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Background: Data processing contributes a non-trivial proportion to total research costs, but documentation of
these costs is rare. This paper employed a priori cost tracking for three posture assessment methods (self-report,
observation of video, and inclinometry), developed a model describing the fixed and variable cost components,
and simulated additional study scenarios to demonstrate the utility of the model.

Methods: Trunk and shoulder postures of aircraft baggage handlers were assessed for 80 working days using all
three methods. A model was developed to estimate data processing phase costs, including fixed and variable
components related to study planning and administration, custom software development, training of analysts, and

Results: Observation of video was the most costly data processing method with total cost of € 30,630, and was
1.2-fold more costly than inclinometry (€ 26,255), and 2.5-fold more costly than self-reported data (€ 12,491).
Simulated scenarios showed altering design strategy could substantially impact processing costs. This was shown
for both fixed parameters, such as software development and training costs, and variable parameters, such as the
number of work-shift files processed, as well as the sampling frequency for video observation. When data collection
and data processing costs were combined, the cost difference between video and inclinometer methods was
reduced to 7%; simulated data showed this difference could be diminished and, even, reversed at larger study
sample sizes. Self-report remained substantially less costly under all design strategies, but produced alternate

Conclusions: These findings build on the previously published data collection phase cost model by reporting costs
for post-collection data processing of the same data set. Together, these models permit empirically based study
planning and identification of cost-efficient study designs.

Keywords: Cost-efficiency, Exposure, Shoulder, Back, Inclinometry, Observation, Questionnaire, Work related

Background

Outside the research questions, goals for applicability,
and knowledge translation, nothing is more central to
the selection of a sampling strategy and assessment
method than the cost. Despite a general consensus that
the costs of data collection and processing are critical,
most cost comparisons are anecdotal or qualitative [1,2],
with a systematic review of the literature demonstrating
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lack of quantitative cost data [3]. The paucity of empirical
and theoretical information on cost and cost-efficiency in
research limits the decision-making power available to re-
searchers who are planning studies.

To date, the most comprehensive review of cost-
efficiency in exposure assessment uncovered only 9 arti-
cles explicitly investigating this issue, and identified several
gaps to be addressed, including the simplicity of existing
cost models and the lack of empirical cost data acknow-
ledging different sources and types of cost (i.e. not every
measurement has an equal cost) [3]. Since the publication
of the Rezagholi and Mathiassen review, there have been
contributions theorizing the relative size and importance
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of different cost components and the impact they may
have with different exposure assessment strategies [4-7].
Quantifying the costs involved in performing different
stages of research is a pre-requisite for cost-efficiency re-
search; cost modeling, if without any concerns as to the
statistical performance of collected data, has been an issue
in the medical literature, for instance on cost associated
with analyzing toxicology specimens in the laboratory [8]
and on the benefits of computer-assisted self-interviews
[9]. However, despite a few recent exceptions [10,11], em-
pirical data, based on thorough examination of possible
cost components, on the actual cost of conducting expos-
ure assessments in occupational epidemiology is limited.
These recent examinations of data collection costs associ-
ated with workplace postural exposure assessment join
limited reports citing data collection costs for biomechan-
ical exposure assessment [12].

The total cost of a study comprises many steps which
we have grouped into three phases: data collection, data
processing and ‘knowledge translation’ or reporting.
Data collection may present the most obvious contribu-
tion to study cost given the cost of equipment and
labour required to collect data, but this stage can be
considered complete once field/lab work has ended and
raw paper or electronic files are stored at the institution
in the hands of the research team, for instance in the
form of angular inclination data files obtained by inclin-
ometer, recordings of work on video tapes, or paper cop-
ies of completed questionnaires. The data processing
phase includes all processing of the raw data that have
been collected, ending with the creation of a summary
exposure database in which exposure estimates are sum-
marized and ready for statistical analysis. Thus, in our
terminology, the data processing phase ends before stat-
istical analysis and reporting of results (i.e. conference
presentations or drafting manuscripts). While the costs
of data collection may be substantial [10], the data pro-
cessing stage is certainly not trivial in terms of resource
consumption. For example, even when ‘inherited’ files
from an earlier data collection are repurposed to answer a
new research question, there are still substantial amounts
of labour and resources needed to produce estimates of
the target exposure variables in a format appropriate for
statistical analysis and hypothesis testing. The data pro-
cessing phase allows for many possible strategies which
can lead to increased or decreased study costs.

This manuscript complements the previously pub-
lished cost model for the data collection aspect of expos-
ure assessment [10] by presenting the post-collection
data processing costs for the same data set. Given the
necessity for data processing to produce exposure esti-
mates, the availability of models for assessing the associ-
ated costs will facilitate more informed decision making
on the part of researchers. For example, in our first paper,
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inclinometer data was shown to be the most costly pos-
ture assessment method during the data collection phase
when compared to video observation and self-reported
postural data. However, this rank order could change if
the time and resources required for data processing are
also accounted for. Both anecdotal and empirical evi-
dence suggests that observing posture from video re-
cordings can be both lengthy and expensive depending
on the specific training requirements and observation
strategies selected [7]. Thus, a cost model is required
that also includes data processing costs and allows for
different sampling strategy choices to be evaluated in
terms of total study cost. Developing cost models ex-
pressing total cost as a function of study parameters will
link previous studies investigating statistical efficiency of
sampling strategies [13-15] to eventual investigations into
cost-efficiency.

The overarching goal of this research is to elucidate
optimal study parameters for cost efficient assessment of
posture exposures. To that end, the aim of the present
paper was to: i) quantify the data processing costs for
shoulder and trunk posture assessment using three com-
mon methods for collecting data on working postures in
ergonomics research and practice: workers’ self-reports via
questionnaire, observation of video recordings of work,
and direct measurement using inclinometers; ii) compare
these data processing costs; and iii) develop a general cost
model for data processing that can be used as a decision-
making tool for planning future studies.

Study population

The costs of post-collection data processing were deter-
mined for postural data collected over a three month
period in 2011. From the pool of full and part-time em-
ployees who were not on modified duties, employees
were randomly invited to participate in the study. In
brief, trunk and shoulder postures were assessed for 27
airport baggage handlers on each of three days using
three methods: self-report via questionnaire, observation
of work recorded on video, and direct measurement
using inclinometers. Three measurements were success-
fully collected from all but one worker who could not
complete a third due to injury, resulting in 80 collected
measurements. All participants gave informed consent
and all methods were approved by the Regional Ethical
Review Board at Uppsala University. The data collection
methods are described in detail in Trask et al. [10].

Methods

Data collection

Data-logging triaxial accelerometers (2 M Engineering,
Veldhoven, The Netherlands) were used as inclinometers
and affixed to the upper back and upper arms to collect
posture data for the full work shift. Questionnaires were
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administered pre- and post-shift to assess musculoskel-
etal symptoms, fatigue, and perceived postures, tasks,
and workload during the work shift. Video recordings
were made for either the first or second half of the shift
(roughly 4 hours).

Modeling costs
All data collection phase costs, such as equipment and
labour associated with planning a research study, data
collector training, piloting, subject recruitment, travel,
and measurement at the worksite are summarized in a
previously reported cost model [10]. The cost analysis
presented here focuses on the post-collection data pro-
cessing stage of research, as defined in the introduction.
Thus, the cost model for the data processing phase
included: acquiring or developing software to process
data (in this case, video and inclinometer data), plan-
ning data processing methods, processing electronic
data files (such as inclinometer files), training research
assistants to process data (such as observers estimating
postures from video recordings), processing data (such
as viewing videos and recording observed postures), en-
tering data for paper files (such as questionnaires),
cleaning data, and summarizing each data source into
exposure estimates which characterized each measure-
ment day. Analysis costs such as those associated with
performing the statistical comparisons between methods,
and costs for presenting/publishing results were not
included. This is strategic, since many multi-centre or
multi-investigator studies use the ‘complete, cleaned data-
base’ as a milestone for commencing the reporting phase
of a study.

The general model for assessing the total data process-
ing cost for method m, Cp,,, included both fixed costs
(denoted by a hatch: C):

e the cost of study administration and planning,
including meetings, documentation of methods
development, and correspondence (C,);

e the cost of developing and/or refining (custom)
software (Cs);

and variable costs (denoted by a dot: C):
e the cost of training data processors for method
m (Cr);
e the cost of actually dealing with (managing) the
collected data (Cyy).
This model can be applied to any measurement method,

m, following the general Eq. (1):

Com=Ca + Cs + Cr + Cu (1)
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The cost of training observers to estimate postures
from video films, Cr, was calculated as the product of
the number of trainees (n) and the unit cost per trainee
(¢t), summed with the product of the number of in-
structors (n;) and the unit cost per instructor (¢;):

CT =nr ¢t + ny ¢ (2)

Although the length of training time is not explicit in
this equation, the costs ¢t and ¢; depend on the length
of training and so can be considered specific to a par-
ticular study. The development of training curriculum
was considered as a fixed cost included in the costs of
planning, Ca.

The cost of actually dealing with data, Cy, was calcu-
lated as the product of number of worker-day files, n,
and the unit cost of handling each file, ¢g.

CM = Nf ép (3)

As with the length of training, the value of ¢p is spe-
cific to a particular study because it varies with the
amount of working time aggregated into an exposure
summary variable. Alternative ways of treating data can
produce different costs per file. As a special example of
a method for which the unit cost per file can be altered
based on sampling strategy, the video data managing
cost, Cy;, depends on the resources invested in observing
each video. To account for variation in handling costs
due to the video sampling strategy selected, the term Cy
can be further detailed in terms of additional observa-
tion sampling parameters, as shown in Eq (4):

CMobserwztion = Hnfp HNR No éV (4>

Where ng is the number of video files, ny is the aver-
age proportion of a video reviewed by each observer, no
is the number of observers, and ¢y is the unit cost for
analyzing one complete video file once. The cost ¢y is
specific to a particular video observation study and de-
pends on both the number of hours of video collected
and the sampling rate (for a work-sampling approach) or
segment length (for event registration or exposure-
averaging approach) for analysis [11]. The proportion of
video reviewed, ng, is defined as the average proportion
of still frames or video segments from any video file in
the complete data set that an observer actually reviews.
If, for instance, an observer reviews half of the collected
videos or half of all the video frames collected, ni will be
0.5. Thus, the “coverage” product ng no measures the
total observation effort devoted to each video file, with
1.0 corresponding to one observer observing all frames
or segments once (or, similarly, two observers each
reviewing half the frames). If each video is reviewed
completely by two observers, ng no will be 2.0. Thus, the
product ny ng reflects that observers may make repeated
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observation of the same video frames, which is one way of
improving precision of exposure estimations obtained by
observation [7].

Substituting Eq.s (2) and (4) into Eq. (1) results in
models specific to the observation method:

Chrobservation = Ca +Cs +n1 C1 +np ¢
+np nr hp é\/ (5)

Further, substituting Eq.s (2) and (3) into Eq. (1) re-
sults in models specific to the inclinometer and ques-
tionnaire assessment methods:

CPinclinometer and CPquestionnaire = CA + CS + nr éT
+ny ¢+ ng Cp

(6)

Collection of cost data

Prospective time tracking was used to collect data process-
ing cost data, as described in Trask et al. [10]. Briefly, re-
searchers tracked the amount of time spent performing
office and lab tasks related to data processing (such as
meetings, administration, and software development) using
a custom Excel macro with pre-defined task categories. For
each research staff member working on the project, entries
were later compiled into total hours spent per task cat-
egory. Processing time was tracked separately for each
method. Video analysis by the observers rating the video
films was tracked using an internal time counter in the
analysis software, which gave the analysis time for each
frame: from this data an average time per frame was calcu-
lated. All costs were standardized to Euro currency using
the average exchange rate between March 2011 through
October 2012. Researcher time was valued at €31 per hour,
video analyst time at €23 per hour and data input staff at
€20 per hour. All labour costs required an additional,
university-specific overhead of 68% bringing the total
labour and overhead costs to €52, €39, and €34 for re-
searchers, video analysts, and data enterers, respectively.
All the costs considered in this analysis were borne by re-
search grants.

Inclinometer data processing

During the initial data collection phase, inclinometer
posture information was collected over the full duration
of each shift at 32 Hz. Of the 81 planned measurements
(27 workers x 3 days), 80 were successfully collected (loss
of one due to worker drop-out), and 79 were successfully
processed (loss of one due to intractable noise). Full-shift
recordings were exported from the VitaMove data collec-
tion software, downsampled to 20 Hz, and the file format
was converted to permit data analysis using software devel-
oped at the Department of Occupational and Environ-
mental Medicine, Lund University, Sweden [16,17].
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Tri-axial accelerometer inclinometers measure sensor
orientation with respect to the line of gravity. As such,
reclining trunk postures (Figure 1) would be recorded as
extreme extension. To address this nuisance, an algo-
rithm was developed to identify such reclined postures
and replace the extreme angles measured by the incli-
nometers with 0° (trunk) and 10° (shoulder).

A custom Excel Macro was developed to summarize
shift-long data into exposure metrics, such as: mean,
standard deviation, selected values from the cumulative
amplitude probability distribution function (APDF) of the
trunk and arm inclination angles, the frequency per minute
of excursions over a certain threshold (i.e., 45 degrees), and
the frequency per minute of excursions over a certain
threshold that exceed a certain duration (i.e., 45 degree in-
clinations lasting longer than 5 seconds). Combinations of
posture and velocity were used to assign characteristics
such as ‘resting; ‘extreme; ‘static’ etc. following the defini-
tions used in previous inclinometer studies [18,19].

All raw file processing and summary variable calcula-
tions were conducted by a single researcher who was
also involved with the team performing the software de-
velopment and refinement, meaning that for the inclinom-
eter data, there was no additional training time required.
The inclinometer data were considered complete when
work shift summaries had been compiled for all 79 usable
measurement-days.

Observation data processing

During the initial data collection phase, half-shift video
recordings (4 or more hours) were made for each worker
equipped with inclinometers during that shift. To pro-
cess this data, four individuals were recruited from the
student population at the University and were trained to
be video observers. The observers had varying expe-
rience in ergonomic exposure assessment, but all were
given standardized training in posture evaluation, expos-
ure category definitions, interpretation of video images
and use of the software. Observers first evaluated still

Figure 1 Example of trunk and upper arm postures that were
deemed necessary to correct. Permission to publish this image
has been secured from the individual.
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frames as a group facilitated by one of the researchers to
ensure consistent application of definitions. Observers
then performed approximately 16 hours of practice with
the method, supervised by the researcher who trained
them, which included time and opportunity to ask ques-
tions. Group discussions were used to harmonize inter-
pretations of difficult or unusual images.

Videos lasting longer than 4 hours were truncated to 4
hours; videos shorter than 4 hours were reviewed com-
pletely. The observers subsequently analyzed all 80 half-
day (4 hour) video recordings to categorize trunk and
shoulder postures. Each of the four observers analyzed a
60-minute portion of each of the 80 work shifts; video
recordings were assigned using a randomized order of
worker-days and assigned shift portions. To investigate
the inter-observer agreement and, at the same time, im-
prove the precision of the eventual exposure estimates,
one 15-minute portion of each half-shift recording was
analyzed by all four observers; the overlap block always
occurred during the first 15-minute portion of the sec-
ond block of video and resulted in 3 of the observers rat-
ing an additional 15-minute block. An example of the
observation of a work shift is shown in Figure 2.

A work sampling observation approach within each 60
minute block whereby a custom software program pre-
sented still images to observers selected according to a
55-second interval approach. To account for the equip-
ment setup time which occurred in block 1, the video
observation on the first block started 300 seconds into
this block. Observers coded all still images for the follow-
ing categorical variables: gross body posture (standing,
sitting, kneeling/squatting, lying, and other.); work task
(vehicle operation, loading/unloading, computer work/
breaks, other), presence of materials handling (lift/lower/
carry, push/pull); location (inside vehicle, inside plane,
indoors, outdoors); and the presence of trunk twisting or
lateral bending greater than 20 degrees (yes/no). Ob-
servers coded at a self-selected pace using either a mouse
point-and-select or a key-and-tab input method. Left arm,
right arm, and trunk postures were recorded as continuous
variables (-180 to +180 degrees) by dragging a ‘posture line’
on a mannequin, similar to the method described by Bao
et al. [20] (see Figure 3). Trunk flexion/extension angle was
assessed with respect to gravity. Shoulder posture was
assessed in terms of inclination with respect to gravity. The
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degree of visibility for each body part was also evaluated
categorically by the observers (clear, completely undistin-
guishable, or inferred - i.e. arm in line with the body
but obscured by the body). The software automatically
recorded the amount of time required by an observer to
analyze each frame.

Observational data were submitted to the same replace-
ment procedure as the inclinometer data to exchange “ex-
treme” (with respect to gravity) trunk extension and arm
elevation postures occurring during rest with neutral
values to better represent the exposure at these times.

The fixed-interval sampling strategy with 55s between
frames yielded a maximum of 261 unique frames per
half-shift of video ({4 h x 60 min x 60 s}/55s), and 783
frames per worker for all 3 half-shifts. Excluding the re-
watched portion of the files, this amounted to 20,880
frame observations (261 frames x 80 collected worker-
days). These observations were then summarized into
work shift exposure variables similar to those generated
from the inclinometer data: mean, standard deviation,
APDF values for trunk and arm angle, the number of
excursions over a certain threshold (i.e., 45 degrees),
and the proportion of time spent in a certain posture
(i.e. laterally bent), as well as cumulative time for only
observed categorical variables such as location (i.e. in
the cargo hold of a plane). Some variables generated
from the inclinometer data, such as movement speed,
were not possible to obtain from the observed posture
data because of the nature of the still frame method.
Observation data were considered fully processed when
the cleaned database including 80 work-shift summaries
was complete.

Questionnaire data processing

During the initial data collection phase, workers filled
out pre- and post-shift questionnaires to report mus-
culoskeletal symptoms and fatigue levels. The post-shift
questionnaire also asked workers to report information
on the duration of tasks performed and postures as-
sumed during their shift, as well as what assistive equip-
ment, such as conveyor belts and baggage wagons, they
had used during their shift. The post-shift question-
naire was specific to the workers’ department (ramp
versus sorting hall) to allow for recognizable, job-specific
vocabulary and tasks. In the case of ramp workers, an

0:00:00 Half-shift video (4 hours) 4:00:00
First 60 min block I Second 60 min block | Third 60 min block [ Fourth 60 min block
Reviewed by Obs2 |
Reviewed by Obs3 |
| Reviewed by Obsl [
‘ Reviewed by Obs4
T
Figure 2 Example of the allocation of the shift between four observers, including the ‘overlap’ section to assess inter-observer agreement.
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Figure 3 Views of the ViSPA observation software operation for the shoulder (a) and trunk (b).

additional flight diary was filled out detailing the type
of flight, total amount of baggage and cargo for each
flight, the worker’s role in loading that flight, and the
use of any assistive equipment. A total of 230 question-
naires were collected, amounting to a total of 696 pages
(54 x 8-page diary + 88 x 3-page pre- and post-shift ques-
tionnaire). Data from the paper copies were entered
by skilled, trained research administrators and double-
checked by researchers. Questionnaire data were consid-
ered fully processed after data cleaning was performed
on this completed database.

Simulations based on study costs

In addition to evaluating the three specific data process-
ing procedures employed in the current, original study,
the cost models presented (Eq.s 5 and 6) can be used to
simulate the costs of different alternative measurement
strategies, and thus can be used as a decision tool. To
demonstrate the effect of altering different design pa-
rameters on the processing cost for a given method, six
alternate study scenarios were investigated, including
three cases where observation-specific design param-
eters were manipulated (designs 4-6) and one case where
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inclinometer and questionnaire design parameters were
manipulated (design 7), and the sensitivity of the total
cost to these renewed inputs considered. The parameters
for these scenarios are listed in Table 1. The study sce-
narios examined were:

1) The current study

2) The case where the methods are well-established
to the research group, so no software
development, acquisition or learning is required,
and fixed costs were limited to planning and
administration costs.

3) The case where double the number of work-days
were collected

4) The case where all 4 observers watch the entirety
of each video file (fully replicated observation
across observers)

5) The case where only 2 hours of video per work shift
are analyzed and there is no duplication within or
between observers

6) The case where ¢y (and therefore ¢g) doubles, for
instance because the time to analyze each video
frame or segment doubles, or because the number of
frames to be observed per video doubles.

7) The case where quality control and examination
of the raw data is decreased such that the ¢ for
inclinometer is half of current values. Similarly,
the case where the questionnaire is half as long,
requiring half the data entry and therefore
entailing half the current value of ¢g for
questionnaire.

Page 7 of 14

Combining data processing and data collection cost models
As mentioned above, we have suggested in a previous
paper a model for calculating costs associated with the
collection of raw data, using method m (Trask et al.
[10]). This model is as follows:

CCmZCA + CR + CE + CT + C\/
+ Cyq + Cr + Cp (7)

The model includes fixed costs of project meetings,
administering, and planning (C,), and the fixed cost of
training data collectors to use measurement method m
(Cr). Similar cost components are included in the model
for data processing suggested above (Eq 1), even though
training costs are, in this case, considered variable. Cc,,
(Eq. 7) also includes the fixed costs of recruitment (Cg);
and the fixed capital cost for equipment (Cg), along with
the variable costs of traveling to the worksite (Cy); hotel
accommodations during overnight trips (Cy); the cost of
recruiting workers at the worksite (Cg); and the cost of
onsite data acquisition (Cp).

Combining Eq.s 1 and 7 provides a model for the total
study cost, C,,, (Eq. 8) for any particular method m, in-
cluding both data collection and data processing phases.
Administration (C,) and training (Cy - Eq 1; Cr - Eq.7)
terms appear in both models, thus these cost compo-
nents can be combined.

CmZCA—I—CR—I—CE-FCs—I—CT
+ Cyv + Cq + Cr + Cp + Cum (8)

Table 1 Study parameters for alternative study scenarios simulated with the cost model

Scenario nt number of n; number of ng number of  ng number of ng average proportion ¢ unit cost of
analysts trained® instructors® work shift files  observers® of 240 min video processing one
reviewed per observer® file (multiples
of current study)
Design 1: current study 4P/ ¢ 2°/1¢ 80 4 030 1
Design 2: no training or 0 0 80 4 0.30 1
software costs
Design 3: double the work ~ 4°/2% € 281 160 4 030 1
shift files
Design 4: full observation 40/ € 201 80 4 1.0 1
overlap
Design 5: 2 hours observed ~ 4°/2% © 2°1¢ 80 4 0.125 1
per half-shift
Design 6: longer observer 4k 2 80 4 030 2
analysis time®
Design 7: shorter analysis time 1 2 /2¢ 0N 80 4 030 0.5

for inclinometer recordings
and questionnaires

finclinometer.

Pobservation.

‘questionnaire.

Items in bold represent parameters which are different than the present study.
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Results

Study costs by data measurement method

The total data processing costs for each of the three
measurement methods utilized in the current study
are presented in Table 2. The first column in Table 2
(‘applicable to all methods’) shows the costs that are re-
quired no matter which method is used; the total for each
method represents the total study cost for applying that
method, including the costs in the first column. The data
processing cost was lowest for questionnaire data, at less
than half the cost of the other two methods (Table 2). Es-
timated data processing costs were approximately 20%
larger for posture exposures obtained via observation of
video data than from inclinometers.

Costs by study scenarios

The total data processing costs estimated using the six
different study scenarios are presented in Table 3. Among
the simulated study scenarios, the relative rank of pro-
cessing costs by measurement method was consistent;
questionnaires had the lowest cost for all scenarios. Ob-
servation was consistently the most costly in terms of
data processing, with costs ranging from 1.1- to 1.6-fold
higher costs than inclinometry and 2.1- to 3.4-fold higher
than questionnaires.

Combined data collection and processing costs

The total study costs for both data collection and pro-
cessing phases are presented in Table 4 for all three
measurement methods. Self-reported questionnaire data
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proved to be the least costly for each phase and thus for
the combined cost. Inclinometer and observation data
measurement methods proved very similar in combined
cost with a higher cost of collection of inclinometer data
and the higher cost of processing for the observation
data. When the data collection and data processing costs
were combined, the inclinometry method remained the
more costly, but only slightly: the combined costs were
7% higher than the observation method. The questionnaire
method’s combined costs remained lowest; inclinometry
costs were 57% higher than questionnaires in the current
study scenario (Table 4).

Discussion

The impact of fixed and variable costs

Simulated study scenarios provided insight into the rela-
tive contributions of different types of costs, and can act
as a sensitivity analysis of the components in the overall
cost model. Altering the number of files processed or
the research infrastructure available to researchers can
change not only the cost of conducting a study with a
given method, but also the cost of a method relative to
other methods.

The fixed costs associated with developing processing
methods ‘from scratch, as in the present study, are
unique to the first time a research group uses a new
method. Software development and training costs had a
big impact on data processing costs for both the obser-
vation and inclinometer methods, as shown by the de-
crease in processing cost when they were eliminated in

Table 2 Data processing cost components for the three measurement methods in the current study

Cost component Applicable to Inclinometer Observation Daily exposure
all methods® questionnaire

Fixed costs

Ca planning and administration € 8,245 €5114 € 8,639 €510

Cs software €0 €10,924 €3479 €613

Sum of fixed costs (Ca ; Co) € 8,245 € 16,038 €12,118 €1,123

Unit costs

¢ unit cost of training trainees €0 €0 €920 €510

¢ unit cost of instructors €0 €0 € 1,288 € 7%

Cr unit cost of file analysis €0 €25 €50 €16

Variable costs

C; training costs €0 €0 €6,256 €1815

Cy costs of managing (handling) data €0 €1972 €4,012 € 1,307

Sum of variable costs (Cr+Cy ) €0 €1972 €10,268 €3,122

Totals by method

Total fixed and variable costs (column sum of fixed and variable costs) € 8,245 €18010 € 22,385 € 4,245

Cppy total data processing cost? € 26,255 € 30,630 € 12491

2costs that are required no matter which method is used.

brepresents the total data processing phase cost for applying that method, including the costs in the first column.
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Table 3 Total data processing costs, Cp,, (cf. Eq. 1) for actual study and six simulated study scenarios

Scenario Inclinometer Observation Daily exposure questionnaire
Design 1: current study € 26,255 € 30,630 € 12491

Design 2: no training or software costs € 15,331 € 21,698 € 10,062

Design 3: double the work shift files € 28,227 € 36,248 € 13,799

Design 4: full observation overlap € 26,255 € 42,667 € 12,492

Design 5: 2 hours observed per work shift € 26,255 € 28,625 € 12,492

Design 6: double observation time of videos € 26,255 € 36,248 € 12492

Design 7: half the processing time for inclinometer € 25,269 € 30,630 € 11,839

recordings and questionnaires

Maximum and minimum modeled costs shown in bold for each measurement method.

design 2 (Table 3). Once all the protocols, software, and
trained personnel are in place, any additional data can
be processed at a substantially lower cost per data unit.
Thus, after the initial investment, it will be possible to
process data from many different worksites and sam-
pling campaigns with lower marginal cost (marginal cost
is the cost of one additional measurement). However, in
the case of a method for which the training costs were
high, the likelihood of this scenario decreases over time
as turnover in trained research assistants may occur.
The same may also occur, to some extent, for methods
requiring continued software upgrades and developments
in the desired summary.

As an extension of this concept, the nature of fixed and
variable costs means that the marginal cost of an add-
itional measurement can be small relative to the total cost
of the study. For example, design 3 has double the number
of work shift files than the current study (design 1), but
the processing cost is only 7-15% higher, depending on the
measurement method employed. The impact of including
or excluding fixed costs has been previously demonstrated
for observation method strategies [11]; depending on the
research questions, over-sampling may prove most cost ef-
fective and a limited increase in cost could provide some
‘insurance’ if a power calculation used to plan the study
is developed according to uncertain assumptions [21].
Design 3 doesn’t change the relative ranking of method
costs either, but shows the total inclinometer processing
cost-per-measurement decreases much faster than for the

observation method. This is a result of the variable cost of
data processing being lower for the inclinometer method
(€ 25) than for observation (€ 50 in the current study sce-
nario). Given this higher handling cost per file, ¢ further
increases in sample size would eventually result in a higher
total combined data collection and processing cost for
the observation method compared to the inclinometer
method. The cost per file can be further increased or de-
creased based on the researcher’s tolerance for misclassifi-
cation; persevering in trying to deal with a few noisy raw
data files can substantially increase the average variable
costs per file, i.e. the unit cost of handling one file.

Design 7 (Table 3) demonstrates the situation where
the total cost of data processing inclinometer and ques-
tionnaires is less because it takes less time to process
each data unit. However, adopting this processing strat-
egy shows only modest reductions in inclinometer and
questionnaire costs of about 4%. Limiting the quality assur-
ance, visual inspection, and time-intensive data cleaning
for electronic data may seem counter-intuitive among re-
searchers trained to be meticulous. However, it is worth
considering as an option in the case where cost savings can
be considerable and data quality losses are likely to be low.
It may be that the improvements in data quality gained
from a highly time-consuming data processing are not
worthwhile; however, the impact on the precision of the
exposure variables would need to be considered in light of
the aims of a particular study. Cutting the inclinometer
data processing time in half (design 7) yielded a savings of

Table 4 Combined data collection and data processing costs from the current study

Cost component All? Inclinometer Observation Daily exposure questionnaire
Cenm Data collection costs (Eq. 7)* € 283854 € 36475 € 26515 €8011

Cpy Data processing costs (Eq. 1) € 8,245 €18,010 € 22,385 € 4,246

Data collection and data processing costs € 37,099 € 54,485 € 48,900 € 12,257

(sum of two first rows in the column)

C,, Total Combined Study Cost (Eq. 8)° € 91,584 € 85,999 € 49357

“costs that are required no matter which method is used.

Prepresents the total study cost for applying that method, including the costs in the first column.

*as reported in Trask et al. [10].
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roughly 5%. Without considering data collection costs, the
processing savings could be spent on collecting additional
measurements (in the present study, 80 additional mea-
surements could be had for the same cost): such a strategy
may have a larger, positive impact on exposure estimate
precision than utilizing fewer, more highly-processed mea-
surements. The impact of simpler processing strategies on
cost efficiency is worthy of future investigation.

Cutting data processing time in half (design 7 in
Table 3) led to only a 5% decrease in questionnaire costs
compared to the current study. Less processing time
could result from including fewer variables on the ques-
tionnaire, administering fewer questionnaires per worker
(i.e. only post-shift), or, possibly, from questionnaire de-
signs resulting in easier data input. Limiting the number
of questions on a questionnaire will decrease the pro-
cessing time, and could also affect data collection in that
workers may be more willing to participate, or may be
more motivated to consider each question and provide
higher-quality estimates; there is likely a lower limit to
the number of questions that could be considered to
yield useful information. Although the effect on worker
participation was not investigated in the current study, it
is worth considering since questionnaire length has been
shown to affect both participation rates and length of
time spent on questions [22]. Savings may also result
from a change in self-report format; tablet computers
have been used successfully for self-administered ques-
tionnaires in a health-care context [23], and smartphones
are an obvious choice for “diary” questionnaires focusing
on events or experiences occurring several times every
day. This technology could be used in a workplace setting
as well, resulting in virtually no data entry costs. However,
there could be considerable fixed costs for equipment and
software, meaning that this strategy is most appropriate
for large sample sizes (or multiple studies using the same
method) where the high fixed costs could be spread over
many measurements.

Our previous report of data collection costs predicted
that efforts related to processing and analysis would
likely change the relative cost ranking of posture assess-
ment methods [10], and that is borne out in the process-
ing results reported here. The inclinometer method was
the most costly when only the data collection phase was
considered, while the observation method was the most
costly when only the data processing cost was consid-
ered. When both collection and processing phase costs
were combined, the difference between these two measure-
ment methods diminished to approximately 7%. However,
different study scenarios can alter this considerably. For ex-
ample, if data collection were to be replicated immediately
after the ‘start from scratch’ situation of the present study
(as described in design 5 of the previously-published cost
paper [10]), there would be no fixed equipment cost. Since
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the fixed equipment cost for the inclinometer was higher
than for observation, this situation would decrease the
combined cost of inclinometer relative to the observation.
In some studies, data collection costs may be negligible
compared to costs for processing data. For instance, it is
not uncommon for studies of occupational exposure to use
previously-collected data to investigate a new research
questions; for instance for studies of sampling strategies
[11,13,21,24]. In this case, the costs for collecting the raw
data have already been accounted for by the original study,
so only the data processing costs need be considered when
selecting a method.

Observation processing: a special case
Video observation, as applied in this study, was the most
costly processing method. However, video observation
presents many sampling strategy options, resulting in a
wide range of possible processing costs. For this reason,
design scenarios 4-6 focused on changes to the observa-
tion processing strategy. Overlap (i.e. repeated views of
the same frame by different observers) increases the pre-
cision of a group mean when the between-observer vari-
ance is high [7,25], and repeated observation is shown to
be a cost-efficient alternative to collecting more video
films of the work [7]. Increasing the “coverage” of each
video film (i.e. ng no, cf. Eq. 6) from 0.31 to 1.0 yields a
fully-balanced design, as described in design 4. This design
maintains the same number of unique frames, but all four
observers analyze all frames, and results in nearly a 2-fold
increase in the observation processing cost when com-
pared to the current study scenario. When the combined
collection and processing costs are considered, such a
complete overlap design would result in an 11% cost in-
crease when compared to the current study scenario. It re-
mains to be seen whether this is a cost-efficient strategy.
Decreasing the number of hours of video analyzed per
work shift, as in design 5, had several effects. Such a de-
sign decreased the processing cost to 91% of the current
study scenario, increased the relative contribution of the
fixed costs, and decreased the amount of exposure infor-
mation available from which daily summary variables
were made. This design strategy might seem appealing
as a pilot study where budget is more limited and looser
estimates are acceptable. However, since this method de-
livers less than half the data for only a 9% reduction in
price, it seems unlikely to be as cost-efficient an option.
Video analysis time depends on the number of expos-
ure variables which observers must evaluate; and while
it could be faster to record and analyze only a single
variable, this study took a multi-variable approach and,
further, asked observers to analyze postures on a con-
tinuous angle scale (i.e. not ordinal or nominal) for both
upper arms and trunk flexion, in addition to the nominal
variables utilized for trunk rotation, trunk lateral flexion,
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presence of manual handling, task, and location. The
average length of time to analyze a single frame was 22 s
(median = 20 s; standard deviation = 18 s), but this average
includes many “missing” frames, representing cases where
the worker was in the rest room, moving behind a vehicle
or object, or otherwise not visible in the frame and for
which observers were required to only click a single but-
ton indicating the absence of the worker. Missing frames
accounted for 13.7% of all analyzed frames, and the aver-
age time for observing a missing frame was 2.1 seconds.
Design 6 investigates the case where either the time
interval between frames to be analyzed in each video is
decreased by half, or the analysis per se of each frame
take twice as long (i.e. about 45 seconds) which could
occur if the number of variables increases, the propor-
tion of missing frames decreases, or the complexity of
frames increases. The cost increase demonstrates the
impact these video analysis characteristics can have on
a research budget.

Performance of the data processing cost model
Compared to the previously-published 9-term model for
data collection phase costs, the 4-term data processing
phase model presented in the present study seems rela-
tively parsimonious. All four data processing cost com-
ponents included in the proposed model (Eq. 1) lend to
differentiating between the relative cost efficiencies of
the different measurement methods; the simplification
of the model to exclude any of these components would
thus give an incomplete picture of costs and limit good
decision making. If there was a large increase in the
number of work shifts processed, as simulated in design
3, fixed costs would start to contribute less to total study
cost and the average cost per measurement would de-
crease. However, the non-trivial marginal costs of data
collection mean there are still practical limitations to the
number of measurements that can be included in a study.
This can be seen in published reports on biomechanical
exposure assessments using observational or technical
measurements in occupational life, where samples of
approximately 100 work shifts are somewhat common
[19,26,27], but samples of 200 or more are rare [28].

The relative influence of researcher labour costs on
the total study costs is more predominant in the data
processing phase than in the data collection phase due
to the lack of equipment and travel costs associated
with the processing phase. However, embedded in the
data processing phase labour costs are several implicit
equipment/infrastructure cost components, as outlined
by Rezagholi et al. [11]. For example, energy consump-
tion, computers and IT support, institutional building
fees and maintenance are all included in the overhead
cost term. This is a cost that the university levies on
top of research labour salaries (and was a 68% increase
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in the present study), rather than comprising unique, ex-
plicit terms in the model. Similarly, taxes and benefits
are included in the hourly wage used to calculate labour
costs, so the effect of tax, workers’ health insurance, and
benefits are not explicit in the model components. This
modeling decision simplified cost calculations, but those
working with different overhead assessment procedures
or different social security systems will need to adjust the
model accordingly.

The cost tracking methodology itself could affect the
fixed and unit cost inputs to the model, thereby impacting
the ability to accurately make predictions. To determine
labour time, all researchers involved were asked to track
the time they spent on tasks related to this study. This task
was to be done in addition to their regular work tasks, and
despite high motivation on the part of the researchers to
collect the data, time reporting may have been forgotten
or grossly approximated afterwards. Indeed, researchers
describe re-creating some events retrospectively on their
spreadsheets as they forgot to track the event as it was
happening. Forgetting to track activities may have intro-
duced bias by underestimating the time spent and thus
the total cost of study. However, when double-checked
against the percentage time allotted to this project for
each researcher (an administrative requirement of their re-
spective institutions), the time spent was on the order of
predicted values. Research staff time for data entry was
tracked as part of the institution’s accounting and payment
protocols. It is anticipated that these individuals were very
motivated to track and enter the whole amount as they
were paid only for the time they reported. This self-
reported work time process was familiar to these indi-
viduals and they were well-practiced, so a low level of
reporting error is anticipated. The observation time is also
anticipated to have very low error since it was tracked by
the computer program and required no user input. There
were very few occasions where the analysis time for a
frame exceeded 5 minutes. All such events were assumed
to represent occasions where observers took a break with-
out pausing the program, as they had been instructed to
do; these events were therefore removed when calculating
the average time to evaluate a frame. Despite our best ef-
forts to track labour costs, it is not possible to know
with high precision the exact amount of time spent on
each tasks. Nonetheless, the methods used here deliver a
reasonable estimate of the labour costs associated with
data processing.

Validity: considering the value of posture assessments

It must be made clear that the current study does not
evaluate the quality of data produced by the current pos-
ture assessment methods. The measurement methods
compared clearly differ in the nature of information deliv-
ered: different dimensions of exposure, posture captured
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via continuous or categorical variables, different breadth
and depth of exposure information, and different ori-
gin of information (worker vs researcher vs electronic
equipment). These methods are also likely to vary in both
accuracy and precision, and cost alone is not sufficient to
make a decision about which posture assessment method
should be used. For example, self-report remains the least
costly option in terms of data collection, processing, and
total cost. However, self-report is generally placed at the
bottom of the exposure assessment ‘validity hierarchy’
which lists direct measurement at the top [1,2,29,30]. Al-
though this hierarchy forms the basis of most exposure
assessment method validation studies [31,32], it is rare to
find validation studies that quantitatively demonstrate a
difference in precision between methods rather than just
agreement.

The ‘validity hierarchy’ has previously been linked to
price, either explicitly or implicitly, where direct meas-
urement is axiomatically said to be more costly than ob-
servation, which is in turn more costly than self-report
methods [1]. The higher data processing cost demon-
strated in this study for observation measurements com-
pared to inclinometer measurements indicates that larger
samples would favour the inclinometer method. Even with
the current study scenario, the similar total study cost be-
tween these two methods indicates that the selection of in-
clinometer versus video observation method does not
have to be made simply based on cost, but can be made
based on the desired quality or nature of the exposure data
produced. Furthermore, the axiom that the ‘best’ quality
data — assumed in the hierarchy to be obtained by incli-
nometers — is also always the most expensive does not ap-
pear to hold true (at least at the processing stage), and
thus this axiom must be reconsidered. It has already been
suggested that self-report and observation allow for a
wider scope of variables than direct measurement tools
like inclinometers [1,12]. However, these methods are
more subjective than direct measurement. Self-report,
for example, summarizes exposure over a period of time,
typically, but not necessarily, over a whole day, and is
based on a retrospective report of the postures and tasks
encountered during that day. In comparison, the obser-
vation method could generate over 200 observed video
images during a similar period of time, and the inclin-
ometer method, many thousands of inclinometer samples
(8 hours x 3600 seconds per hour x 20 Hz sampling rate).
Further, the inclinometer method provides speed of move-
ment data that is not accessible via video frame analysis
with a 55-second sample interval as in the current study,
although this would be possible using other video sam-
pling strategies based on expert assessments of speed from
video segments. The volume of timeline data delivered by
the inclinometer and observation methods allow more
versatility for post-hoc development of research questions
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via alternate processing strategies such as resampling
within collected data [13]; this would be harder to perform
with the self-report data.

In order to optimize cost-efficiency of different methods
and identify the best method for a given purpose and at a
given budget, we need data on the statistical efficiency of
the measurement methods in addition to cost data [6,7,11].
We propose that the cost data presented in this paper be
combined with exposure variance component estimates in
order to compare exposure assessment methods in terms
of cost-efficiency. This strategy would permit the usage of
already published literature reporting physical exposure
variance components. For example, there already exist re-
ports of biomechanical exposure variance components for
diverse occupations such as hairdressers [15], office, custo-
dial, and maintenance workers [33], and heavy industrial
occupations [34]. There are also some studies using vari-
ance components to estimate precision of exposure assess-
ments [14,15,35,36]. This new overall efficiency model
option is thus immediately available to researchers, albeit
there has been only limited cost data published to date,
and studies that combine both cost and measurement pre-
cision will make a rich avenue for future investigation [3].
A further challenge would be to fully understand the costs
and cost-efficiency of exposure assessment strategies that
combine more than one method, as for instance when
combining self-reported or register data on jobs and/or
tasks from “many” subjects with direct measurements of
exposures in these jobs and tasks on a limited representa-
tive sample of subjects [26,37-39].

Conclusion

Observation of video was the most costly data process-
ing method with total cost of € 30,630, and was 1.2-fold
more costly than inclinometry (€ 26,255), and 2.5-fold
more costly than self-reported data (€ 12,491).

The findings presented here complement the previ-
ously published cost model for data collection phase
costs [10] by reporting the empirical costs for the post-
collection data processing phase of the same data set.
Study findings indicated that video observation had the
highest processing costs (€ 30,630), which resulted in
very similar combined collection and processing phase
costs for both the observation (€ 85,999) and inclinom-
eter (€ 91,584) methods, despite much higher data col-
lection costs for the inclinometer approach. Further, at
large sample sizes, the data processing costs can become
so large for the observation method that inclinometer
data becomes more cost effective. This finding is in con-
trast to the notion that higher quality data is inherently
more costly. Self-report was the cheapest method on all
levels, however it produces very different output expos-
ure variables than the other methods, and thus, it may
be difficult to compare the informative value of the data
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obtained from the three methods. Together, the pre-
sented cost models allow for better study planning
by identifying the fixed and variable costs of each measure-
ment method, and the effect on the total cost of collecting
more or fewer measurements. The cost models and the
underlying study data are critical steps in the overarching
aim of identifying optimally cost-efficient studies of bio-
mechanical exposure.
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