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Abstract

Background: Interventions targeting individuals classified as “high-risk” have become common-place in health care.
High-risk may represent outlier values on utilization, cost, or clinical measures. Typically, such individuals are invited
to participate in an intervention intended to reduce their level of risk, and after a period of time, a follow-up
measurement is taken. However, individuals initially identified by their outlier values will likely have lower values on
re-measurement in the absence of an intervention. This statistical phenomenon is known as “regression to the
mean” (RTM) and often leads to an inaccurate conclusion that the intervention caused the effect. Concerns about
RTM are rarely raised in connection with most health care interventions, and it is uncommon to find evaluators
who estimate its effect. This may be due to lack of awareness, cognitive biases that may cause people to
systematically misinterpret RTM effects by creating (erroneous) explanations to account for it, or by design.

Methods: In this paper, the author fully describes the RTM phenomenon, and tests the accuracy of the traditional
approach in calculating RTM assuming normality, using normally distributed data from a Monte Carlo simulation
and skewed data from a control group in a pre-post evaluation of a health intervention. Confidence intervals are
generated around the traditional RTM calculation to provide more insight into the potential magnitude of the bias
introduced by RTM. Finally, suggestions are offered for designing interventions and evaluations to mitigate the
effects of RTM.

Results: On multivariate normal data, the calculated RTM estimates are identical to true estimates. As expected,
when using skewed data the calculated method underestimated the true RTM effect. Confidence intervals provide
helpful guidance on the magnitude of the RTM effect.

Conclusion: Decision-makers should always consider RTM to be a viable explanation of the observed change in an
outcome in a pre-post study, and evaluators of health care initiatives should always take the appropriate steps to
estimate the magnitude of the effect and control for it when possible. Regardless of the cause, failure to address RTM
may result in wasteful pursuit of ineffective interventions, both at the organizational level and at the policy level.
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Background
Interventions targeting individuals classified as “high-
risk” have become common-place in the health care
industry. High-risk may capture anything from high uti-
lization or cost of health services, to outlier values on
clinical measures (e.g., blood glucose, blood pressure,
cholesterol). Typically, such individuals are invited to par-
ticipate in an intervention intended to reduce their level of
risk, and after a period of time, a follow-up measurement
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is taken. The pre-test to post-test change in the outcome
is then generally presented as the impact of the interven-
tion. This evaluation approach is problematic from a stat-
istical standpoint because individuals initially identified by
their high values will likely have lower values on re-
measurement in the absence of an intervention. This stat-
istical phenomenon is known as “regression to the mean”
(RTM) and often leads to an inaccurate conclusion that
the intervention resulted in a treatment effect [1].
The implications of RTM in evaluating medical in-

terventions have been examined extensively in the litera-
ture, suggesting that RTM is a common problem [2-21].
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However, RTM is rarely addressed when evaluating health
care delivery interventions or in the more general decision
making processes in health care [22]. This is despite its in-
creasing relevance given the intensified focus on high-cost,
and high-need groups, and efforts to design programs spe-
cifically targeting them. There are at least three possible
explanations for why this may be. First, evaluations of
delivery-side interventions are traditionally not subject to
the same rigor as medical interventions (i.e., RCTs), and
with this may come a lack of awareness of the need to ad-
dress RTM. Second, it has been shown that cognitive biases
may cause people to subconsciously systematically misin-
terpret RTM effects as intervention effects by creating
(erroneous) explanations to account for it [23]. Third,
there are more blatant examples in which organizations
have a stake in the outcome of the intervention and cap-
italize on the RTM effect as a business strategy. For exam-
ple, commercial disease management organizations have
long advocated that their programs be evaluated without a
control group despite the recognition that the intervention
group will demonstrate better outcomes due to regression
to the mean [24]. Regardless of the cause, failure to address
RTM may result in wasteful pursuit of ineffective interven-
tions, both at the organizational level and at the policy
level.
In this paper, we seek to provide researchers, organi-

zational decision-makers, and policy-makers, with a broa-
der set of tools to understand and assess RTM effects. First,
real examples of RTM in health care are presented to illus-
trate the phenomenon. Next, the traditional method for cal-
culating the RTM effect in normally distributed data is
described, and these RTM effect estimates are compared
with RTM effects generated from Monte Carlo simulation
of normally distributed data. Next, these comparisons are
repeated using skewed data from a control group in a
health coaching study to illustrate the shortcomings of the
traditional approach to accurately estimate the RTM effect,
in the common scenario of non-normal data. We use this
to motivate the primary contribution of the paper, the esti-
mation of standard errors and confidence intervals around
the RTM effect. While largely absent from existing RTM
literature, including confidence intervals, a measure of the
precision of single-value RTM estimates, is valuable be-
cause it provides a range of values that are considered to be
plausible for the population. Finally, the advantage of calcu-
lating confidence intervals around RTM estimates is
discussed in detail, and approaches for designing health
care interventions to mitigate, or at least account for, the ef-
fects of RTM are provided.

Methods
The regression to the mean concept
Regression to the mean was first described over a century
ago by Francis Galton (later Sir Francis) upon discovering
that, on average, tall parents have children shorter than
themselves and short parents have taller children than
themselves [25]. RTM is the result of both random meas-
urement error and extremity of scores from the mean [26].
A simple example of this occurs in measuring blood pres-
sure or heart rate. Rarely are any two observations identical,
even if taken minutes apart, due to natural biologic variabil-
ity or measurement error. At the individual level this is
called within-subject variability. Additionally, the more ex-
treme the initial value, the greater the expected change will
be in the follow-up score. However, over the course of
many repeated observations, this variability narrows around
the true mean [27,28]. Similar to individual level measures,
groups with high (or low) initial mean values will also tend
to regress to the mean of the overall sample.
In the context of an intervention, RTM can easily be

mistaken for a program effect in the absence of an
equivalent comparison group. The best approaches to
illustrate the RTM phenomenon are either by using
observations taken from time periods in which no inter-
ventions were implemented, or by using control group
data derived from a research study.
Figure 1 illustrates the first approach by displaying the

average costs for the highest and lowest quintile of a con-
tinuously enrolled cohort of chronically ill health plan
members over the course of two years during which no
chronic disease interventions were in place [29]. Each co-
hort - coronary artery disease (CAD), congestive heart fail-
ure (CHF), and chronic obstructive pulmonary disease
(COPD) - exhibits a similar RTM pattern. In the first year,
the highest quintile average costs range from approxi-
mately $20,000 to $27,000 across the three conditions. In
the second year, the average costs in these groups drop to
a range of approximately $7,000 to $10,000. Conversely,
all three cohorts in the lowest quintile of costs (less than
$300) in the first year increased to between $4,700 and
$8,000 in the second year. The diagonal line is the
expected trend line had there been perfect correlation be-
tween the first and second measurements (i.e., no variabil-
ity between measurements, no measurement error, and
thus no RTM). This scenario clearly illustrates RTM. Had
a disease management program targeting high-cost CAD,
CHF, or COPD patients taken place during this period, an
evaluation of the impact on costs would have wrongly at-
tributed these reductions to a program effect.
Using data from a control group also illustrates RTM.

Figure 2 presents physical component summary (PCS)
scores (with bootstrapped 95% confidence intervals)
from the SF-12 health status survey [30] for a control
group (n = 118) from a study conducted at a large
organization in the Northwest [31]. Control group mem-
bers were surveyed twice, once at program commence-
ment and then again at three months and received no
intervention. Scale values are standardized from 0 to
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Figure 1 Actual data illustrating the regression to the mean phenomenon in Coronary Artery Disease (CAD), Congestive Heart Failure
(CHF), and Chronic Obstructive Pulmonary Disease (COPD). Quintile I is the lowest cost group and V the highest. All individuals were
continuously enrolled during the 2-year period. The diagonal line represents perfect correlation between the first and second year costs, which
can only be achieved in the complete absence of variability between measurements and no measurement error.
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100, with higher values indicating better physical health.
To illustrate RTM, if a high-risk group is classified as
having a PCS score in the first period of less than 44.25,
which corresponds to the 25th percentile at the U.S. na-
tional level [32], RTM is evident in the fact that their
mean PCS scores significantly increases (no overlap
in the pre- and post-measurement confidence inter-
vals), by over 8 points (22.6%), in the second period
while the lower-risk group (those in the 26th-100th

percentile) remained unchanged (because the mean
value of this group was already close to the overall
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Figure 2 Physical Component Summary (PCS) scores on the
Short Form-12 (SF-12v2), from a control group (n = 118)
participating in a health coaching study (Butterworth et al.
2006). All participants were surveyed twice, once at program
commencement and then again at three months. Squares/circles
represent mean scores and capped lines represent 95%
bootstrapped confidence intervals (1000 resamples).
mean of the entire sample, there was nowhere to re-
gress to).
The examples presented in this section use measures that

commonly serve as outcomes in health care interventions,
and both cases clearly illustrate RTM. This suggests that
there are likely many contexts in which RTM, and not a
program effect, explains an observed change from initial
outlier status to follow-up values closer to the overall mean.

Classic formulae for estimating the magnitude of RTM
Estimation of the RTM effect for normally distributed
data can be conducted when, at a minimum, the follow-
ing four parameters are known: the population mean of
the pre-test (μ), the population variance of the pre-test
(σ2), the correlation between the pre-test and post-test
(ρ), and the cutoff score representing the high-risk group
(κ). The expected RTM effect is [27,33,34]:

Expected RTM effect ¼ γ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ δ2
� �q C zð Þ ð1Þ

where y2 is the within-subject variance (σ2 − δ2), δ2 is the
between-subject variance (ρσ2), and thus (δ2 + γ2) is the
pooled variance (when the square root is taken, this be-
comes the pooled standard deviation). C(z) is calculated
iteratively, beginning with the z-score:

z ¼ κ−μð Þ=σ ð2Þ
whenever high-risk is indicated by values above κ, and

z ¼ μ−κð Þ=σ ð3Þ
whenever high-risk is indicated by values below κ. As
before, μ is the baseline population mean, σ is the



Table 1 Results of the Monte Carlo simulation
(N = 10,000)

Mean Std. error [95% Confidence Interval]

ρ = 0.25

RTM (H) actual 1417.67 0.33 1417.03 1418.32

RTM (H) calculated 1417.55 0.20 1417.16 1417.94

RTM (L) actual 354.16 0.18 353.80 354.51

RTM (L) calculated 354.27 0.06 354.15 354.39

ρ = 0.50

RTM (H) actual 945.21 0.28 944.66 945.76

RTM (H) calculated 945.10 0.14 944.82 945.38

RTM (L) actual 236.09 0.15 235.80 236.38

RTM (L) calculated 236.20 0.04 236.12 236.28

ρ = 0.75

RTM (H) actual 472.71 0.21 472.30 473.11

RTM (H) calculated 472.59 0.08 472.44 472.74

RTM (L) actual 118.03 0.11 117.83 118.24

RTM (L) calculated 118.11 0.02 118.07 118.15

Notes: RTM (H) is the regression to the mean effect for the high-risk group,
and RTM (L) is the regression to the mean effect for the low-risk group.
“Actual” represents the RTM effect derived directly from the data, and
“calculated” is derived using Equation 1. ρ is the pretest-posttest correlation
for the entire sample.
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standard deviation of the entire pre-test sample, and κ is
the cutoff score. C is calculated as:

C ¼ ϕ zð Þ= 1−Φ zð Þ½ �ð Þ ð4Þ
where Φ(z) is the probability density function and Φ(z)
is the cumulative distribution function for z in a stand-
ard normal distribution.
The expected mean values for both pre-test and post-test

in the high-risk group can also be calculated as follows:

Expected pre−test mean high−riskð Þ ¼ μ� Cσ ð5Þ

Expected post−test mean high−riskð Þ ¼ μ� Cσρ ð6Þ
where values are added whenever high-risk is indicated by
values above κ, and subtracted whenever high-risk is indi-
cated by values below κ. Subtracting the expected pre-test
mean (Equation 5) from the expected post-test mean
(Equation 6) should elicit the same expected RTM effect as
that derived in Equation 1 (as will Cσ(1-ρ)).

Testing the performance of the RTM formulae
We examine the performance of the RTM equation (Equation
1) in estimating the RTM effect using two approaches. First a
Monte Carlo simulation study is conducted assuming me-
dical cost as the outcome, as it is often a primary focus of
health services research. Following the simulation, the per-
formance of the RTM formulae is demonstrated using ac-
tual data (the PCS data described in the previous section).

Design of the Monte Carlo simulation
An “actual” RTM effect is generated by drawing two vari-
ables from a multivariate normal distribution to represent
the pre-test and post-test costs for a pseudo-population of
10,000 observations, with means of $5,000, standard devia-
tions of $1,350, and three pretest-posttest correlations: 0.25,
0.50 and 0.75. The minimum value of the highest pre-test
quintile of cost is set as the cutoff (≈ $6,136), with values
above and below that level categorized as “high-risk” and
“low-risk”, respectively. The mean difference in pretest-
posttest costs for the two risk tiers represents the “actual”
RTM effects. We compare this with the “calculated” RTM
effect for the high- and low-risk groups using Equation 1
with the same cutoff value (≈ $6,136). This process is re-
peated 10,000 times for each of the three correlation levels
and the actual versus calculated RTM effects are reported
for the low and high-risk groups. The simulation was
conducted in Stata 12.1 (StataCorp, College Station, TX),
using the built in simulate command, and rtmci, a com-
mand written by the author (available upon request).

Design of the empirical example
Here, the PCS data for the 118 controls [31] described
earlier in the current paper and illustrated in Figure 1 are
revisited, in order to demonstrate the performance of the
RTM formulae when data are skewed (p<0.00001 for the
Shapiro-Wilk W test). The pre-test mean, post-test mean,
and mean difference in pretest-posttest PCS scores are used
to generate the “actual” RTM effects and the “calculated”
comparisons are again computed using Equations 1, 5 and 6
and rtmci in Stata. The differences between the actual and
calculated values are then compared, and for all estimates,
95% confidence intervals are computed via bootstrap simu-
lation, e.g., by resampling 1000 observations (with replace-
ment) from the actual data.
Results
Monte Carlo simulation
Table 1 presents the simulation results. For each correlation
level (0.25, 0.50, and 0.75), we report the actual and calcu-
lated mean RTM effects for the high- and low-risk groups,
the standard errors, and 95% confidence intervals. As
expected, the RTM effects diminish as the correlation be-
tween pre-test and post-test increases. When ρ = 0.25, the
actual RTM effect in the high-risk group is $1,417. That is,
there is a $1,417 mean decrease in the pre-test to post-test
costs for the high-risk group that is entirely due to regres-
sion to the mean. The RTM effect decreases to $472 when
ρ = 0.75. Thus, this simulation validates the conceptual un-
derpinnings of RTM and supports the findings presented in
Figures 1 and 2.
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Empirical data
The summary statistics of the PCS data are as follows:
pre-test overall sample mean = 53.12, pre-test overall
sample standard deviation = 8.27, pretest-posttest correl-
ation = 0.742, and the cutoff = 44.25. Table 2 provides
results for the high-risk group (PCS values ≤ 44.25,
n=34) As shown, the actual pre-test mean is 3.38 points
lower than that derived by the calculated method and
the actual post-test mean is 1.52 points higher than that
derived by the calculated method. As a result, the actual
RTM effect is 8.28 points, which is much higher than
the calculated method that produces a point estimate of
3.38. The difference between these two estimates is 4.90
points with a confidence interval of 1.12 to 8.68 points.

Discussion
The results of the simulation study demonstrate that the
formulae for estimating RTM effects [27,33] accurately
calculate RTM when the data are normally distributed.
By extension, these results support the use of RTM ana-
lysis in pre-post observational studies as a means of esti-
mating the RTM effect. However the results using these
skewed data, suggests the RTM calculation significantly
under-estimated the true RTM effect by between 1.12
and 8.68 points. Generally, when researchers seek to cal-
culate the RTM effect using skewed data, transforming
the data to make them normally distributed before using
the traditional formulae may suffice. However, if trans-
forming data to another scale may lead to a loss of inter-
pretability (as would be the case with SF-12 data),
Table 2 Regression to the mean effects for Physical
Component Summary (PCS) scores on the Short Form-12
(SF-12v2), from the high-risk (PCS values ≤ 44.25)
subgroup of controls (n = 34) participating in a health
coaching study (Butterworth et al. 2006)

Variable Mean Std. error [95% Confidence Interval]

Actual

Pre-test 36.65 2.21 32.32 40.97

Post-test 44.93 3.27 38.51 51.34

RTM 8.28 2.01 4.35 12.21

Calculated

Pre-test 40.02 0.78 38.49 41.56

Post-test 43.41 1.52 40.44 46.38

RTM 3.38 0.94 1.54 5.22

Difference (Actual – Calculated)

Pre-test −3.38 0.83 −5.01 −1.74

Post-test 1.52 1.82 −2.04 5.09

RTM 4.90 1.93 1.12 8.68

Notes: “Actual” indicates that the pre-test, post-test and RTM effects were
estimated directly from the data. “Calculated” indicates that Equations 1, 5
and 6 were applied directly to the existing data. Standard errors and 95%
confidence intervals were derived by bootstrap resampling of the data
1000 times.
performing the calculations on the original scale and cal-
culating confidence intervals that reveal the magnitude
of the error offers an alternative approach that may be
more useful. In our example, the confidence interval for
the calculated RTM effect was 1.54 to 5.22, which over-
laps with the actual RTM confidence interval of 4.35 to
12.21. Thus, the confidence interval for the calculated
RTM effect provides a range of values more closely
aligned with the true effect than the point estimate
alone. A third option is to consider models devised to
estimate regression to the mean effects in non-normally
distributed data [35,36]. However, some of these ap-
proaches rely on non-parametric modeling approaches,
such as kernel density estimators [36], and are sensitive
to the choice of bandwidth. Thus, the various ap-
proaches to estimating RTM may likely elicit different
estimates depending on which methods are employed,
even within the same data-set. Here again, the addition
of confidence intervals can provide assistance to the
evaluator in determining the overlap in estimates de-
rived among the various methods.

Designing interventions to mitigate the RTM effect
While earlier sections focused on illustrating RTM and
offering suggestions for how to estimate the magnitude
of the RTM effect, ideally studies are designed to miti-
gate the effect of RTM. The randomized-controlled trial
(RCT) is the obvious study design to control for RTM
because randomly assigned groups should be equally af-
fected (i.e., the treatment effect is the net effect after
eliminating any RTM). The regression-discontinuity
(RD) design should be considered as a viable alternative
when randomization is not possible [37,38]. The RD
design relies on a cut-off point on a continuous pre-
intervention variable to assign individuals to treatment.
The individuals just to the right and left of the cutoff are
assumed to be exchangeable - as in a randomized trial.
Because individuals do not have precise control over
their assignment score (nor would they know where the
cutoff lies), they cannot self-select into treatment. Thus,
we would expect a similar RTM effect for both groups in
the neighborhood of the cutoff.
A third approach to mitigating the RTM effect in the

design stage of an intervention is to base the treatment
assignment on the cut-off, conditioned on the mean of
multiple pre-tests rather than just a single pre-test
[27,33,39,40]. This has the effect of stabilizing the mean
and reducing within-subject variability. When multiple
pre-test measurements are used, the previously described
equations require minor modification [27,28,33]. In
Equation 1, the within-subject variability y2 (in both the
numerator and denominator) is now divided by the
number of pre-tests n from which the mean is derived,
becoming y2/n. In all other equations, σ is now replaced
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with the pooled standard deviation adjusted for multiple

pre-test periods
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2=nþ δ2
� �q

.

Controlling for RTM through data analysis
When only retrospective observational data are avail-
able, several approaches may be considered to control
for RTM. Matching techniques [41] allow the investiga-
tor to try to replicate the randomization process by cre-
ating a control group that is essentially equivalent to the
treatment group on observed pre-intervention charac-
teristics – especially on the pre-test variable that we are
most concerned leads to RTM. One particular advan-
tage of matching techniques over other covariate adjust-
ment strategies (e.g., multiple regression models), is
that the investigator can directly assess how well the
pre-test variable overlaps in its distribution between
groups using graphical or numerical diagnostics [41]. A
high degree of overlap in the distribution increases our
confidence that the RTM is effectively controlled for, as
we would expect in an RCT.
The most common analytic approach appearing in the

literature to adjust for RTM is by analysis of covariance
(ANCOVA). This approach controls for the baseline
level of the pre-test by including the pre-test as a covari-
ate in the model. Additionally, an RTM “correction fac-
tor” [42-44] can be applied to each person’s pre-test
score and that adjusted pre-test score can be used in the
ANCOVA. For example, Trochim [44] adjusts an indi-
vidual’s pre-test score as follows:

xadj ¼ �x þ p x−�xð Þ ð7Þ

where �x is the treatment group mean, ρ is the pre-post
correlation for that treatment group, and x is the indi-
vidual’s pre-test value. It is important to keep in mind,
however, that when using ANCOVA (with or without
the corrected pre-test), model assumptions, such as li-
nearity between outcome and covariates, must be tested.
Moreover, contrary to matching strategies where cova-
riate balance can be directly assessed, in ANCOVA
models, there is no assurance that the treatment groups
are comparable on all baseline covariates. In fact, it is
imperative that decision-makers consider other potential
sources of bias (in addition to RTM) that may masquer-
ade as a treatment effect. This is particularly true when
using observational data, since it is likely that partici-
pants and non-participants will differ on several charac-
teristics (e.g., health behaviors) not often available in
claims analysis [45].
Finally, perhaps the easiest approach for adjusting out-

comes to control for RTM effects is simply to subtract
the calculated RTM effect derived from Equation 5 from
the overall treatment effect estimate [34]. Moreover, with
the additional availability of confidence intervals, the in-
vestigator can provide a range of “net” treatment effect
estimates when data are skewed.

Conclusion
In this paper we have illustrated that health care interven-
tions are susceptible to the effects of RTM when individuals
are chosen to participate in the intervention based on their
outlier baseline “risk” score, and there is large within-
subject variability or measurement error. When estimating
the RTM effect on normally distributed data the calculated
estimates produce identical results to those of simulated
data. However, the equations underestimated the RTM ef-
fect in right-skewed data. We described several approaches
for investigators to consider as methods to adjust for RTM,
depending on the degree of control they have over the
intervention and evaluation designs. However, designing in-
terventions to mitigate the effects of RTM is a preferred
strategy to retrospectively estimating the extent to which
RTM may explain any observed treatment effect. Most im-
portantly, both evaluators and stakeholders should be aware
of RTM as a major source of bias in intervention studies,
and take the appropriate steps to estimating its effect and
controlling for it whenever possible to ensure valid conclu-
sions about program effectiveness.
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