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Abstract

Background: Diagnostic problems in clinical trials are sometimes ordinal. For example, colon tumor staging was
performed according to the TNM classification. However, clinical data are limited by markedly small sample sizes in
some stage.

Methods: We propose a distribution-free test for detecting ordered alternatives in a completely randomized design.
The new statistic is based on summing all correctly (ascending) ordered samples.

Results: The exact mean and variance of the null distribution are derived and it is shown that this distribution is
asymptotically normal. Furthermore, we show using Monte Carlo simulation that the proposed test is a significant
improvement over the Terpstra-Magel test. That is, power is decreased where the investigator falsely assumes an a
priori ordering relationship.

Conclusions: We conclude that these tests frequently detect an ordered trend when, in fact, one does not exist.
However, the new test can reduce the error rate, at least not to the extent in which the Jonckheere-Terpstra test
does.
Background
This paper focuses on considering nonparametric tests for
the non-decreasing ordered alternative of k(≥3) groups.
The hypothesis to be tested is H0 : F1(x) = F2(x) =⋯ = Fk(x)
for all x and H1 : F1(x) ≥ F2(x) ≥⋯ ≥ Fk(x), for all x with
F1(x) > Fk(x) for some x, where F1(x), F2(x),⋯, Fk(x) are
continuous distribution functions.
In this article, we assume the location model with Fi(x) =

F(x − μ − θi), where μ is a location parameter and θi repre-
sents the effect of group i, i = 1, 2, …, k. This im-
plies that the underlying populations may differ only
in location. Throughout the article, let xi1; xi2;…; xini ;
i ¼ 1; 2; …; k represent independent random sam-
ples from the k populations with distribution functions
Fi (x), i = 1, 2, …, k, respectively.
Nonparametric order restricted inference has been ex-

tensively investigated in past literature and new studies
are continuing to emerge. For instance, Puri [1], Puri
and Sen [2], and Padmanabhan et al. [3] applied the con-
cept of Chernoff–Savage-type statistics to nonparametric
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ordered alternative tests. Studies that used power results
to compare the validity of linear rank tests included
Büning and Kössler [4], Beier and Büning [5], Büning
and Kössler [6], Büning [7], Büning and Kössler [8],
Büning and Kössler [9], Kössler [10] and Kössler [11].
The earliest and most classic treatment of k (≥ 3)-sam-

ple distribution-free statistic for ordered alternatives was
proposed by Jonckheere [12] and Terpstra [13]. The test is
known as the Jonckheere-Terpstra test (hereafter referred
to as the JT test) and is based on a sum of Ck

2 Mann–
Whitney statistics (Mann and Whitney, [14]; Hollander
and Wolfe, [15]). In order to define the JT statistic, we
express the Mann–Whitney statistics as

Ulm ¼
Xnl
jl¼1

Xnm
jm¼1

I xljl ; xmjm

� �
; 1≤ l < m≤k;

where I xljl ; xmjm

� � ¼ 1; if xljl < xmjm
0; otherwise

�
, and the JT statistic

is given by JT ¼
Xk−1
l¼1

Xk
m¼lþ1

Ulm.

Other tests for ordered alternatives were developed by
Cuzick [16] and Le [17]. Among the JT, Cuzick, and Le
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tests, the results from Mahrer and Magel [18] did not
establish any of the tests as having overwhelmingly
higher power over the others across different location
parameters. Neuhauser et al. [19] presented a modified
version of the JT test (hereafter referred to as the MJT
test). The form of the MJT statistic is identical to the JT
test except that the Mann–Whitney statistic Ulm multi-
plies the weight m - l as the new kernel. Study results
showed that the MJT test often produced a higher power
than the JT test for the ordered alternative. We also
noted that Tryon and Hettmansperger [20] presented
the JT and MJT tests as members of a more general class
of nonparametric tests. In the test statistics described
above the kernels of the tests are almost all derived by
comparing two pairs of sample observations at a time.
However, Terpstra and Magel [21] proposed a test (here-
after referred to as the TM test) where the kernels of
TM test are based on information obtained simultan-
eously across all samples. The statistic is determined by

adding the
Yk
i¼1

ni indicator functions, that is,

TM ¼
Xn1
j1¼1

⋯
Xnk
jk¼1

I x1j1 ≤x2j2 ≤⋯≤xkjk
� �

where I x1j1 ≤x2j2 ≤⋯≤xkjk
� �

is equal to one, provided at

least one strict inequality; otherwise, I x1j1 ≤x2j2≤⋯≤xkjk
� �

is equal to zero..
Terpstra et al. ([22]a, b) proposed a new nonparametric

test statistic (hereafter referred to as the KTP test) that is
a generalization of the TM test. The idea is to replace the
indicator kernel from the TM test with Spearman’s rank
correlation coefficient, that is,

KTP ¼
Xn1
j1¼1

⋯
Xnk
jk¼1

r x1j1 ; x2j2 ;…; xkjk
� �

;

where is Spearman’s rank correlation coefficient between
the observed data and the corresponding group number.
In this study, we propose a new test is based on the in-

formation present in the N� ¼
Yk
i¼1

ni k-tuplets, where a

k-tuplet includes one observation from each treatment
group. All correctly (ascending) ordered samples are then
summed to form a statistic that is distributed approxi-
mately as a normal distribution. Details of this new test
and its asymptotic distribution are provided, and the com-
putational algorithm is presented in the Additional file 1.
A colon cancer data example is given in data example sec-
tion. Finally, we present a finite sample simulation study
which compares the proposed test, the JT test, MJT test,
TM test, and the KTP test in terms of power. A computer
program written in R that implements the proposed
methods will be available from the first author upon re-
quest. It is recommended that readers who are not inter-
ested in the details of the computational algorithm skip
the Additional file 1.

Methods
Test statistic
The new nonparametric test for non-decreasing alterna-
tives is based on the following statistic,

T ¼
Xn1
j1¼1

⋯
Xnk
jk¼1

k x1j1 ; x2j2 ;…; xkjk
� �

;

Where k x1; x2;…; xkð Þ ¼
Xk

i¼1
I R xið Þ ¼ ið Þ , R (xi) de-

notes the rank of xi with respect to x1, x2,…, xk, and I(.)
denotes the indicator function.
The remainder of this section presents and derives re-

sults pertaining to the null distribution of the proposed
test statistic. We assume throughout this section that
the observed data, {Xij} is essentially a random sample
from some continuous probability distribution function
F. Hence, the possibility of ties has a probability of zero.
In principle the test statistic uses the k-tuplet method of
Terpstra and Magel. Additionally, in the null hypothesis
each k x1j1 ; x2j2 ;…; xkjk

� �
follows the Binomial (k, 1/k)

distribution. For these reasons, we will refer to this test
as the KTMB test.

The exact null distribution
Let N denote the sum of the sample sizes for each treat-
ment. Namely, let N = n1 +⋯ + nk. Here, we have N !/
(n1 !⋯ nk !) partitions of the numbers 1, …, N. The null
distribution of T means each one of these partitions is
equally likely so the mean and variance can be calculated
directly by multiplying each possible value of T with its
probability. When the number of partitions is small, we
can easily calculate the exact distribution by hand or
with the computer. Table 1 shows the probabilities,
means, and variances of the test statistic T for sample
size arrangements (2, 1, 1), (2, 1, 2), and (1, 1, 3)
respectively.
Real world cases are not always as simple as the above

illustration. For example, when k=4, n1 = n2 = n3 = n4 = 5,
we have 20 !/(5 ! 5 ! 5 ! 5 !) = 1.1733 × 1010 partitions. Such
a distribution function cannot be calculated even with
the most efficient personal computers. We will therefore
introduce a Monte Carlo approximation to the null dis-
tribution. On the other hand, if the distribution of T can
be approximated or can be shown to converge to a well-
known distribution, we can avoid computational com-
plexity altogether.



Table 1 Some exact null distributions for the proposed test statistic

Sample sizes Test statistic value (KTMB) Mean and variance

(n1, n2, n3) 0 1 2 3 4 5 6 7 8 9 12 E [T] V[T]

(2, 1, 1) 2/12 3/12 4/12 1/12 1/12 - 1/12 - - - - 2 2.667

(2, 1, 2) 2/30 2/30 6/30 4/30 6/30 2/30 3/30 2/30 2/30 - 1/30 4 6.867

(1, 1, 3) 2/20 3/20 4/20 6/20 1/20 1/20 1/20 1/20 - 1/20 - 3 5.000
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The mean and variance
If the asymptotic null distribution of a test statistic is
normal and the exact mean and variance of T under H0

in standard form can be established we can then
standardize T by using the exact mean and variance to
obtain ZKTMB, where ZKTMB ¼ T−E0 Tð Þf g= ffiffiffiffiffiffi

V 0

p
Tð Þ . In

this case, we can find critical values from the standard
normal table.
We will start by finding the mean value of T, E0(T),

noting that T is nothing but a sum of the k �
Yk
i¼1

ni

Bernoulli (1/k) distribution. It is straightforward to get

E0 Tð Þ ¼
Yk
i¼1

ni ð1Þ

Here, and in the following, we let n� ¼
Yk
i¼1

ni;

V 0 Tð Þ ¼ v20 þ
Xk−1
i¼1

v2i þ v2k ð2Þ

where v20 ¼ 1− 1=kð Þf g
Yk
i¼1

ni for no tie, v2k ¼ n�k k−1ð Þ

k−2ð Þ!=k!−1=k2� �
for k ties for i ≠ j.

For the case of i ties, we present an algorithm for the

computation of the
Xk−1
i¼1

v2i in Additional file 1. Readers

who are not interested in the details of this algorithm
may want to skip the Additional file 1 and go to data ex-
ample section, in which examples based on real data are
provided.

The asymptotic null distribution
In this section we will look to see if the asymptotic null
distribution of test statistic T follows the standard nor-
mal distribution. In other words, we prove that

T� ¼ T−E0 Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 0 Tð Þp →

D
N 0; 1ð Þ: ð3Þ

H0 will therefore be rejected for large values of T*. The
normal approximation for the procedure is to reject H0

if T* ≥ z1 − α; otherwise do not reject H0. Note that the
critical value z1 − α is chosen to make the Type I error
probability equal to α. That is, α ≈ P(T* ≥ z1 − α|H0 true).
We note that (3) is a direct consequence of Theorem 1,
which we now state.

Theorem 1 Let N ¼
Xk
l¼1

nl and assume nl
N ¼ λl þ o 1ð Þ

where λl ∈ (0, 1) . Then, under H0; TN ¼def 1
k⋅Nk−1=2

Xn1
j1¼1

⋯
Xnk
jk¼1

k x1j1 ;⋯; xkjk
� �

−1
� 	

→
D
N 0;

Xk
l¼1

λ�l σ
2
lk

 !
; where λ�l ¼ λl

Yk
j¼1

λ2I j≠lð Þ
j :

Proof of Theorem 1 Terpstra and Magel [21] proved
that TM statistic follows a normal distribution as sample
sizes go to infinity by using projection technique from
Hettmansperger and McKean ([23], p. 81). In what fol-
lows all limits are taken with respect to N, as N→∞. To
apply their theorem to our case, let

E½TN jXlm� ¼ 1

k⋅Nk−1=2

Xn1
j1¼1

⋯
Xnk
jk¼1

Xk
i¼1

½Ii jl ¼ m
� �

Zlk

� Xlmð Þ þ Ii jl≠m
� � 1

k
−
1
k
� ¼ Ln lð Þ

Nk−1=2
Zlk Xlmð Þ− 1

k


 �

where

Zlk Xlmð Þ¼
def k−1ð Þ!

l−1ð Þ! k−lð Þ! F
l−1 xð Þ 1−F xð Þ½ �k−l; l ¼ 1;…; k:

Ln lð Þ ¼
Yk
j¼1

nI j≠lð Þ
j :

The projection of TN, say, PN can be defined as,

PN ¼
Xk
l¼1

Xnl
m¼1

E½TN jXlm�

¼
Xk
l¼1

Ln lð Þ ffiffiffiffi
nl

p
Nk−1=2


 �
1ffiffiffiffi
nl

p
Xnl
m¼1

Zlk Xlmð Þ− 1
k


 �
:

ð4Þ

E Zlk Xlmð Þ½ � ¼ 1
k and V Zlk Xlmð Þ½ � ¼ σ2lk can be proved

by Beta distribution. The convergence criteria on the k
sample sizes imply that,

Ln lð Þ ffiffiffiffi
nl

p
Nk−1=2 ¼

ffiffiffiffiffi
λ�l

q
þ o 1ð Þ: ð5Þ
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It now follows from (4), (5), and limiting moment gen-
erating function theory that,

PN →
D
N 0;

Xk
l¼1

λ�l σ
2
lk

 !
: ð6Þ

Let us now consider V [TN], which we write as,

V TN½ � ¼ 1

k2N2k−1

Xn1
i1¼1

⋯
Xnk
ik¼1

Xn1
j1¼1

⋯
Xnk
jk¼1

�COV k x1i1 ;⋯; xkikð Þ; k x1j1 ;⋯; xkjk
� �� 	

:

ð7Þ

Consider first the case of k ties for i ≠ j. it is straightfor-

ward to show COV k x1i1 ;⋯; xkikð Þ; k x1j1 ;⋯; xkjk
� �� 	 ¼ k

k−1ð Þ k−2ð Þ!
k! − 1

k2

h i
. Next, consider the case in which

there are exactly three ties among the different sub-
scripts. For example, if we let Ru denotes the rank of
xu with respect to x1, x2,…, xk, Rv denotes the rank of
xv with respect to x1, x2,…, x2k-3, u < v-k, Ru < Rv, and
X1, X2, X3 denote the tied observations then the
covariance term has the form COV [Iu, Iv] where, Ru

denotes the rank of xu with respect to X4;…;Xl1 ; X1;

Xl1þ1;…;Xu;…;Xl2 ; X2;Xl2þ1;…;Xl3 ; X3;Xl3þ1…;Xk

and Iu = I(Ru = u), and Rv denotes the rank of xv with
respect to Xkþ1;…;Xkþl1−3;X1;Xkþl1−2;…;Xkþl2−3;X2;
Xkþl2−2;…;Xv;…;Xkþl3−3;X3;Xkþl3−2;…;X2k−3 and Iv =
I(Rv = v).
Under H0, E Iu½ � ¼ E Iv½ � ¼ 1

k . Next, consider E [IuIv].
This expectation contains 2k-3 observations, so that
under H0, each of the (2k-3)! permutations of the observa-
tions are equally likely. However, there are only the num-
bers of {1 : Ru-1}∩{1 : Rv-1} possible ways, say ISS(Ru, Rv),
plus the numbers of {Ru+1 : 2k-3}∩{1 : Rv-1} possible ways,
say ILS(Ru, Rv), plus the numbers of {Ru+1 : 2k-3}∩{Rv+1 :
2k-3} possible ways, say ILL(Ru, Rv), to preserve X1, X2, and

X3. Furthermore, there are CISS Ru;Rvð Þ−t1
u−4 possible ways to

preserve X4;…;Xl1 ;Xl1þ1;…;Xu−1 to the left of Xu,

CILS Ru;Rvð Þ−t2
v−k−1− u−4ð Þ possible ways to preserve Xkþ1;…;Xkþl1−3;

Xkþl1−2;…;Xkþl2−3;Xkþl2−2; Xv−1 to the left of Xv,

CILL Ru;Rvð Þ−t3
k−u− ILS−1− v−k−1− u−4ð Þ½ �f g possible ways to preserve Xuþ1;…;

Xl2 ;Xl2þ1;…;Xl3 ; Xl3þ1…;Xk to the right of Xu, and

CILL Ru;Rvð Þ−1− k−u−ILSþ1þv−k−1−uþ4ð Þ
ILL Ru;Rvð Þ−1− k−u−ILSþ1þv−k−1−uþ4ð Þ ¼ 1 possible way to pre-

serve Xvþ1;…;Xkþl3−3;Xkþl3−2;…X2k−3 to the right of Xv.
Hence, these arguments imply that,
COV Iu; Ivð Þ ¼ 3! k−4ð Þ! k−4ð Þ!CISS Ru;Rvð ÞþILS Ru;Rvð ÞþILL Ru;Rvð Þ
t1þt2þt3 ⋅

2k−3ð Þ!
where t1 + t2 + t3 = 3, t1, t2, and t3 = 0, 1, 2, 3.

Now, for a given l1, l2, and l3, there are nl1nl2nl3
Yk
t¼1

nt nt−1ð Þ½ �I t≠l1ð ÞI t≠l2ð ÞI t≠l3ð Þ of these covariance terms. Next,
consider all possible Ru, Rv and all possible treatment lo-
cations (m and n), in the case of one tie X1, (7) reduces
to,

Xk
l¼1

nl
Yk
t¼1

nt nt−1ð Þ½ �I t≠lð Þ

N2k−1

Xk−iþm

Ru¼m

Xk−iþn

Rv¼n

½C
ISS Ru;Rvð ÞþILS Ru;Rvð ÞþILL Ru;Rvð Þ
t1þt2þt3

1

�
k−2ð Þ! k−2ð Þ!CISS Ru;Rvð Þ−t1

u−4 CILS Ru;Rvð Þ−t2
v−k−1− u−4ð ÞC

ILL Ru;Rvð Þ−t3
k−u− ILS Ru;Rvð Þ−t2− v−k−1− u−4ð Þ½ �f g

2k−1ð Þ! −
1

k2
�

¼
Xk
l¼1

λ�l σ
2
lk þ o 1ð Þ

ð8Þ

where t1 + t2 + t3 = 1, t1, t2, and t3 = 0, 1.
From (6) and (8) it follows that V[TN] −V[PN] = o(1).

Asymptotic normality results are attainable.

Patient characteristics
The institutional review board of Chang Gung Memorial
Hospital approved the present study. Detailed information
about patients with colon cancer, such as patient- and
tumor-related factors and follow-up status, was retrieved
from the Colorectal Section Tumor Registry at Chang
Gung Memorial Hospital, Taiwan. All the data in this
registry were prospectively collected.

Results and discussion
Data examples
Between January 2006 and December 2010, 154 con-
secutive patients with histologically confirmed colonic
adenocarcinoma underwent curative surgeries at the
Chang Gung Memorial Hospital in Chiayi. The stage IV
colon cancer, non-curative surgeries, rectal cancer and
mucinous adenocarcinomawere excluded in this study.
Tumor staging was performed according to the TNM
classification described in the 6th edition of the cancer
staging manual of the American Joint Committee on
Cancer (Stage I, II, IIIA and IIIB). The different tumor
staging require a different treatment to optimize patient
and hospital outcomes. An ordinal logistic regression
model was developed with predictors as follows: age, gen-
der, tumor location, histologic differentiation, preoperative
CISS Ru;Rvð Þ−t1
u−4

CILS Ru;Rvð Þ−t2
v−k−1− u−4ð ÞC

ILL Ru;Rvð Þ−t3
k−u− ILS Ru;Rvð Þ−1− v−k−1− u−4ð Þ½ �f g −

1

k2
:



Table 2 Order restricted inference results for the colon
cancer data

JT MJT TM KTP KTMB

Test Statistic 3.01 2.69 1.44 2.17 1.29

p-value 0.00132 0.00361 0.07473 0.01483 0.09830
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albumin level, preoperative carcinoembryonic antigen
level, and underlying medical illnesses.
To illustrate the KTMB test, assume an outcome with

four stages and a set of cases consisting of one case from
each stage. The case from Stage I has risks of 0.50, 0.25,
0.15 and 0.10 for Stage I, II, IIIA and IIIB, respectively.
The case from Stage II has risks 0.26, 0.52, 0.17 and
0.05; the case from Stage IIIA has risks 0.06, 0.32, 0.42
and 0.20; the case from Stage IIIB has risks 0.12, 0.18,
0.30 and 0.40. The risk for Stage IIIB (say, event) is
higher for the case that belongs to this stage (0.40) than
for the other cases (0.10, 0.05 and 0.20). The risk for
event is second-highest for the case from Stage IIIA
(0.20 versus 0.10, 0.05 and 0.40). However, the risk for
event is lowest for the case from Stage II (0.05 versus
0.10, 0.20 and 0.40). The risk for event is third-highest
for the case from Stage I (0.10 versus 0.05, 0.20 and
0.40). Therefore, the risks correctly identify the cases
   I   II

0.
3

0.
4

0.
5

0.
6

0.
7

ris
k

Figure 1 Box plots of risk for Stage IIIB versus TNM for clinical data.
from Stage IIIA and IIIB but not Stage I and II, resulting
in a score of 2 for this set (k(x1, x2, x3, x4)).
Hence, the set of hypotheses was H0 : FI(x) = FII(x) =

FIIIA(x) = FIIIB(x) for all x and H1 : FI(x) ≥ FII(x) ≥ FIIIA
(x) ≥ FIIIB(x), where FI(x) ≠ FIIIB(x) for some x.
Five test statistics and the corresponding p-values are

given in Table 2. Since a plot of this data set in Figure 1
exhibits a non-increased trend, it appears that the JT,
MJT and KTP tests have falsely conclusion (p < 0.05).
The KTMB test has the largest p-value (See Table 2).
Moreover, Stage IIIB patients reported significantly more
risk for Stage IIIB than Stage II subjects (ANOVA, post
hoc: IIIB > II, p = 0.003) while Stage I, II and IIIA pa-
tients did not differ in risk for Stage IIIB (ANOVA, post-
hoc: p>0.05) Hence, we conclude that the risk for Stage
IIIB do not increase with the patient’s TNM in the
model. That is, the discrimination performance of the
ordinal logistic model is not very well between Stage I, II
and IIIA.

Comparison with respect to size and power
To determine if the underlying population came from
different skew and kurtosis distributions that impact on
the power of the test statistic, we used log-F distribu-
tions with combinations of 2, 4.5 and 10 degrees of
 IIIA IIIB

TNM
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freedom to generate the random variable. We can there-
fore define random variable Xij as: Xij = θi + εij, where εij
is the iid log-F distribution, and θi are location
parameters.
For the numbers of treatment (k), sample sizes (ni)

and location parameters (θi) we examine the different
combinations of k = 3 and 4, ni = 4, 5, 8 and 10, θi = 0,
0.25, 0.5, 0.75, 1 and 1.25. We investigated designs under
assumed alternatives which are of the forms of concave
and convex. Programs to compare powers were written
in R 2.9.2 (R Development Core Team, Vienna, Austria).
Table 3 Estimated powers and type I error rates of ordered te

Location parameter KTMB KTP JT MJT TM DP L

n1=4, n2=4, n3=4 n

Log-F (2,4.5) L

(0, 0, 0) 0.0492 0.0496 0.0489 0.0496 0.0494 (0

(0, 0.25, 0.5) 0.1176 0.1243 0.1096 0.1243 0.1255 −6.29% (0

(0.5, 0, 0.25) 0.0295 0.0344 0.0295 0.0344 0.0346 0.00% (0

(0.25, 0.75, 0) 0.021 0.029 0.0212 0.029 0.0236 0.95% (0

Log-F (4.5, 4.5) L

(0, 0, 0) 0.0511 0.0521 0.0518 0.0521 0.0531 (0

(0, 0.25, 0.5) 0.1533 0.1612 0.1447 0.1612 0.1604 −4.43% (0

(0.5, 0, 0.25) 0.0189 0.0259 0.0212 0.0259 0.0237 12.17% (0

(0.25, 0.75, 0) 0.0207 0.0246 0.0213 0.0246 0.0239 2.90% (0

Log-F (10, 4.5) L

(0, 0, 0) 0.0509 0.0523 0.0519 0.0523 0.0527 (0

(0, 0.25, 0.5) 0.1802 0.1961 0.1742 0.1961 0.1843 −2.22% (0

(0.5, 0, 0.25) 0.016 0.021 0.0166 0.021 0.0192 3.75% (0

(0.25, 0.75, 0) 0.0161 0.0196 0.0161 0.0196 0.0198 0.00% (0

n1=4, n2=4, n

n3=4, n4=4 n

Log-F (2,4.5) L

(0, 0, 0, 0) 0.0512 0.0519 0.0515 0.0519 0.0514 (0

(0, 0.25, 0.5, 0.75) 0.165 0.1806 0.188 0.1806 0.1615 2.17% (0

(0.75, 0, 0.25, 0.5) 0.0388 0.0388 0.0417 0.0388 0.0471 0.00% (0

(0.25, 0.75, 1.25, 0) 0.0225 0.0315 0.0313 0.0315 0.0276 22.67% (0

Log-F (4.5, 4.5) L

(0, 0, 0, 0) 0.0507 0.0503 0.0509 0.0503 0.0508 (0

(0, 0.25, 0.5, 0.75) 0.2242 0.2513 0.2606 0.2513 0.2143 4.62% (0

(0.75, 0, 0.25, 0.5) 0.0297 0.0282 0.0304 0.0282 0.0385 −5.05% (0

(0.25, 0.75, 1.25, 0) 0.0237 0.0291 0.0298 0.0291 0.0277 16.88% (0

Log-F (10, 4.5) L

(0, 0, 0, 0) 0.0527 0.0513 0.0509 0.0513 0.0527 (0

(0, 0.25, 0.5, 0.75) 0.2882 0.3179 0.3316 0.3179 0.259 11.27% (0

(0.75, 0, 0.25, 0.5) 0.0168 0.0211 0.0204 0.0211 0.0216 21.43% (0

(0.25, 0.75, 1.25, 0) 0.025 0.0259 0.029 0.0259 0.0317 3.60% (0
The estimations were conducted by simulating 10,000
different sets of samples. Furthermore, we estimated the
power by counting the number of times H0 was rejected
and using the value to divide by 10,000. Ideally, we be-
lieve that the test should have higher power than a gen-
eral alternative test when H1 is true, and should have
low power for any alternative that does not fit the profile
given in H1.
In general, the JT and KTP tests have the highest pow-

ers for the ordered alternative cases. Comparing with
TM test, the gain percentage in power, DP = (KTMB -
sts under significance level 0.05

ocation parameter KTMB KTP JT MJT TM DP

1=10, n2=10, n3=5

og-F (2,4.5)

, 0, 0) 0.0494 0.0481 0.0488 0.0494 0.0509

, 0.25, 0.5) 0.1491 0.1542 0.1566 0.1554 0.1491 0%

.25, 0.5, 0) 0.0209 0.022 0.0346 0.0316 0.0217 3.83%

.5, 0.75, 0) 0.0086 0.0094 0.0167 0.0143 0.0096 9.30%

og- F (4.5, 4.5

, 0, 0) 0.0492 0.0478 0.0501 0.0488 0.0512

, 0.25, 0.5) 0.2079 0.2118 0.2181 0.217 0.2021 2.87%

.25, 0.5, 0) 0.0207 0.0217 0.034 0.0303 0.0215 3.86%

.5, 0.75, 0) 0.0058 0.0058 0.012 0.0093 0.006 0.00%

og-F (10, 4.5)

, 0, 0) 0.0488 0.0494 0.0517 0.0505 0.051

, 0.25, 0.5) 0.2522 0.2634 0.27 0.268 0.2446 3.11%

.25, 0.5, 0) 0.0217 0.0195 0.0353 0.0302 0.024 −10.14%

.5, 0.75, 0) 0.0064 0.0058 0.0119 0.0093 0.0076 −9.38%

1=8, n2=8,

3=8, n4=4

og-F (2,4.5)

, 0, 0, 0) 0.0505 0.0484 0.0518 0.0507 0.0479

, 0.25, 0.5, 0.75) 0.2042 0.2313 0.2408 0.2372 0.1915 6.67%

.5, 0.5, 0.5, 0) 0.0121 0.0152 0.0197 0.018 0.013 7.44%

.25, 0.5, 0.75, 0) 0.0258 0.0332 0.0641 0.0575 0.0283 9.69%

og-F (4.5,4.5)

, 0, 0, 0) 0.0505 0.0487 0.0508 0.0477 0.048

, 0.25, 0.5, 0.75) 0.2987 0.3358 0.3572 0.3562 0.2795 6.87%

.5, 0.5, 0.5, 0) 0.0092 0.0086 0.0122 0.0111 0.0111 −6.52%

.25, 0.5, 0.75, 0) 0.025 0.0285 0.0714 0.0592 0.0302 14.00%

og-F (10, 4.5)

, 0, 0, 0) 0.0504 0.0492 0.0493 0.0514 0.0508

, 0.25, 0.5, 0.75) 0.3697 0.4268 0.4489 0.4492 0.3458 6.91%

.5, 0.5, 0.5, 0) 0.0049 0.0055 0.01 0.0079 0.0079 12.24%

.25, 0.5, 0.75, 0) 0.0273 0.027 0.076 0.0568 0.0328 −1.10%
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TM)/TM, ranges from −6.29% to 11.27% with the aver-
age gain percentage in power being 2.63% (difference of
percentage).
Consider the corresponding alternatives of the form of

concave and convex shapes. The powers of the KTMB
test outperforms (lower power) the KTP, JT, MJT, and
TM tests when balanced design. The loss percentage in
power, DP = (minimum of KTP, JT, MJT, and TM –
KTMB)/KTMB, ranges from −7.28% to 20.00% with the
average loss percentage in power being 4.25% for k = 3.
The DP ranges from −13.2% to 27.68% with the average
loss percentage in power being 8.83% for k = 4.
When the sample sizes corresponding to the non-

decreased trend location parameters are comparatively
large, the KTMB test is better than KTP, MJT, JT, and
TM tests. The DP ranges from −7.29% to 9.30% with the
average loss percentage in power being 2.47% for k = 3.
The DP ranges from −6.52% to 30.93% with the average
loss percentage in power being 12.07% for k = 4. How-
ever, the KTP test slightly better than KTMB test when
the underlying population is skewed to the right (see
Table 3).
Based on the simulation results above, we conclude

that the KTMB test is better than the TM test in regards
to the power against ordered alternatives. Moreover, the
KTMB test offers built in protection for the situation
when an investigator falsely assumes an a priori ordered
relationship.
Table 3 just represent a small subset of the many dif-

ferent scenarios that we simulated. For example, we also
conducted simulations for numerous other alternative
patterns. Interested persons may contact the corre-
sponding author for these simulated results.
Conclusions
This research proposes a new nonparametric test for the
ordered alternative problem. The new test statistic is
based on the calculating all k x1j1 ; x2j2 ;…; xkjk

� �
in proper

(ascending) order. In other words, the new test statistic
collects the information of each observation for each
treatment to provide the message of “increasing” to the
test statistics. A higher test statistics means a stronger “in-
creasing” message. This is also why we expect the new test
statistics to offer better power under certain situations.
Due to the small number of groups and sample sizes,

we tabulated and listed their distribution as well as the
exact mean and variance of the null distribution. From
the equation for the exact mean and variance of the null
distribution was derived and the asymptotic null distri-
bution is normal were given.
We also use the example of ordinal risk prediction of

colon cancer to compare the test statistics mentioned in
the papers. A finite sample simulation study was also
used to explore in-depth how the powers of JT, MJT,
TM, KTP and KTMB tests under different underlying
populations, treatment numbers and sample sizes. Based
on the example and simulation results, we conclude that
these tests frequently detect an ordered trend when, in
fact, one does not exist. However, the KTMB test can re-
duce the error rate, at least not to the extent in which
the JT and MJT tests do.
Ben Van Calster et. al. extend the main measure of bin-

ary discrimination, the c-statistic or area under the ROC
curve, to nominal polytomous settings by polytomous dis-
crimination index (PDI) [24]. They mention it is desirable
that the risk of each group is highest for the case that be-
longs to this group in a set of cases. Therefore, the PDI
score awarded to a set equals the number of groups for
which this holds. Based on this point of view, in our opin-
ion, the KTMB test can not only be used for detecting the
non-decreasing alternatives but can also be measured to
summarize polytomous discrimination.
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