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Diagnosing problems with imputation models
using the Kolmogorov-Smirnov test: a simulation
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Abstract

Background: Multiple imputation (MI) is becoming increasingly popular as a strategy for handling missing data,
but there is a scarcity of tools for checking the adequacy of imputation models. The Kolmogorov-Smirnov (KS) test
has been identified as a potential diagnostic method for assessing whether the distribution of imputed data
deviates substantially from that of the observed data. The aim of this study was to evaluate the performance of
the KS test as an imputation diagnostic.

Methods: Using simulation, we examined whether the KS test could reliably identify departures from assumptions
made in the imputation model. To do this we examined how the p-values from the KS test behaved when skewed
and heavy-tailed data were imputed using a normal imputation model. We varied the amount of missing data, the
missing data models and the amount of skewness, and evaluated the performance of KS test in diagnosing issues
with the imputation models under these different scenarios.

Results: The KS test was able to flag differences between the observations and imputed values; however, these
differences did not always correspond to problems with MI inference for the regression parameter of interest. When
there was a strong missing at random dependency, the KS p-values were very small, regardless of whether or not
the MI estimates were biased; so that the KS test was not able to discriminate between imputed variables that
required further investigation, and those that did not. The p-values were also sensitive to sample size and the
proportion of missing data, adding to the challenge of interpreting the results from the KS test.

Conclusions: Given our study results, it is difficult to establish guidelines or recommendations for using the KS test
as a diagnostic tool for MI. The investigation of other imputation diagnostics and their incorporation into statistical
software are important areas for future research.
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Background
Multiple imputation (MI) is becoming increasingly popular
as a strategy for analyzing incomplete data [1,2]. MI is a
flexible method comprising two main steps: imputation
and analysis. During the imputation step, each missing
value is replaced with multiple (m >1) imputed values
drawn from a predictive distribution for the missing values
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given the observed data. This results in m completed data-
sets, each of which is analyzed separately using standard
complete-data methods. The results from the m analyses
are then combined to give an overall MI estimate. The
combination of estimates is most commonly performed
using arithmetic rules derived by Rubin [3].
In order to generate the imputed data, the user must

specify an imputation model. The imputation model
makes use of relationships between the observed values
of complete and incomplete variables to generate a
predictive distribution from which the imputed data
are drawn. The quality of the imputed values rests on
how well this imputation model has been formulated.
Misspecification of imputation models can lead to biased
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results [1] and it is important that diagnostic checks are
performed to assess the adequacy of imputation models.
Although there have been advances in statistical methods

and software for implementing MI, there has been a lag in
the development of imputation diagnostics. There are few
guidelines in the literature on how users should be
checking their imputation models. A few papers have
proposed formal model-checking approaches such as
posterior predictive checking and cross-validation [4-6].
Informal graphical techniques, such as plotting the imputed
and observed variables, have also been recommended [7,8].
However, few of these diagnostics have undergone rigorous
evaluation and the majority is not yet available in the
standard statistical packages supporting MI.
The Kolmogorov-Smirnov (KS) test has been identified

as a potentially useful tool for diagnostic checking in MI
[7]. The KS test is a non-parametric procedure for
testing whether two samples are from the same population.
The test statistic corresponds to the maximum vertical
distance between the empirical distribution functions of the
two samples [9].
In the context of MI, the KS test has been proposed as a

diagnostic tool to compare the distributions of observed
and imputed data [7]. For any variable subject to missing
data there is an empirical distribution of observed values
and after imputation there will be a distribution of imputed
values for the cases that had missing values. The propo-
nents of the KS test suggest that variables whose imputed
values differ markedly from the observed data be flagged
for further investigation [7]. For example, Abayomi et al.
[7] applied the KS test diagnostic when performing MI in a
dataset consisting of 64 environmental variables from 142
countries. These variables were of interest for constructing
an aggregate national measure called the environmental
sustainability index (ESI). In total, 19% of the data required
imputation and the ESI was estimated based on 10 imputa-
tions. To check their imputation models, Abayomi et al.
[7] performed KS tests on all imputed variables within a
single imputed dataset. They flagged any variables with KS
test p-values below 0.05 and examined the flagged variables
further using graphical techniques.
An advantage of using the KS test is that it is commonly

available in standard statistical software and can easily be
applied to imputed data. This test has recently been incor-
porated into a user-written command in Stata, enabling
users to easily compare the distributions of observed and
imputed data [10]. Because the KS test is a numerical test,
it can also be performed in a semi-automated fashion. The
test can be used as a screening device to highlight variables
that require in-depth checking [7]. This addresses the chal-
lenge of performing manual checks on all variables, particu-
larly when working with large multivariate datasets.
Although the KS test can be used to check imputation

models, its performance as a diagnostic tool for MI has
not been formally evaluated. For example, it is unclear
whether the proposed flagging procedure can successfully
identify poorly specified imputation models. Many issues
also remain unclear with respect to how KS p-values are
to be interpreted and how decisions are to be made based
on multiple KS p-values. In particular, it is unclear how
KS p-values should be interpreted in light of assumptions
about the missing data mechanism [3]. Using the KS
test as an imputation diagnostic implies that differences
between observed and imputed values are undesirable or
problematic. However, there are circumstances where
differences are to be expected. When the data are missing
completely at random (MCAR), where the probability of
data being missing does not depend on the values of the
observed or unobserved data, we would expect the distri-
butions of imputed and observed data to be similar and
for the null hypothesis of equal distributions to hold.
However, when data are missing at random (MAR), i.e.
where the probability of missingness is related to the
values of the observed variables but not the unobserved
variables, we may expect the distribution of the imputations
to differ from the observed data. If differences flagged by
the KS test are not always of concern, it is difficult to
know whether action is required when a flag is raised.
Understanding how the KS test behaves under different
missing data mechanisms will be important for assessing
its usefulness as a diagnostic test.
In the current study, we assessed the performance of

the KS test as a diagnostic method for MI. As a motivat-
ing example, we applied the KS test when imputing
missing data in the Longitudinal Study of Australian
Children, a large-scale epidemiological dataset. We then
performed a simulation study to formally assess the per-
formance of the KS test as an imputation diagnostic.

Motivating example
The Longitudinal Study of Australian Children (LSAC) is a
national longitudinal study that examines the educational,
cognitive, social, mental health, and physical development of
Australian children [11]. The specific question of interest
within LSAC that we focused on for this investigation was to
examine which early childhood (0–3 years of age) risk factors
predict conduct problems at age 6–7 years. The outcome of
interest was conduct problems at wave 4 (6–7 years) as
assessed by the conduct subscale of the Strengths and Diffi-
culties Questionnaire (SDQ), which is a semi-continuous
outcome on a scale from 0 to 10 [12]. Potential risk factors
were child, family and community factors measured at wave
1 (0–1 year) and wave 2 (2–3 years). This case study was
based upon previously published research by Bayer et al.
[13]; however, we modified the analysis to distinguish our
case study from the published research. The analysis was also
simplified as our focus was on the MI diagnostics, rather
than the substantive research question.
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Linear regression was used to identify early childhood
predictors of conduct problems in middle childhood.
The following covariates were included in the regression
model: mother’s high school completion (yes/no), family
socioeconomic position (continuous, range −4.9, 3.0), gender,
warm parenting (semi-continuous, range 2.2-5), harsh dis-
cipline (semi-continuous, range 1–10), mother’s emotional
distress (semi-continuous, range 0–24) and mother’s smok-
ing status (yes/no). For the purpose of this analysis, the
sample was restricted to the 4211 cases with observed out-
come. The percentage of missing values in the dataset ranged
from 0% for gender to 23% for mother’s smoking status
and harsh discipline scores (Table 1). Of the 4211 chil-
dren in the sample, 3175 children (75%) had data available
for all covariates.
The missing data were imputed using multivariate

normal imputation (MVNI), which assumes that all
variables in the imputation model jointly follow a multivari-
ate normal distribution [13]. We selected MVNI, because
this approach is widely available in standard statis-
tical packages [14]. We return to this decision in the
discussion. We imputed the missing data using four
different imputation models.

Model 1) This imputation model was considered to be
the “optimal” model, as it was constructed
based on recommendations in the literature
[1,15-17]. We included the outcome variable
in the imputation model to prevent
associations between predictors and the
outcome being biased towards zero [17].
We also included “auxiliary” variables in the
model, i.e. variables that are not intrinsically
of interest, but can improve the quality of the
imputations [15]. The auxiliary variables were
the same as those in the analysis model, but
measured at different waves. Skewed
variables were transformed prior to imputation
Table 1 Linear regression analysis results for the Longitudina

Variable Missing Complete case
analysis

Mod

n (%)
Coefficient SE Coefficien

Mother completed high school 3 (0.1) −0.147 0.061 −0.216

Socioeconomic position 151 (3.6) −0.192 0.028 −0.183

Male child 0 (0) 0.236 0.048 0.281

Warm parenting 251 (6.0) −0.309 0.059 −0.297

Harsh discipline score 970 (23.0) 0.252 0.017 0.232

K6 total score 287 (6.8) 0.033 0.008 0.035

Smoker 971 (23.1) 0.155 0.069 0.193

The multiple imputation results were estimated using 20 imputations. The four imp
auxiliary variables, 4 = no de-skewing.
using a zero-skewness log transform
(using the lnskew0 command in Stata 12 [18])
and were back-transformed after imputation.
This was based on findings that including
skewed variables in an imputation model can
lead to bias and poor coverage [16].

Model 2) As model 1, but the outcome variable
was omitted.

Model 3) As model 1, but the auxiliary variables
were omitted.

Model 4) As model 1, but the skewed variables were
not transformed prior to imputation.

For each model, imputed values of continuous and
semi-continuous variables were truncated at the mini-
mum and maximum values of the observed data. Adaptive
rounding was used to round the imputed values of binary
variables [19]. For each imputation model, the missing
data were imputed 20 times and the regression analysis
was performed on each completed dataset. Rubin’s rules
[3] were then used to combine results from the 20
imputed datasets to obtain an overall MI estimate of
the regression coefficients.
We used the KS test to check the four imputation

models by comparing the distributions of the imputed
and observed values of variables that required imput-
ation. KS tests were applied to the continuous and
semi-continuous variables only, i.e. family socioeco-
nomic position, warm parenting, harsh discipline and
mother’s emotional distress. For each imputation model,
separate KS tests were performed on each of the 20
imputed datasets, resulting in 20 p-values for each
imputed variable. The 20 p-values were then summarized
using medians. All analyses were performed using Stata
version 12 [18].
l Study of Australian Children example

el 1 Model 2 Model 3 Model 4

t SE Coefficient SE Coefficient SE Coefficient SE

0.054 −0.212 0.054 −0.233 0.054 −0.212 0.053

0.026 −0.184 0.026 −0.184 0.025 −0.180 0.025

0.043 0.283 0.043 0.284 0.043 0.281 0.043

0.053 −0.290 0.055 −0.295 0.054 −0.303 0.054

0.018 0.212 0.017 0.247 0.017 0.241 0.018

0.007 0.036 0.008 0.032 0.007 0.033 0.008

0.063 0.199 0.062 0.153 0.077 0.208 0.063

utation models were: 1 = “optimal” model, 2 = no outcome variable, 3 = no
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Estimates of the regression coefficients for the complete
case analysis and the four multivariate normal imputation
models are shown in Table 1. As expected, all four imput-
ation approaches increased the precision of the regression
estimates in comparison to complete case analysis. There
were differences between the complete case analysis results
and the imputation results. For example, the regression
coefficient for mother’s high school completion was −0.15
for the complete case analysis, while it was approxi-
mately −0.2 for the four imputation models, suggesting
that the data were not MCAR. In general, the regression re-
sults did not differ substantially across the four imputation
models. Differences were more apparent for the variables
with large proportions of missingness, such as smoking and
harsh discipline (both variables had 23% missing). For
example, the coefficient for the smoking variable was
0.15 for model 3, while it was around 0.20 for the
other three models.
Table 2 shows the median KS p-values for family

socioeconomic position, warm parenting, harsh discipline
and mother’s emotional distress for each of the four
imputation models. The median KS test p-values were
very small for all four imputation models. These results
suggest that there were substantial discrepancies between
observed and imputed data in all four cases. If using the
conventional cut-point of 0.05, as done by Abayomi et al.
[7], all variables would be flagged for further investigation.
One median p-value was notably larger than the other

p-values in Table 2. This was for the KS test comparing the
observed and imputed values for family socioeconomic
status in model 3 (p-value = 0.024). We examined this
variable further by graphing density plots of the observed
and imputed data from each of the four imputation models,
shown in Figure 1. In each of the plots, the observed data
are represented by a solid line and the imputed data are
represented by a dashed line. For models 1, 2 and 4, the
distribution of imputed values was shifted to the left
of the distribution of observed values. For model 3,
the distributions of observed and imputed data were
more similar. This is consistent with the larger magnitude
of the median KS test p-value. We would expect model 3
to perform worse than our “optimal” model (model 1), as
there was no auxiliary information to impute the missing
data. However, the omission of auxiliary variables has
Table 2 Kolmogorov-Smirnov (KS) test p-values for the Longi

Variable Model 1

Family socioeconomic position 4.94 × 10-7

Warm parenting 4.81 × 10-12

Harsh discipline 2.52 × 10-5

Mother’s emotional distress 4.48 × 10-6

Results are median KS p-values over 20 imputed datasets. The four imputation mod
ables, 4 = no de-skewing.
resulted in imputed values that are more similar to the
observed distribution, leading to a larger p-value. Thus,
the KS test diagnostic has not been helpful for detecting
models that we would expect to perform worse; it may
even be producing smaller p-values for models that we
expect to perform better, such as those that include
additional variables that improve the plausibility of the
MAR assumption [15].
As a result of the LSAC case study, many questions

arose in relation to the implementation of the KS test as
an imputation diagnostic. In particular, it was unclear
whether small KS p-values reflected a model misspecifi-
cation, or whether identified differences between the
observed and imputed data were simply related to the
missing data mechanisms. It was also unclear whether
there was any relationship between the KS p-values and
the “quality” of the MI inferences of primary interest
(in our example for the regression coefficients). Motivated
by these issues, we performed a simulation study to
examine the following research questions, in the context
of a simple regression analysis:

1. Do small p-values reliably highlight departures from
assumptions made in the imputation model (e.g.
multivariate normality)?

2. What is the relationship if any between KS p-values
and the bias in the MI estimation of parameters of
interest (e.g. regression coefficients)?

Methods
To address these questions, we performed simulation
experiments using a simple univariate regression model
consisting of a completely observed outcome variable
and an incompletely observed covariate. We examined
how the KS p-values behaved under different scenarios
of model misspecification, including skewed and heavy
tailed data. We also varied the amounts of data missing
and missing data mechanisms. For each scenario, the
following steps were performed:

1. A covariate X and an outcome variable Y
were simulated.

2. Missingness was introduced into the X variable.
tudinal Study of Australian Children example

Model 2 Model 3 Model 4

9.02 × 10-7 0.024 2.85 × 10-6

4.81 × 10-12 3.38 × 10-12 1.73 × 10-8

6.21 × 10-5 8.45 × 10-6 6.39 × 10-15

2.44 × 10-6 9.95 × 10-6 1.78 × 10-16

els were: 1 = “optimal” model, 2 = no outcome variable, 3 = no auxiliary vari-



Figure 1 Results from the Longitudinal Study of Australian Children example. Density plots of observed (solid line) and imputed
(dashed line) data for family socioeconomic advantage. Larger values represent greater socioeconomic advantage. The data from the 20 imputed
datasets have been pooled.
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3. The missing X data were multiply imputed using a
normal model (20 imputations).

4. A linear regression of Y on X was performed on
each imputed dataset and the multiple estimates of
the regression coefficient were combined into an
overall MI estimate.

5. KS tests were performed to compare the
distributions of observed and imputed data within
each of the 20 imputed datasets and combined to
give a median p-value.

6. Steps 1–5 were repeated 1000 times
(i.e. 1000 replications).

Details of these steps are outlined below.

Data generation
For each replication (n = 1000), we generated a single
covariate, denoted X, from a skew-t distribution with a
sample size of 500. Following Azzalini and Capitanio
[20], a skew-t random variable is the ratio of a skew-normal
variate to the square root of a chi-square variate. A random
variable Z is said to be skew-normal if it has the
density f(z) = 2ϕ(z)Φ(αz) where α is the shape parameter
and ϕ and Φ are the standard normal density and distri-
bution function respectively [20]. As with a standard
t-distribution, the skew-t distribution has υ degrees of
freedom controlling the weight of the tails. Skewness
is controlled by the shape parameter; skewness increases
as α increases, and the distribution converges to a
half t-distribution as α → ∞. When α = 0 the skew-t distri-
bution reduces to the standard symmetric t-distribution.
Three values of α (0, 2, 5) were selected in order to pro-

duce data that were not skewed, moderately positively
skewed and very positively skewed, respectively. To vary
the weight of the tails of the t-distributions, the degrees of
freedom (DF) were set to either 3 (i.e. heavy tails) or 1000.
Setting DF = 1000 and α = 0 produced data that were
normally distributed, which served as a reference scenario
for this simulation experiment. Outcomes (Y) were gener-
ated using the model Y | X = β X + e where e ~N (0,1).
The regression coefficient β was set to 1 which was thus
the target (true) value of the parameter of interest.

Missing data models
Missingness was imposed on the X variable at rates of
20%, 50% and 80%. Three missing data models were
examined:

1. Missing completely at random (MCAR): Missingness
was imposed randomly on the X variable.

2. Missing at random (MAR) mild: The probability of
being missing in X depended on the value of Y, and
was determined using the logistic regression
specification logit p(X is missing) = ζ + ηY. We set
η = 0.2, which corresponded to an increased odds of
22% of being missing with each unit increase in Y.
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We varied the value of ζ empirically to achieve the
X proportions of missingness above.

3. MAR strong: This was similar to the MAR mild
model above, but with a stronger dependency
between Y and missingness in . Under this model,
we set η = 1 in the above specification, which was
equivalent to a 2.8-fold increased odds of X being
missing with each unit increase in Y. Again, the
value of ζ was varied to achieve missingness rates of
20%, 50% and 80% respectively.
Multiple imputation and target analysis
For each scenario the missing X data were imputed
conditional on Y using MVNI, which was implemented
in Stata release 12 using the mi impute mvn command
[18]. In this setting, where there is only one incomplete
variable, MVNI would be the same as imputation using
a univariate linear regression model. We specified the
standard default uniform prior for the imputation model
parameters and performed 20 imputations for each
simulated dataset.
The parameter of interest was the coefficient β from

the linear regression of Y on X. The performance of MI
in estimating the regression coefficient was assessed
using bias and root mean square error [21]. Bias
(denoted δ) was calculated as the difference between the
average estimate over n (= 1000) simulation replications
and the true value of the parameter. The root mean
square error (RMSE) is a combined measure of bias and

variance, which we estimated using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ SD β̂

� �2
r

,

where δ is our estimate of bias and SD β̂
� �

is the empirical

standard error of the regression coefficient over the 1000
simulations.
Kolmogorov-Smirnov test
The KS test diagnostic was used to assess the equality of
distributions of the observed and imputed X values
for each of the scenarios. KS tests were performed
separately for each imputed dataset in each replication; so
for each replication there were 20 imputed datasets and
20 KS p-values. Because there was only one incompletely
observed variable (i.e. X), there was only one p-value for
each imputed dataset. For each replication within each
simulation scenario, we summarized the 20 KS p-values
using minima, maxima and medians (where medians of
the 20 p-values were used because the distribution of
the p-values was skewed for many scenarios). We also
examined the proportions of p-values that were below 0.05.
The medians of these summaries over 1000 simulations
were then obtained.
Results
Results for the simulation study are shown in Figure 2.
The line plots (Figure 2a) are graphs of the mean RMSE
of the MI estimate of the regression coefficient across
the 1000 simulations against α, which controlled the
skewness of X. As α increased, the RMSE of the MI
estimates also increased. Thus, the performance of MI
worsened with increasing departures from multivariate nor-
mality. The RMSE also increased with increasing amounts
of missing data. This pattern of results was consistent
across the three missing data mechanisms and two heavy-
tailed scenarios. In Figure 2, we summarize the MI results
using RMSE; however, similar findings were seen for bias.
Bias was minimal when α = 0 and DF = 1000, and increased
with skewness and tail heaviness.
We examined whether the KS test was able to identify

when MI was performing badly, i.e. whether the KS p-values
became smaller as the RMSE increased. As shown in
Figure 2b, when the missing data mechanism was MCAR,
the KS test p-values decreased as the RMSE increased. Thus,
under MCAR the KS test showed potential value as a
diagnostic check. However, when data were MAR,
particularly when the mechanism was “MAR strong”,
all of the p-values were very small. This was regardless of
how skewed the observed data were and whether or not
the coefficients had a large RMSE or bias. For example, in
the null scenario (DF = 1000, α = 0) when there was 20%
missing, all of the median p-values across the 20 imputed
datasets for each of the 1000 replicates were below 0.05,
even though the bias in the parameter estimate was
negligible (−0.0002).
Figure 2b also highlights the sensitivity of KS p-values

to the sample size and to the amount of missing data.
As seen in the bar charts, the magnitude of the KS
p-values was similar for 20% and 80% missing, while
it was consistently smaller for 50% missing. Thus, there
was a tendency for KS p-values to be smaller when there
was around 50% missingness compared to when there
were large or small amounts of missing data. This did not
reflect the pattern we saw with RMSE, where there was
increasing RMSE with increasing amount of missingness.

Discussion
The current study examined the performance of the KS
test as a diagnostic tool for MI using both a case study
and a simulation study. The results from the simulation
study indicate that the KS test diagnostic was able to detect
differences between observed and imputed data when the
imputation model was misspecified (as seen when skewed
and heavy tailed data were imputed under a multivariate
normal model). However, the differences flagged by the KS
test diagnostic did not always correspond to problems with
MI inference. When there was a strong MAR dependency,
the KS test did not specifically identify imputations that led



Figure 2 Simulation study results for degrees of freedom= 1000. a) Line plots of the root mean square error (RMSE) of the beta coefficient
estimates against alpha (the parameter controlling the skewness), and b) Bar charts of median Kolmogorov-Smirnov (KS) test p-values across the
20 imputed datasets and 1000 replications against alpha. MCAR =missing completely at random, MAR =missing at random.
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to poor MI estimates, i.e. large RMSE. The KS test flagged
all imputation models, even when there was little error in
the estimate of the regression coefficient. In this strongly
MAR scenario, the KS test did not discriminate between
misspecified and more appropriate imputation models.
The simulation results draw attention to the challenge

of interpreting the KS p-values in the context of different
missing data mechanisms. Differences between imputed
and observed values can arise due to model misspecifica-
tion, but they can also occur when the missingness is not
MCAR. It is not possible to disentangle these sources of
difference using the KS test p-values.
Using KS p-values to identify potential problems with the

imputation model specification in an automated fashion
also requires the user to select a significance level at which
differences between observations and imputations are to be
flagged. This threshold will be context-specific, since the
magnitude of the p-values will be influenced by characteris-
tics of the data, and in particular by the sample size. In the
environmental dataset analyzed in Abayomi et al. [7], the
KS test was applied to a sample of 142 countries. The KS
test p-values were below 0.05 in approximately half of the
variables examined. In contrast, in our LSAC example we
had a sample size of over 4000. With this large dataset,
all of our variables would have been flagged if we were to
use the conventional significance threshold of 0.05.
Abayomi et al. [7] acknowledge that other flagging rules
or significance thresholds may be required. As an alterna-
tive they suggest examining the 10% of variables whose KS
test p-values are the most extreme. This rule would
overcome the problem of all variables being flagged but
still relies on an arbitrary choice of 10% to be flagged.
In addition to the overall sample size, the magnitude of

the p-values can be influenced by the proportion of missing
data. Somewhat paradoxically, p-values were consistently
smaller when 50% of the data had been imputed, compared
to when a larger proportion of the data (80%) had been
imputed. This is because the distributional comparison
based on a 50:50 split of observed to missing data is more
powerful than either an 80:20 or a 20:80 split for the same
overall sample size. Thus, not only would users have to
consider their sample size when selecting a significance
level, but they would also need to take into account the
proportion of missing data in each of the incomplete
variables. To address this problem, it may be possible
to calibrate the p-values to account for the sample size and
the proportion of missing data. However, these adjust-
ments to the p-values will not overcome the problem
of the dependence on the missing data mechanisms
described above.
In the environmental sustainability example, Abayomi

et al. [7] performed the KS test on a single imputed
dataset. However, there is little guidance on how this test
should be carried out on multiply imputed data. One
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possibility is to pool the imputed data and perform a
single KS test for each imputed variable. This approach will
inflate the sample size, introducing an arbitrary dependence
on the number of imputed datasets. Alternatively, the KS
tests can be performed on each imputed dataset as used in
the current study, i.e. if there are m imputed datasets, then
m KS tests can be performed, resulting in m KS p-values
per imputed variable. This raises questions about how
judgments regarding model adequacy should be made
based on these multiple p-values. In both the LSAC
application and the simulation study, we performed
20 imputations and summarized the multiple p-values
using medians (using medians due to the highly skewed
nature of the p-values). However, there are a number of
approaches that we could have used to judge the imput-
ation models based on the 20 p-values. For example, we
could have made decisions based on a single extreme value,
or we could have considered the proportion of the 20
p-values that were below a specified threshold. There
is also the question of whether adjustments for multiple
testing are required when performing the KS test on
multiple variables with incomplete data. These are further
decisions that users would have to make if they applied the
KS test diagnostic to imputed data. However, given the
shortcomings of the KS test described above, we would
investigate other model checking approaches, rather than
develop the KS test diagnostic further.
The KS test diagnostic focuses on distributional differences

between the observed and imputed data. In the MI literature,
there are other proposed diagnostics that target differences
between the observed and imputed data in more specific
characteristics, such as the location and spread. For example,
Stuart et al. [22] propose flagging imputation models if i) the
absolute difference in means between the observed and
imputed data is greater than 2 standard deviations, or ii) the
ratio of the variances of the observed and imputed values is
less than 0.5 or greater than 2. Similarly, classical tests of
differences in variances or means (e.g. F-test, t-test
and non-parametric counterparts) could be used. Although
we did not assess these tests in our study, we believe that
our general conclusions will still apply. Under MAR, we do
not expect the imputed data to resemble the observed
data. In fact, we may be relying on MI to recover
these differences based on information in the observed
data. It may be useful to explore how the observed
and imputed data differ (e.g. through plotting or tabulating
summary statistics). However, we do not recommend auto-
matic flagging of differences using numerical tests, because
the discrepancies between observed and imputed data do
not necessarily signal a problem.
A limitation of the simulation study presented here is that

it does not represent a realistic scenario, since our datasets
consisted only of a single covariate and an outcome
variable. However, we decided to use this model to examine
the performance of the KS test diagnostic within a simple
setting. Given the intrinsic problems with the KS test in this
simple scenario, the results of the test would only be harder
to interpret in a more realistic situation where there would
be additional complications, as well as issues with multiple
testing when using the KS test on a number of incomplete
variables. We also decided to implement MI using MVNI,
as this is a widely used approach that is available in
standard statistical software. In this simple context, similar
results would be expected from chained equations [23,24],
another popular and widely available approach to multiple
imputation, as these methods are equivalent when there is
missingness in a single continuous variable. In this paper
we did not compare these methods, as the focus was on
the value of the KS test as an imputation diagnostic.
A final limitation of the simulation study is that method

used to generate the data means that the imputation
models were technically misspecified in all scenarios. In
the simulations, we first generated X and then obtained Y
using a linear regression of Y on X. This was consistent
with our analysis model, which was also a linear regression
of Y on X. This meant that we were able to use the true
value of the regression parameter as a reference for
evaluating our imputation models. We then induced
missingness in the covariate X, and imputed the missing
values using the imputation model X | Y. We selected this
approach, because MI tends to be utilized for imputing
covariates, rather than outcomes in epidemiological
analyses and we therefore believed that this scenario
had greater generalizability. However, the fact that the
imputation model is not the same the data-generating
model, may have contributed to bias in the MI results
for all of the scenarios considered. Despite this, we are
confident that the incompatibility of the data generation
and imputation models does not affect our assessment of
the KS test as an imputation diagnostic. Our focus in this
study was to examine whether the KS test was able to
identify the models that produced the largest bias and
RMSE. The problems we identified with the KS test were
not linked with the data generating process.

Conclusions
Our simulation study demonstrates the challenges of
summarizing and interpreting KS test p-values. In par-
ticular, it is not possible to determine whether extreme
p-values have arisen due to model misspecification or
because data were MAR. Given that MI is favored as a
missing data technique when data are MAR, the value of
the KS test as an MI diagnostic is questionable. The
magnitude of the KS p-value was also influenced by the
sample size and proportion of data missing. Given these
considerations, it is difficult to establish guidelines that
would enable us to recommend applying the KS test as
an MI diagnostic.
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Further development of other model-checking techniques
would be valuable. In particular, the evaluation of diagnos-
tics such posterior predictive checking [4,5] and graphical
methods [7,25] is an important area of research. It is also
vital that these diagnostics are incorporated into statistical
software to improve the accessibility of these techniques
and to encourage the practice of model-checking when
performing MI.

Abbreviations
DF: Degrees of freedom; ESI: Environmental sustainability index; KS
test: Kolmogorov-Smirnov test; LSAC: Longitudinal study of Australian
children; MAR: Missing at random; MCAR: Missing completely at random;
MI: Multiple imputation; MVNI: Multivariate normal imputation; RMSE: Root
mean square error; SDQ: Strengths and difficulties questionnaire;
SE: Standard error.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors participated in the design of the simulation study and the
interpretation of the results. CN performed the case study analysis and
conducted the simulations. CN wrote the first draft of the manuscript and
prepared all tables and graphs. All authors read and contributed to the final
manuscript.

Acknowledgements
This work was supported by funding from the National Health and Medical
Research Council: Career Development Fellowship ID 1053609 (KJL), a Centre
of Research Excellence grant, ID 1035261, awarded to the Victorian Centre
for Biostatistics (ViCBiostat), and Project Grant ID 607400. The authors also
acknowledge support provided to the Murdoch Childrens Research Institute
through the Victorian Government’s Operational Infrastructure Support
Program. This paper used unit record data from Growing Up in Australia, the
Longitudinal Study of Australian Children. The study is conducted in
partnership between the Department of Social Services (DSS), the Australian
Institute of Family Studies (AIFS) and the Australian Bureau of Statistics (ABS).
The findings and views reported in this paper are those of the author and
should not be attributed to DSS, AIFS or the ABS.

Author details
1Clinical Epidemiology & Biostatistics Unit, Murdoch Childrens Research
Institute, The Royal Children’s Hospital, Flemington Road Parkville,
Melbourne, Victoria 3052, Australia. 2Department of Paediatrics, Faculty of
Medicine, Dentistry and Health Sciences, University of Melbourne,
Melbourne, Australia. 3Melbourne School of Population and Global Health,
Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne,
Melbourne, Australia.

Received: 9 August 2013 Accepted: 12 November 2013
Published: 20 November 2013

References
1. Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM,

Carpenter JR: Multiple imputation for missing data in epidemiological
and clinical research: potential and pitfalls. BMJ Br Med J 2009, 338:b2393.

2. Mackinnon A: The use and reporting of multiple imputation in medical
research – a review. J Intern Med 2010, 268(6):586–593.

3. Little RJA, Rubin DB: Statistical analysis with missing data. 2nd edition.
Hoboken, N.J.: Wiley; 2002.

4. Gelman A, Van Mechelen I, Verbeke G, Heitjan DF, Meulders M: Multiple
imputation for model checking: Completed-data plots with missing and
latent data. Biometrics 2005, 61(1):74–85.

5. He Y, Zaslavsky AM: Diagnosing imputation models by applying target
analyses to posterior replicates of completed data. Stat Med 2012,
31(1):1–18.

6. Gelman A, King G, Liu CH: Not asked and not answered: Multiple
imputation for multiple surveys. J Am Stat Assoc 1998, 93(443):846–857.
7. Abayomi K, Gelman A, Levy M: Diagnostics for multivariate imputations.
J Royal Stat Soc Series C-Appl Stat 2008, 57:273–291.

8. White IR, Royston P, Wood AM: Multiple imputation using chained
equations: Issues and guidance for practice. Stat Med 2011, 30(4):377–399.

9. Conover WJ: Practical nonparametric statistics. 2dth edition. New York:
Wiley; 1980.

10. Eddings W, Marchenko Y: Diagnostics for multiple imputation in Stata.
Stata J 2012, 12:3.

11. Australian Institute of Family Studies: Longitudinal Study of Australian
Children Data User Guide – April 2010. Melbourne: Australian Institute of
Family Studies; 2010.

12. Goodman R: The strengths and difficulties questionnaire: a research
note. J Child Psychol Psychiatry 1997, 38(5):581–586.

13. Bayer JK, Ukoumunne OC, Lucas N, Wake M, Scalzo K, Nicholson JM:
Risk factors for childhood mental health symptoms: national Longitudinal
Study Of Australian Children. Pediatrics 2011, 128(4):865–879.

14. Horton NJ, Kleinman KP: Much Ado about nothing. Am Stat 2007,
61(1):79–90.

15. Collins LM, Schafer JL, Kam CM: A comparison of inclusive and restrictive
strategies in modern missing data procedures. Psychol meth 2001,
6(4):330–351.

16. Lee KJ, Carlin JB: Multiple imputation for missing data: fully conditional
specification versus multivariate normal imputation. Am J Epidemiol 2010,
171(5):624–632.

17. Moons KGM, Donders RART, Stijnen T, Harrell JFE: Using the outcome for
imputation of missing predictor values was preferred. J Clin Epidemiol
2006, 59(10):1092–1101.

18. StataCorp: Stata Statistical Software: Release 12. College Station, TX:
StataCorp LP; 2011.

19. Bernaards CA, Belin TR, Schafer JL: Robustness of a multivariate normal
approximation for imputation of incomplete binary data. Stat Med 2007,
26(6):1368–1382.

20. Azzalini A, Capitanio A: Distributions generated by perturbation of
symmetry with emphasis on a multivariate skew t-distribution. J Roy Stat
Soc B 2003, 65:367–389.

21. Burton A, Altman DG, Royston P, Holder RL: The design of simulation
studies in medical statistics. Stat Med 2006, 25(24):4279–4292.

22. Stuart EA, Azur M, Frangakis C, Leaf P: Multiple imputation with large data
sets: a case study of the Children’s mental health initiative. Am J
Epidemiol 2009, 169(9):1133–1139.

23. van Buuren S: Multiple imputation of discrete and continuous data by
fully conditional specification. Stat Methods Med Res 2007, 16(3):219–242.

24. Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P:
A multivariate technique for multiply imputing missing values using
a sequence of regression models. Survey Methodol 2001, 27:85–96.

25. Su YS, Gelman A, Hill J, Yajima M: Multiple Imputation with Diagnostics
(mi) in R: Opening Windows into the Black Box. J Stat Softw 2011,
45(2):1–31.

doi:10.1186/1471-2288-13-144
Cite this article as: Nguyen et al.: Diagnosing problems with imputation
models using the Kolmogorov-Smirnov test: a simulation study. BMC
Medical Research Methodology 2013 13:144.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Motivating example

	Methods
	Data generation
	Missing data models
	Multiple imputation and target analysis
	Kolmogorov-Smirnov test

	Results
	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

