotonic transformation of the baseline sur-

vival, β̂xi can replace predicted risk. The C-index is cal-
culated as:

C ¼ nc þ 0:5nu
nr

; ð3Þ

where nr = nc + nd + nu is the total number of relevant
pairs. A C-index value of 0.5 indicates no discrimina-
tive ability, beyond that of chance, and 1 indicates per-
fect discrimination.
To allow for the case-cohort sampling we present a

weighted version of the standard measure, as previously
proposed [4]. Informative pairs are divided into case-
case pairs and case–control pairs. A weight of 1/α is ap-
plied to all case–control pairs, to allow for the fact that
these pairings will be under-represented in the case-
cohort design. Note that all cases are handled the same,
irrespective of whether they are from the subcohort.
Using a second subscript to denote whether the pairs are
from case-case comparisons (1) or case–control compari-
sons (0), the weighted C measure is given by:

CW ¼ nc;1 þ 0:5nu;1 þ 1
α nc;0 þ 1

α0:5nu;0
nr;1 þ 1

αnr;0
ð4Þ

where ni,j represents the number of pairs in group i = con-
cordant, discordant or uncertain, and j = 0 (case–control
comparisons) or 1 (case-case comparisons). This can be
implemented in Stata using the somersd [23] function with
importance weights, which also gives an appropriately
weighted standard error.

D for case-cohort designs
With full cohort data, Royston and Sauerbrei’s D is calcu-

lated by firstly transforming linear predictors (β̂xi ) to give
standard normal order rank statistics (using Blom’s ap-

proximation). The rank statistics are multiplied by
ffiffiffiffiffiffiffiffi
π=8

p
to give zi for i = 1…n subjects. A second CPH model is
then fitted to these values and the value of D is given by
the coefficient of z in this second model. The distribution
of z is approximately N(0, π/8) and has the property that
the mean of the negative and positive z values are −0.5 and
0.5. D can therefore be interpreted as the log hazard ratio
between the participants at higher risk versus those at
lower risk. The SE of D is given by the SE of the coefficient
of z.
In order to estimate D in the case-cohort design, we

propose a novel weighted D measure. We assume β̂ has
been estimated using the weighted Cox regression de-
scribed earlier, and apply the following adaptations:
1) Since controls are under-represented in the case-

cohort set, the normal order rank statistics are formed
using a modification that emulates the values that would
have been obtained using the full cohort data: i) the
“weighted ranks” are formed by applying an increased
weight of 1/α to the subcohort controls; ii) the weighted
normal order rank statistics are formed using Blom’s ap-
proximation, where the sample size is taken to be the max-
imum weighted rank (approximating the number in the
full cohort); iii) as with the full cohort method, the
weighted normal order rank statistics are then multiplied

by
ffiffiffiffiffiffiffiffi
π=8

p
to give zCi .

2) A weighted CPH model is fitted to the zCi (using any
of the three weighting methods described earlier). Our
case-cohort weighted estimate, DW, is given by the coef-
ficient of zC in this model and its SE is given as the SE
of the coefficient of zC. As with estimating the hazard
ratios, a robust variance estimator should be specified to
obtain the appropriate SEs.
Example: Measures of discrimination calculated using
case-cohort data
Application of the C-index or D measure to case-cohort
data, without any modification for the sampling design,
results in biased estimates of concordance when com-
pared to those using the full cohort data set (Figure 2a),
estimated discrimination being substantially lower at
small subcohort sampling fractions where the proportion
of events is higher. In Figure 2a, the same case-cohort

weighted estimates of β̂xi are used for both the weighted
and unweighted measures. The proposed adaptations to
the C-index and D measure give results comparable to
that which is seen with full cohort data.
Figure 2b shows the weighted case-cohort estimates only,

along with the empirical 95% CI. As would be expected,
the CI width of the adapted measures is greater at lower
sampling fractions, and approaches that of the full cohort
estimate as subcohort sampling fraction increases. The
mean analytical SE agrees well with the empirical SE (over
the 1000 simulations at each subcohort sampling fraction)
as shown in Additional file 1: Figure S3.
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Net reclassification improvement (NRI) for case-cohort
designs
The NRI aims to assess whether the addition of a new
factor to the risk prediction model leads to improvement
in classification of participants into clinically relevant risk
categories [13]. For each model (with and without the
new factor of interest), absolute risk predictions are used
to assign individuals to predefined risk categories. The
NRI is calculated by considering movement between cat-
egories on addition of the new factor. Movements are
considered separately for cases and non-cases based on
event status at t years. The movement is deemed appro-
priate if cases move into a higher risk category and non-
cases move into a lower risk category. The NRI is defined
as follows:

NRI ¼ #events up−#events down
#events

þ#non‐events down−#non‐events up
#non‐events

¼ NRIevents þ NRInonevents

ð5Þ
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One limitation of the NRI is that it is heavily de-
pendent on the specified risk categories. Pencina et al
[14] recommend that this NRI measure should only be
used if categories are already established in the field of
application and influence care decisions. They also propose
a continuous version of the NRI that does not require the
pre-definition of risk categories, and can therefore be ap-
plied universally [14]. The continuous NRI is estimated by
classifying individuals based on the direction of any change
in predicted risk, regardless of magnitude.
In estimating the NRI in case-cohort designs it is neces-

sary to consider the effect of censoring the observations
that have had an event after t years. In the implementation
for cohort designs, when using t year absolute risk, individ-
uals who had an event after this time are censored and so
count in the non-events category. For case-cohort designs
this should apply only to cases in the subcohort. Cases out-
side the subcohort that experience an event after t years
should be excluded from the calculation. If this exclusion
does not occur, then the predicted absolute risk among
non-cases will be artificially high, being biased by over-
representation of participants who will become cases after
t years. This modification was not implemented by Ganna
et al [4], but would be of less relevance due to the com-
paratively short follow-up time of the study they consider.
Since the probabilities of movement are evaluated separ-

ately for events and non-events, the over-representation of
cases in the design does not impact the NRI in the same
way as the discrimination metrics and no additional
weighting to Equation (5) (or the standard error proposed
by Pencina et al [13]) is required. Ganna et al [4] propose a
5
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weighted version of the NRI, but this weighting is not ne-
cessary for unstratified designs.
An alternative formulation of the NRI for case-cohort

designs, in which it is not necessary to exclude the non-
subcohort cases that occur after t years, is also possible.
Under this strategy, the additional individuals are in-
cluded in the non-event portion of the calculation, and
to compensate for the over-representation of cases a
weighting of 1/α is applied to the subcohort controls.
The non-event portion of the calculation then includes
three distinct groups; subcohort and non-subcohort
cases that occur after t years (both with weight 1) and
subcohort controls (with weight 1/α). While we do not
present results for this approach, it potentially provides
estimates with lower variance due to the inclusion of
additional information.

Example: Measures of reclassification calculated using
case-cohort data
Figure 3 shows the NRI for 10-year risk predictions using
risk models (Table 1) with and without inclusion of HDL-
cholesterol. Both the continuous NRI and that based on
risk categories of 0-10%, 10-20% and over 20% are shown.
The 444 individuals censored before 10 years are not in-
cluded since we do not know their event status at 10 years.
The overall magnitude of the category-based NRI is lower
than that of the continuous NRI, since movement from
one category to another is less likely to occur than move-
ment defined as any change in predicted risk.
The category-based NRI shows a small amount of bias

and larger variability at low subcohort sampling fractions
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but this reduces as the sampling fraction increases. The
continuous NRI appears unbiased even at low sampling
fractions. However, as shown in Additional file 1: Figure
S4, when the component fractions for cases and controls
are considered separately, a small amount of bias is seen in
each term. The observed bias can be attributed to bias in
the initial 10-year risk predictions obtained using the
prediction model derived from case-cohort rather than full
cohort data. The increased variance is primarily attributed
to the non-event NRI portion of the calculation in
Equation 5 since this is calculated using only a subsample
of the non-events in the full cohort (Additional file 1:
Figure S4). The number of events at 10 years will be the
same in the case-cohort sample, as in the full cohort, so
this portion of the calculation remains effectively the same.
The analytical SE of the NRI underestimates the

empirical SE (Additional file 1: Figure S5). This may
be because the analytical SE does not account for potential
error in the absolute risk estimates. As shown in Figure 1,
the absolute risk predictions show a small amount of bias
at low subcohort sampling fractions, and also greater vari-
ability. This leads to a larger variability in the resulting NRI
estimates than implied by the analytical formula for the SE.
This is confirmed by noting that when the case-cohort
NRI is estimated using the absolute risks generated from
the whole cohort sample (and therefore without bias) the
discrepancy does not occur. Instead the empirical SE is
greatly reduced and shows good agreement with the ana-
lytical estimate. The difference between analytical and em-
pirical SE is also not as marked for the continuous NRI.
This is because movement is defined as any change in pre-
dicted risk, and so any bias in the absolute risk predictions
is less likely to affect the overall proportions of individuals
moving up and down than for the category-based measure,
where small biases in the overall absolute risk can make
large differences to the amount of movement between
categories.

Extended simulations: impact of incidence
In practice, very small subcohort sampling fractions
would only be utilised in a study with a low incidence
rate. So, our simulation procedure is replicated here for
another example with a reduced incidence rate. The re-
duction in incidence rate is achieved by halving the
Weibull rate parameter used to generate the event times
in Equation (1). For this second example, the mean 10-
year incidence is 0.027, as opposed to the original mean
incidence of 0.073.
The results are shown in Table 2a for discrimination

measures and Table 2b for the NRI. All results corres-
pond to the mean value over 1000 simulations. Discrim-
ination was evaluated using the full cohort, and for the
case-cohort subsample using the standard unweighted
measures of discrimination (UW) as well as the weighted
versions (W). For the case-cohort estimates the Prentice
weighting scheme was used to derive the risk predic-
tions. The relative efficiencies of each of the measures
for the higher incidence rate example are also plotted in
Figure 4.
As described previously, the unweighted discrimin-

ation measures are biased. For a given sampling fraction
the bias is less pronounced for the lower incidence rate
as the over-representation of cases is less extreme. The
relative efficiency for discrimination and the NRI is also
more favourable for the lower incidence rate. As would
be expected, as the incidence rate increases, a larger
subcohort sampling fraction is required in order to main-
tain the same efficiency compared to the full cohort.

Discussion
We have described methods to derive and assess the
predictive ability of risk models using case-cohort data.
The derived risk prediction models were shown to give
slightly elevated and more variable risk predictions at
small subcohort sampling fractions, but otherwise were
comparable with those which might be achieved in full
cohort data. We have demonstrated that failure to ac-
count for case-cohort sampling can lead to biased results
when assessing predictive ability, and have adapted three
measures of predictive ability that then give results com-
parable to that which would be obtained with full cohort
data. The following Stata [24] commands to implement
these methods are available at http://www.phpc.cam.ac.
uk/ceu/research/erfc/stata: ‘mvmetaipd’, which can be
used to fit prediction models, and ‘predaddc’, ‘predaddd’
and ‘predstat’ which can be used to estimate the C-index,
D measure and NRI respectively. These commands can be
applied with cohort data, case-cohort data, and single or
multiple studies according to the options selected.
For both Harrell’s C and Royston and Sauerbrei’s D

the standard methods return lower estimates when ap-
plied to case-cohort designs than when applied to the
full cohort data set. For Harrell’s C, this bias arises because
of the over-representation of case-case pairs, which are less
likely to be concordant than case–control pairs. For
Royston and Sauerbrei’s D, bias arises as the overall risk is
inflated due to the inclusion of extra cases, leading to re-
duced separation between those at low and high predicated
risk. The magnitude of the bias is dependent on the
subcohort sampling fraction, with the bias increasing as
the subcohort sampling fraction decreases (and hence the
enrichment of cases in the data set increases).
Applying a weighted version of these discrimination

measures provides estimates similar to that which would
have been expected in the full cohort. This weighting
should also be applied when assessing the changes in the
C-index or D on addition of a new marker. Failure to
weight the measures of predictive ability for each model

http://www.phpc.cam.ac.uk/ceu/research/erfc/stata
http://www.phpc.cam.ac.uk/ceu/research/erfc/stata


Table 2 Results of simulation study with alternative incidence rates

a) Discrimination measures

Incidence* 10 years
(25 years)

Sampling fraction % Cases
(25 years)

Harrell’s C Royston and saubrei’s D

Full cohort Case-cohort Full cohort Case-cohort

UW (bias %) W SE ESE** RE‡ ERE‡‡ UW (bias %) W SE ESE** RE‡ ERE‡‡

0.073 (0.277) 0.03 91 0.674 0.552 (18.1) 0.675 0.018 0.018 0.135 0.126 1.060 0.336 (68.3) 1.099 0.162 0.172 0.064 0.055

0.1 76 0.591 (12.4) 0.675 0.011 0.011 0.354 0.349 0.568 (46.5) 1.070 0.094 0.092 0.192 0.197

0.3 52 0.637 (5.5) 0.674 0.008 0.008 0.678 0.672 0.832 (21.4) 1.063 0.060 0.057 0.474 0.479

0.5 39 0.655 (2.7) 0.674 0.007 0.007 0.831 0.817 0.942 (11.0) 1.060 0.050 0.047 0.671 0.682

0.9 26 0.672 (0.3) 0.675 0.007 0.006 0.978 0.981 1.046 (1.4) 1.061 0.043 0.040 0.933 0.935

0.027 (0.112) 0.03 76 0.679 0.576 (15.3) 0.681 0.021 0.020 0.283 0.288 1.073 0.491 (54.4) 1.087 0.173 0.167 0.147 0.157

0.1 49 0.627 (7.6) 0.679 0.014 0.014 0.582 0.580 0.771 (28.1) 1.072 0.109 0.102 0.368 0.4179

0.3 24 0.662 (2.5) 0.679 0.012 0.011 0.843 0.862 0.970 (9.4) 1.073 0.080 0.075 0.682 0.7407

0.5 16 0.671 (1.1) 0.679 0.011 0.011 0.926 0.928 1.023 (4.3) 1.069 0.073 0.07 0.823 0.8868

0.9 10 0.679 (0.1) 0.680 0.011 0.011 0.991 0.997 1.070 (0.5) 1.076 0.068 0.066 0.956 0.9835

b) NRI

Incidence* 10 years
(25 years)

Sampling fraction % Cases
(25 years)

Category-based NRI Continuous NRI

Full cohort Case-cohort Full cohort Case-cohort

NRI SE ESE** RE‡ ERE‡‡ NRI SE ESE** RE‡ ERE‡‡

0.073 (0.277) 0.03 97 0.028 0.029 0.025 0.033 0.414 0.265 0.170 0.166 0.086 0.095 0.296 0.214

0.1 86 0.028 0.019 0.023 0.713 0.506 0.170 0.060 0.069 0.602 0.490

0.3 76 0.027 0.017 0.018 0.906 0.798 0.169 0.050 0.051 0.854 0.753

0.5 52 0.028 0.017 0.018 0.960 0.814 0.171 0.048 0.050 0.932 0.898

0.9 26 0.028 0.016 0.018 0.997 0.963 0.170 0.047 0.046 0.992 0.981

0.027 (0.112) 0.03 91 0.011 0.015 0.014 0.022 0.571 0.308 0.156 0.154 0.106 0.114 0.561 0.456

0.1 66 0.012 0.012 0.015 0.813 0.603 0.160 0.087 0.096 0.822 0.730

0.3 49 0.010 0.011 0.012 0.954 0.965 0.156 0.081 0.080 0.947 0.903

0.5 24 0.011 0.011 0.013 0.990 0.933 0.160 0.080 0.083 0.976 0.959

0.9 10 0.011 0.011 0.012 1.008 0.944 0.155 0.079 0.076 0.997 0.978

Results are shown for the full cohort, the case-cohort subsample with Prentice weights using the standard unweighted measures of discrimination (UW) as well as the weighted versions (W). For the weighted
estimates we also show the analytical and empirical SE and relative efficiency.
* Incidence from Kaplan-Meier.
** Empirical standard error.
‡ Relative efficiency calculated as the ratio of analytical variances (full cohort/case-cohort).
‡‡ Empirical relative efficiency calculated as the ratio of empirical variances (full cohort/case-cohort).
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Figure 4 Relative efficiency of case-cohort methods to the full
cohort. Results are shown for the higher-incidence example, and
are calculated using analytical variances for C and D and empirical
variances for the NRI.
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could lead to an underestimation of the change in pre-
dictive ability. A small amount of bias remains with the
weighted version of D at low subcohort sampling frac-
tions, which may be due to the fact it is estimated as the
coefficient from a weighted Cox model. When applying
such weighted Cox models in the initial risk model der-
ivation, we found similar slight bias.
Another important consideration is the possibility of

overfitting at low subcohort sampling fractions, leading to
inflated discrimination metrics. In the results provided, the
bias seen at low subcohort sampling fractions is greater for
D than for the C-index. If this bias was due to overfitting
in estimation of the risk model then we would expect this
effect to be observed for both C and D and so we conclude
that this bias is introduced due to the procedure for esti-
mating D rather than overfitting. In assessing bias our gold
standard was evaluation of the full-cohort model in the full
cohort. Hence, bias can arise both from differences in the
fitted model (possibly overfitting) and in the calculation of
prediction metrics. A reviewer has correctly pointed out
that an additional comparison, which would allow isolation
of error due to differences in the fitted model, would be
evaluation of the case-cohort model in the full cohort; we
suggest that yet another comparison would be evaluation
in an independent cohort. However, our results show that
the weighted evaluations agree closely with our gold stand-
ard; there is little bias to explain, suggesting that our gold
standard was adequate in these large samples. Although
it is not of concern in our example due to the relatively
large sample size of the original cohort, the possibility of
overfitting is an important consideration when analysing
smaller case-cohort studies with low subcohort sampling
fractions.
For the NRI, no adaptation to the standard calcula-

tions is required but individuals who experienced an
event after the chosen cut-off at t years must be ex-
cluded from the calculation unless they belong to the
subcohort. Application of both the category-based and
continuous NRI was considered, with less bias observed
at small sampling fractions for the continuous NRI.
The results of the simulation studies at two choices of

incidence rate provide guidance on the efficiency of the
described case-cohort weighted methods. For data with
the same properties (i.e. full cohort size, follow-up and
incidence) as the Reykjavik study, the relative efficiency
of the prediction metrics for the case-cohort design was
close to that of the full cohort (based on 75% efficiency,
Figure 4) provided that the subcohort sampling fraction
was above 40% for the C-index, 60% for the D measure
or 30% for the NRI. This is greater than the subcohort
sampling fraction, of around 10%, found by Onland-
Moret et al [3] to be necessary to achieve reasonable accur-
acy and precision in coefficients alone. For the C-index
and D measure the generated analytical SEs were very
similar to the corresponding empirical estimates. How-
ever this was not the case for the NRI, for which the
analytical SE was lower. The NRI relies on absolute risk
predictions, which themselves are subject to some bias and
extra variability when estimated using case-cohort data.
Small changes in absolute risk predictions can greatly affect
risk categorisation and we believe this to be the origin of
the extra empirical variation. This is not as relevant for D
and the C-index, which rely only on comparing ranks of
the linear predictor, and is less of an issue with the con-
tinuous NRI which does not rely on categorising predicted
absolute risk. We conclude that analytical SEs may not be
appropriate for the NRI calculated from case-cohort de-
signs and recommend that SEs should instead be com-
puted by bootstrapping. The relative efficiency for all
measures investigated is shown to be more favourable for
the lower incidence rate.
Extension to the multi-study setting is also possible,

using the methods described elsewhere [25,26]. This
applies when combing multiple studies each with a case-
cohort design, but also when combining studies of different
designs. The risk prediction model can be derived using a
(weighted) CPH model stratified by study and, if applicable,
sex, producing one set of coefficients over all studies. If the
Breslow weighting method is applied, different subcohort
sampling fractions may be specified for each study. Simi-
larly, in order to estimate absolute risks the weighting ap-
plied to the Breslow estimator may vary by study. To pool
study-specific estimates of predictive ability in the case of
full cohort data, it has been suggested to weight by the
number of events in each study [25,26]. This choice is also
intuitively appealing for case-cohort designs, although
other methods may be appropriate if pooling across case-
cohort studies with a large amount of heterogeneity in the
subcohort sampling fraction.
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The presented simulations are based on real data, giv-
ing the advantage of representing the properties (e.g. dis-
tributions and associations between covariates) of typical
epidemiological studies. However, in order to provide re-
sults that are generalisable to wider application, two
choices of incidence rate were considered. Another fac-
tor that affects the observed results is the size of the ini-
tial cohort study. For a larger starting cohort size, the
results at a given subcohort sampling fraction will have
lower variance.
The C-index is slightly sensitive to random censoring

[27], and the presented NRI calculation excludes individ-
uals censored before the time point of interest. Our
focus was to contrast results using the proposed mea-
sures for case-cohort data to those which would have
been seen in original (censored) cohort data, and we
have shown the two to be comparable. They remain
comparable for two different incidence rates (which in-
duce different degrees of censoring). The implication of
this is that the estimates of predictive ability made using
case-cohort data will be similarly subject to censoring
induced bias as are full cohort estimates.
We have not considered competing risks in our pro-

posed methods and simulations, which will be important
for example when predicting lifetime risks. If competing
risks are included when estimating risk then further adap-
tation of measures of discrimination are necessary [28].
Likewise, if non-proportional hazards are modelled, if time
dependant covariates are included, or if age rather than
time from study entry is used as the time scale, then the

ranking of β̂xi can change with time. Calculation of mea-
sures of discrimination in such instances is a matter for
further research. Competing risks are unlikely to make a
substantial difference when making 10-year CHD risk pre-
dictions for our example participants, who are mostly
under the age of 60 (Table 1).

Conclusions
In summary, this paper provides a thorough description
of the issues related to deriving and assessing predictive
ability in case-cohort studies. With the increasing use of
case-cohort designs to answer questions relating to risk
prediction, the methods presented in this paper will en-
able suitable measures of predictive ability to be com-
puted and compared with studies of other designs.
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