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Abstract

Background: Designs and analyses of clinical trials with a time-to-event outcome almost invariably rely on the hazard
ratio to estimate the treatment effect and implicitly, therefore, on the proportional hazards assumption. However, the
results of some recent trials indicate that there is no guarantee that the assumption will hold. Here, we describe the
use of the restricted mean survival time as a possible alternative tool in the design and analysis of these trials.

Methods: The restricted mean is a measure of average survival from time 0 to a specified time point, and may be
estimated as the area under the survival curve up to that point. We consider the design of such trials according to a
wide range of possible survival distributions in the control and research arm(s). The distributions are conveniently
defined as piecewise exponential distributions and can be specified through piecewise constant hazards and
time-fixed or time-dependent hazard ratios. Such designs can embody proportional or non-proportional hazards of
the treatment effect.

Results: We demonstrate the use of restricted mean survival time and a test of the difference in restricted means as
an alternative measure of treatment effect. We support the approach through the results of simulation studies and in
real examples from several cancer trials. We illustrate the required sample size under proportional and
non-proportional hazards, also the significance level and power of the proposed test. Values are compared with those
from the standard approach which utilizes the logrank test.

Conclusions: We conclude that the hazard ratio cannot be recommended as a general measure of the treatment
effect in a randomized controlled trial, nor is it always appropriate when designing a trial. Restricted mean survival
time may provide a practical way forward and deserves greater attention.

Keywords: Time-to-event data, Randomized controlled trials, Hazard ratio, Non-proportional hazards, Logrank test,
Restricted mean survival time, Piecewise exponential distribution

Background
Most randomized controlled trials (RCTs) with a time-to-
event outcome are designed and analyzed with a target
hazard ratio (HR) for the treatment effect inmind. By con-
vention, the HR is usually taken as the hazard function in
the research arm divided by that in the control arm, with
values < 1 representing a ‘positive’ treatment effect. In
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advanced cancers with a mortality outcome, for example,
a popular choice of target HR is 0.75. This implies a reduc-
tion of 25 percent in the instantaneous mortality rate at all
times after randomization. According to a standard sam-
ple size calculation based on the logrank test, about 510
events are needed to attain power 90 percent to detect
such a treatment effect at a two-sided significance level
of 5 percent in a trial with equal allocation to control and
research arms.
For a single HR tomake scientific sense, wemust assume

that proportional hazards (PH) of the treatment effect
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holds, at least approximately. We have argued previously
[1] that when the PH assumption fails, it is misleading
to report the treatment effect through the estimated HR,
since it depends on follow-up time. A simple example of
departure from PH occurs when one group is assigned
to immediate surgical treatment and the other to medi-
cal treatment. Suppose time of randomisation is the origin
of the survival time. When surgery increases short-term
mortality but confers long-term benefit on the survivors –
a reasonable alternative hypothesis – PH does not apply
and the HR is a misleading and inappropriate summary.
More technically, we are unconvinced by papers such as

Schemper et al [2] where an overall estimate of the HR is
regarded as an average of time-dependent HRs over the
event times, nor by proposed variants based on different
and arbitrary weighting schemes. Themain issue is that an
average HR is uninterpretable. Under PH, for example, the
HR can usefully be applied to the survival function in the
control arm to obtain an impression of the survival curve
in the research arm. When PH is breached, this prop-
erty no longer holds. Furthermore, the HR depends on the
follow-up time.
It has become apparent in some recently reported trials,

e.g. IPASS [3] and ICON7 [4], that gross breaches of the
PH assumption can and do occur—even to the extent of
observing crossing survival curves, where a local estimate
of the log HR changes sign over time. Non-PHmay be due
to different biological modes of action of the treatments
being compared, or as identified in IPASS, to the presence
of differentially responsive sub-populations.
As noted before [1], we are dissatisfied with the HR as

a universal summary measure. For example, even when
PH holds, the HR is not as meaningful clinically as some
type of difference in average survival times or proportions
at a fixed time-point, obscuring the absolute difference
between the treatments and failing to convey the clinical
value of a treatment. (By ‘survival time’ we mean generic
time to event, for whatever event is of interest.) Further-
more, early stopping rules that assume PH can generate
inappropriate decisions if the HR later changes substan-
tially. Also, no single summary of HR or risk difference can
adequately describe cases in which the treatment effect
changes in direction as follow-up increases.
In our earlier paper [1], we suggested an approach to

the analysis of an RCT in which the PH assumption
is breached. We proposed to estimate and report the
restricted mean survival time (RMST) [5], expressing the
treatment effect as the difference in RMST between the
randomized arms at a suitable follow-up time, t∗. We con-
structed confidence intervals through the standard error
of the difference in RMST. Further experience with the
RMST measure in a larger number of trials has given us
the impression that when the PH assumption is approxi-
mately satisfied, the test of the null hypothesis based on

RMST difference often has operating characteristics sim-
ilar to the logrank test. Specifically, the significance level
and power of the two tests appear to be similar.
An advantage of the RMST is that it is valid under any

distribution of the time to event in the treatment groups,
of which PH models are a (small) sub-class. Furthermore,
it is readily interpretable as the ‘life expectancy’ between
randomization (t = 0) and a particular time horizon
(t = t∗). Owing to the current dominance of the HR
and its presumed time independence, trial reports often
ignore the possibility of non-PH and typically place little
emphasis on the extent of follow-up, which should be a
key aspect of the trial design and analysis. For example,
a treatment effect can exhibit PH in the short term but
non-PH over a longer period (e.g. the GOG111 trial, see
Reference [1]). It is particularly important to ensure suf-
ficient follow-up when there may be good biological or
other reasons to expect the effect of a treatment to vary
over time. The primary estimate of the RMST is specifi-
cally aligned to a chosen t∗ and this must be made explicit.
Obviously, though, as part of the analysis, the treatment
effect can be explored over a range of alternative t∗ values.
In a previous report [6], we described the implemen-

tation of a general method, Assessment of Resources for
Trials or ART, for designing a trial allowing for possi-
ble non-uniform accrual rates, non-proportional hazards,
loss to follow-up and cross-over of patients between treat-
ment arms. With ART, the treatment effect is assessed
using the logrank test, irrespective of whether the design
assumes PH or not. A central tool in the approach is the
realistic representation of the survival function in each
trial arm as a piecewise exponential distribution. Recruit-
ment and follow-up time is divided into several ‘periods’ of
equal duration. Recruitment is carried out during a subset
of these periods, and all recruited patients are followed up
for the remaining periods. The accumulated data are ana-
lyzed when the necessary numbers of events have accrued.
In addition to the usual signficance level and power, the
researcher specifies the survival function in the control
and research arm at the ends of selected periods. The
piecewise constant hazard function is inferred from these
values. At its simplest, the method accepts a single expo-
nential distribution in each of the control and research
arms, characterized by a single, constant hazard or equiva-
lently by themedian time to event. Considerable flexibility
is available with a piecewise exponential model, allowing
a wide range of survival distributions appropriate to the
disease in question to be accommodated.
In this paper, we consider replacing a logrank-based

sample size calculation and presentation of results with
one based on RMST and its difference between trial
arms. The difference in RMST is determined by the sur-
vival functions specified in the control and research arms
through piecewise exponential distributions, exactly as in
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ART. Part of the paper is concerned with technical details
of the calculation of RMST and its standard error under
a piecewise exponential model. The results are needed in
the sample size calculations. We report a small simula-
tion study comparing the significance level and power of
the logrank and RMST tests under a piecewise exponen-
tial model with non-proportional or proportional hazards,
incorporating staggered entry of patients and varying
length of recruitment and follow-up.
In the section ‘Restricted mean survival time (RMST)’,

we describe the RMST and the corresponding standard
deviation (RSDST) in general terms and specifically for
a piecewise exponential distribution. Section ‘A strategy
for design and analysis of clinical trials’ discusses our pro-
posed strategy for trial design and analysis. We describe
how to do a sample size calculation for a trial using the
RMST difference. We also consider the choice of suitable
values of t∗ at the design and analysis stages. We also sug-
gest an approach to assessingmaturity (readiness for anal-
ysis) of accumulating trial data according to the RMST
method. Section ‘Examples’ includes limited simulation
studies of the significance level and power of hypothesis
tests based on the RMST difference under non-PH and
PH. We provide examples in real trials. Section ‘Further
issues’ makes a qualitative comparison between various
measures of a treatment effect and describes results of
RMST and logrank analyses in four cancer trials.We finish
with a discussion and our conclusions.

Methods
Restrictedmean survival time (RMST)
Definition of RMST
The restrictedmean survival time,μ say, of a random vari-
able T is the mean of the survival time X = min (T , t∗)
limited to some horizon t∗ > 0. It equals the area under
the survival curve S (t) from t = 0 to t = t∗ [5,7]:

μ = E (X) = E
[
min

(
T , t∗

)] =
∫ t∗

0
S (t) dt (1)

When T is years to death, we may think of μ as the ‘t∗-
year life expectancy’. In a two-arm clinical trial with sur-
vival functions S0 (t) and S1 (t) in the control and research
arms, respectively, the difference in RMST between arms,
�, is given by

� =
∫ t∗

0
S1 (t) dt −

∫ t∗

0
S0 (t)dt

=
∫ t∗

0
[S1 (t) − S0 (t)] dt

i.e. � is the area between the survival curves.

Restricted standard deviation of survival time (RSDST)
To compute the variance, var(X), of the restricted survival
time X, we need E

(
X2):

E
(
X2) = E

(
T2|T ≤ t∗

)
Pr

(
T ≤ t∗

) + t∗2 Pr
(
T > t∗

)
In terms of the survival function S (t), we have Pr
(T ≤ t∗) = 1 − S (t∗) and

E
(
T2|T ≤ t∗

)
Pr

(
T ≤ t∗

) =
∫ t∗

0
t2f (t) dt

= t∗2
[
1 − S

(
t∗
)]

−
∫ t∗

0
2t [1 − S (t)] dt

where f (.) is the density function of T. Hence

E
(
X2) = t∗2

[
1 − S

(
t∗
)] − 2

∫ t∗

0
t [1 − S (t)] dt + t∗2S

(
t∗
)

= t∗2 − 2
∫ t∗

0
tdt + 2

∫ t∗

0
tS (t) dt

= 2
∫ t∗

0
tS (t) dt

so that

var (X) = RSDST2 = E
(
X2) − [E (X)]2

= 2
∫ t∗

0
tS (t) dt −

[∫ t∗

0
S (t)dt

]2

(2)

The restricted standard deviation (RSDST) is
√
var (X).

RMST and RSDST for the piecewise exponential distribution
Analytic results for RMST and RSDST are available when
the survival time has a piecewise exponential distribution.
The integrals required in (2) are tractable. Details of the
calculations and the results are given in the Appendix.

A strategy for design and analysis of clinical trials
The ART approach
The ART approach to trial design [6,8] is based on spec-
ifying (log) HRs and testing their difference from zero
with the logrank test. It may be used to design a trial
with two or more parallel groups and a time-to-event out-
come. ART allows the user to specify a recruitment phase
with a predefined pattern of staggered patient entry and
a follow-up phase at the end of recruitment, a standard
feature of sample size calculations for such trials. Fur-
thermore, among other advanced features, ART supports
designs with non-proportional hazards, which are speci-
fied according to period-specific, time-dependent HRs.
The main design characterstics of ART are as follows:

1. Power and significance level for a logrank test of the
treatment effect (e.g. 0.9 and 0.05);
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2. A number K of notional study periods of equal
length in suitable units of real (calendar) time, over
which the trial is intended to run;

3. Recruitment of patients over the first K1 periods and
follow-up of all accrued patients over the remaining
K2 periods, with K1 > 0, K2 ≥ 0, such that
K = K1 + K2;

4. A relative weight for the number of patients expected
to be recruited in each period (since recruitment
often starts slowly and picks up as the trial’s existence
becomes better known);

5. Control-arm survival function specified at some or
all of the K periods. An alternative would be to
specify the survival in the research arm at the same
time points;

6. Target HR(s) under the alternative hypothesis.
Hazard ratios may be specified as a single overall
value (proportional hazards assumption) or for
individual periods (time-dependent HR). An
alternative to specifying HRs would be to provide the
survival function in the research arm as well as in the
control arm.

The end result is a complete definition of piecewise
exponential models for the data expected under the null
and alternative hypotheses. The null hypothesis is that
the HRs are all equal to 1. The alternative hypothesis is
that they are as given (implicitly or explicitly) in step 6
above.
The ART methodology for a two-arm trial assumes that

a logrank test of the null hypothesis is to be used even
if the trial has been designed with a time-dependent HR.
Although not explicit, the implication is that the main
trial result would be reported as the HR with a confidence
interval (CI). As we have already discussed, we should not
necessarily accept a single HR as an adequate trial sum-
mary statistic, particularly when the trial was designed
with an expectation of non-proportional hazards.
In what follows, we suggest replacing the ART sample

size calculation and presentation of results with one based
on RMST and testing the RMST difference between arms.
Other than the need to define a suitable time horizon t∗
for RMST evaluation, the components of the design are
as described above. We present the details in the next
section.

Sample size for RMST difference
The basis of our approach is the familiar comparison
of two means using an unpaired t test. Suppose we are
sampling at random from the distribution of a positively
bound random variable, T. We sample n0 patients from
the control arm and n1 patients from the research arm.
The total sample size for the trial is n = n0 + n1. Define
the allocation ratio as r = n1/n0.

Suppose the means and variances of T in the control
and research arms are μ0, σ 2

0 and μ1, σ 2
1 , respectively. The

null hypothesis is H0 : μ0 = μ1, with σ 2
0 and σ 2

1 unspeci-
fied. The alternative hypothesis is H1 : μ0 �= μ1. Suppose
we wish to test the null hypothesis with power ω at two-
sided significance level α. Let � = 0 and � = μ1 − μ0 �=
0 be the difference in RMST under H0 and H1, respec-
tively. Following, for example, Reference [9] (p. 332), the
required sample size in the control arm is

n0 =
(
z1−α/2 + zω

)2
�2/

(
σ 2
0 + r−1σ 2

1
) (3)

hence the total sample size is

n = (1 + r)
(
z1−α/2 + zω

)2
�2/

(
σ 2
0 + r−1σ 2

1
)

where zp = �−1 (p) is the inverse standard normal dis-
tribution function at probability p. An approximate (typ-
ically, conservative) sample size estimate, assuming that
σ 2
0 � σ 2

1 = σ 2, is given by

n � (1 + r)
(
1 + r−1) (z1−α/2 + zω

)2
�2/σ 2

We see that n is a minimum when r = 1 (equal alloca-
tion) and n increases substantially for larger or smaller r
(unequal allocation).
The power, ω, is given by

ω = �

⎧⎨⎩
[

�2

(1 + r)
(
σ 2
0 + r−1σ 2

1
)]1/2

− z1−α/2

⎫⎬⎭
In the standard case, the approach would be to estimate

�̂ = μ̂1 − μ̂0

var
(
�̂
) = [

SE
(
�̂
)]2 = σ̂ 2

0
n0

+ σ̂ 2
1
n1

from the data, and test

z = �̂

SE
(
�̂
)

against a Student’s t or (in large samples) a normal ref-
erence distribution. The usual assumption is that the
response variable is normally distributed T ∼ N

(
μj, σ 2

j

)
in arm j (j = 0, 1). The RMST context differs from this in
the following ways:

1. The response variable is the restricted time to event,
X = min (T , t∗). Due to the right truncation of T, the
distribution of X is strongly non-normal;

2. In trials with a time-to-event outcome, T is almost
invariably positively skew anyway, sometimes
considerably so;
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3. Right-censoring of T affects estimation of �̂ and
SE

(
�̂
)
.

Our strategy is to take the standard case described above
as our starting point for RMST sample size calculations
based on the ART design assumptions, and modify it as
necessary. To complete the design, we then addresss the
important question of selecting t∗.

Standard error of RMST in the ART setting
Given the ART workup, the sample size calculation given
in eqn. (3) implicitly requires the variance of RMST under
the piecewise exponential model around which ART is
based. Consider a sample T1, . . . ,Tm with no censoring
before t∗ (there could be censoring after t∗). The restricted
times to event, Xi = min (Ti, t∗) (i = 1, . . . ,m), are an
independent, identically distributed sample from some
distribution. Notionally, the RMST μ may be estimated
as the sample mean μ̂ = m−1 ∑m

i=1 Xi, and its standard
error, SE(μ̂), as RSDST/

√
m, where RSDST is the sample

standard deviation.
With censoring of some observations before t∗, the

RMST is estimated by integration as in (1) and the RSDST
as

√
var (X) in (2). We no longer expect RSDST/

√
m

to be an accurate estimate of SE(μ̂), since it does
not reflect the increased uncertainty associated with
censoring.
Consider a restricted sample X1, . . . ,Xm with μ = E (X)

estimated by integration. (Note thatm bears no relation to
the number of patients required in a trial.) Write

SE (μ̂) = φ
RSDST√

m
(4)

where φ is some positive scaling factor. Clearly φ � 1 for
samples without censoring before t∗, but otherwise φ is
unknown. In exploring simulated trial data with staggered
entry of patients and a fixed follow-up time, we found
that φ was very close to 1 when patients were recruited
over a relatively short period and followed up for a rea-
sonably long length of time. However, φ could increase
substantially when recruitment was over a longer period
with shorter follow-up. This finding accords with intu-
ition, since more censoring and hence greater uncertainty
is expected in the latter case.
In general, φ in (4) must be estimated under a known

(hypothesized) piecewise exponential model. We do this
by Monte Carlo simulation, as follows. First, we draw
a large random sample of m time-to-event observations
from the piecewise exponential distribution of interest
and determine

φ =
√
mSE (μ̂)

RSDST

SE(μ̂) is estimated by the delta method within a flexi-
ble parametric model [10,11], using the stpm2 program
[12] for Stata. Estimation with a flexible parametric model
is more stable than directly with a piecewise exponential
model, since sparsely populated time intervals between
knots can cause fitting difficulties for the latter model.
Note that RSDST is a known function of the design
parameters (see Appendix) and does not need to be esti-
mated by simulation.
Given estimates of φj (j = 0, 1), we can determine the σ 2

j
in eqn. (3) through the expression

σ 2
j = (

φjRSDSTj
)2 (5)

All of φj, σ 2
j and n have ‘Monte Carlo error’ due to the

simulation. To quantify Monte Carlo error, the simulation
is repeated with M independent samples. In each of the
M samples, n is determined from (3) via (5). The SE of
n over theM samples is

√
(sample variance of the n’s)/M.

We chooseM such that the SE of n is sufficiently small for
practical purposes. Following exploration (not reported)
with different choices ofm andM, we suggest takingm =
10000 andM = 50 as initial defaults, butm andM can be
adjusted to suit circumstances.
Note that the only components of the sample size cal-

culation that change with recruitment (K1) and follow-up
(K2) times are the φj. An illustration of this point is given
in the section ‘Examples’ .
We next describe the estimation of �̂ and SE

(
�̂
)
from

trial data.

Estimation of �̂ and SE
(
�̂

)
in trial data

As we discussed in our previous paper [1], several meth-
ods of estimating RMST are available, including direct
integration of Kaplan-Meier survival curves, a jackknife
method, and flexible parametric regression modelling
[10,11]. We pointed out that the direct integration of
Kaplan-Meier curves may be unreliable. The jackknife
method has the advantage of being non-parametric but
the drawback of being relatively slow to compute. Its slow-
ness makes it cumbersome when simulation with many
replicates is needed.We therefore prefer the thirdmethod,
flexible parametric modelling, which is fast and efficient.
In the context of a randomized trial, it is essential that

the estimation method be predefined, i.e. not requiring
the analyst to make data-dependent modelling decisions
with the actual trial data. Flexible parametric models are
suitable tools for the purpose, because, for example, a
cumulative hazards model with 3 d.f. fitted to each treat-
ment arm separately appears to give an adequate fit to
a wide variety of survival curves. Proportional hazards
is not assumed. This particular model is assumed sub-
sequently in the present paper for both estimation and
simulation purposes.
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For a given trial dataset, SE
(
μ̂j

)
(j = 0, 1) may be

calculated by the delta method separately in each arm.
Hence

�̂ = μ̂1 − μ̂0 (6)

SE
(
�̂
) =

√
SE (μ̂0)

2 + SE (μ̂1)
2 (7)

A test the null hypothesis � = 0 is made by comparing
�̂/SE

(
�̂
)
with a standard normal distribution.

Choice of t∗ for the design
In our earlier paper [1], we suggested reporting the RMST
and its difference between trial arms, with a CI. For such
an analysis, a time (t∗) for calculation of the RMST needs
to be specified. The ART-based approach to trial design
defines a recruitment time (K1) and minimum follow-up
time (K2) sufficient for recruitment of patients and esti-
mation of their group survival curves over the follow-up
period of clinical interest. We suggest determining the
design value, t∗des, as the t∗ which (approximately) mini-
mizes the required sample size, n, given K1, K2 and the
remaining parameters. This may be done by varying t∗
over the range K2 (the shortest follow-up time for any
patient) to K1+K2 (the maximum possible follow-up time
of any patient within the design), and computing n by
simulation, as described above.

Choice of t∗ for analysis and assessment of datamaturity
When it comes to the analysis of the trial data, for vari-
ous reasons the precise data structure that is obtainedmay
differ from the design under which t∗des was calculated.
For example, the assumed survival distribution may be
wrong, or the pattern of recruitment and follow-up may
be at variance from that expected. To maximize power,
we determine t∗ for the final analysis of the data. We call
this value t∗final. We also address the question of how to
assess data maturity, i.e. determining when the accumu-
lating data are mature enough for the final analysis of the
treatment effect.
In a trial designed under proportional hazards of the

treatment effect and analysed using a logrank test, the
required total number of events, e, is usually taken as the
effective sample size. The reason is because, to a good
approximation, var

(
logHR

)
is proportional to 1/e, so that

e is a measure of the amount of information in the data.
The cumulative data in such a trial is ‘ready to analyse’
when the observed number of events reaches e. Moni-
toring the trial for maturity is then merely a matter of
updating the data periodically and counting the number
of events.
How should be we apply the principle of monitoring

for maturity to trials designed with an RMST outcome?
The estimated variance of the treatment effect provides a

way forward. Combining (3) with (6), the following rela-
tionship holds for a sample size of n under the alternative
hypothesis that � �= 0 is the difference in RMST at some
given t∗:

zz2 = �2

var
(
�̂
) (8)

where zz = zω + z1−α/2. Note that var
(
�̂
)
is the variance

of the estimated RMST difference at the given t∗, whereas
� is a design value. The planned power is achieved when
var

(
�̂
) ≤ �2/zz2. To determine if the trial data are

mature enough to analyse, we effectively compare the vari-
ance of �̂ estimated from the current data with the target
value, �2/zz2. Let us define the ‘percent maturity’ of the
accumulating data as

pmat = 100
�2

zz2var
(
�̂
) (9)

where var
(
�̂
)
is the estimated variance of the RMST dif-

ference in the current data. As more data accumulate,
pmat increases; when it reaches 100%, the data are ready
for analysis (under the assumptions of the design).
Alternatively, we can invert eqn. (8) and calculate

the power, ωcurr, for the current data under the design
assumptions as

ωcurr = �

[√
�2

var
(
�̂
) − z1−α/2

]
(10)

Sometimes, for reasons of confidentiality of the accu-
mulating trial data, it is desirable to estimate data matu-
rity or power ignoring information on possible treatment
effects. In the absence of censoring in (0, t∗), we have

var
(
�̂
) = σ 2

0
n0

+ σ 2
1
n1

where σ 2
j is approximately equal to the squared RSDST at

t∗ in treatment group j and nj is the sample size (j = 0, 1).
In the absence of treatment information, we make the
simplifying assumption that σ 2

0 = σ 2
1 = σ 2. This could

be regarded as an assumption under the null hypothe-
sis of � = 0, since there is then no difference between
treatments. We have

var
(
�̂
) = σ 2

(
1
n0

+ 1
n1

)
By elementary algebra

1
n0

+ 1
n1

= 1
n

[
(1 + r) +

(
1 + 1

r

)]

= 1
n

(
√
r +

√
1
r

)2
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Hence

var
(
�̂
) = σ 2

n

(
√
r +

√
1
r

)2

Taking σ 2/n as an estimate of var(μ̂) , the variance of
RMST for the entire dataset, we have

var
(
�̂
) � var (μ̂)

(
√
r +

√
1
r

)2

Finally, to apply the maturity analysis we must find t∗final
This is done by varying t∗ over a grid and finding the value
that maximizes (9) or (10). If t∗final exceeds tmax, the largest
uncensored time to event in the data, to avoid extrapola-
tion of RMST estimates from a flexible parametric model,
we suggest limiting it to tmax.

Results
Examples
Proportional and non-proportional hazards designs
As a source of illustration, we constructed designs with
PH and non-PH treatment effects based on updated data
from the GOG111 trial in advanced ovarian cancer [13].
The overall survival probabilities in the control arm at the
end of years 1 through 8 post-randomization were esti-
mated to be 0.771, 0.523, 0.342, 0.236, 0.172, 0.130, 0.100,
0.078, respectively, with corresponding control-arm haz-
ards of 0.264, 0.385, 0.425, 0.372, 0.320, 0.280, 0.261, 0.245.
The hazard ratios (research arm/control arm) were esti-
mated to be 0.71 under PH and 0.53, 0.66, 0.74, 0.81, 0.87,
0.93, 0.96, 1.00 under non-PH.

Determining t∗des
We consider determining t∗des for the PH and non-PH
designs just described. As an example, suppose K1 = 5
yr, K2 = 3 yr. We vary t∗des in small steps (0.2 yr) over the
interval (K2,K1 + K2) = (3, 8) yr and compute n accord-
ing to eqn. (3). Figure 1 shows the resulting sample sizes
for both designs. We see that t∗ and the design assump-
tions (PH or non-PH) both influence the sample size quite
markedly. To minimize the sample size, the PH design
requires a t∗des close to the maximum available follow-up
time (8 yr), whereas the non-PH design needs a much
smaller t∗des. The t∗des values are 7.5 and 4.3 yr for the
PH and non-PH cases, respectively, with corresponding
sample sizes of 461 and 326.
It is apparent that the sample size does not change much

for t∗ near t∗des. For example, for t∗ within±1 yr of t∗des, the
sample size is never larger than 9more than theminimum,
which is of no practical importance. This flexibility allows
the analyst to select a preferred t∗des within a reasonably
wide range without incurring a large sample size penalty.

Comparing RMST and logrank based sample sizes
We turn to a comparison between the RMST and logrank
approaches to sample size calculation. We used the ART
software [8] for Stata to compute the logrank sample sizes
and the numbers of events for both approaches. We used
specially written Stata software that, given (K1,K2) and
the other ART design parameters, finds t∗des by varying
t∗ over a user-defined grid as in the previous section. It
calculates the sample size by simulation according to the
methods described in sections ‘Sample size for RMST
difference’ and ‘Standard error of RMST in the ART set-
ting’. The value of t∗des and the corresponding sample size
were determined by smoothing the (t∗, n) relationship
using a second degree fractional polynomial and calculat-
ing the nadir. In some cases the sample size curve over the
range t∗ ∈ (3, 8) yr was monotonic decreasing; we then
took the optimal sample size to be for t∗des = 8 yr.
We investigated the impact of choices of K1 and K2 on

the t∗des and n values, now for K1 = 1(1)7 and K2 =
8 − K1. Table 1 gives the resulting sample sizes and num-
bers of events for the PH and non-PH designs. For the PH
designs, the sample size is similar to that for the logrank
test. A t∗des at or near the maximum permissible is needed.
For the non-PH designs,t∗des is around 4 yr; a markedly
lower sample size is needed with the RMST approach than
the logrank.

Operating characteristics
We perform a small simulation study to check the power
and significance level of the proposed test of RMST differ-
ence. The set-up is similar to that described in the section
‘Comparing RMST and logrank based sample sizes’,
except that we vary the recruitment period (K1) over 1,
3, 5 and 7 yr, with K2 = 8 − K1. Five thousand replicates
are simulated for each combination of recruitment period
and null hypothesis (true or false). As before, the times to
event are simulated according to a piecewise exponential
distribution with staggered entry of patients at a uniform
rate and RMST analysis performed with t∗ = K1/2 + K2
yr. The sample size is designed to give the test of the
RMST difference power of 90 percent to reject the null
hypothesis at the 5 percent level. The power and signif-
icance level of the logrank test in the non-PH and PH
scenarios are also studied without altering the sample
size.
The results are shown in Table 2. Two standard errors of

an estimated probability of 90 and 5 percent are 0.85 and
0.62 percent, respectively. The significance levels are close
to nominal for the logrank and RMST tests in both scenar-
ios. The RMST test maintains power close to its nominal
90 percent level under both non-PH and PH. As expected
from the sample sizes given in Table 1, the logrank test
under non-PH is underpowered compared with planned
levels. Results in Table 1 suggest that the two tests may
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Figure 1 Example of sample sizes as a function of the time horizon t∗ for PH (solid lines) and non-PH (dashed lines) trial designs. The
designs assume recruitment over K1 = 5 yr and follow-up over K2 = 3 yr.

have similar power under PH; the logrank test is slightly
the more powerful.

Examples of design based on the SORCE trial in primary
kidney cancer
As a further example,we compare RMST- and logrank-
based designs for SORCE, an ongoing trial in primary
renal carcinoma coordinated by the MRC Clinical
Trials Unit. See http://www.controlled-trials.com/
ISRCTN38934710 for a summary of the trial. Only
patients with an initial intermediate or poor prognosis
according to the Leibovich risk score [14] are eligible.
Following surgery for their kidney cancer, patients are
randomized into three groups: placebo tablets, one year
of treatment with tablets containing the molecular tar-
geted agent sorafenib, or 3 years of sorafenib.We focus on
the primary analysis (‘Question 1’) as defined in the trial
protocol, namely ‘Does at least one year of treatment with

sorafenib increase disease-free survival (DFS) compared
with placebo?’.
Patients are randomized in a ratio of 2:3:3 to placebo or

to the two sorafenib arms. To answer Question 1, the two
sorafenib arms are combined, giving an allocation ratio of
r = 6/2 = 3. The sample size calculation was based on
the logrank test. It assumed PH with target HR = 0.75,
K1 = 5 years’ recruitment with staggered patient entry
and K2 = 3 years’ follow-up of all recruited patients.
Power was set to ω = 0.9 at a two-sided significance level
of α = 0.05. Assuming no dropout, therefore individual
patients are followed up for at least 3 years and at most
8 years, depending on when they entered the trial. DFS
probabilities at 1, 3, 5, 7, 10 and 13 years after surgery were
estimated from values provided by Leibovich et al [14] (see
Table 3). The logrank-based sample size for this design
is N = 1656 (608 events). The possibility of increasing
power by following up patients for up to K2 = 8 years,

Table 1 Sample size calculations for hypothetical trials with proportional or non-proportional hazards of the treatment
effect

Recruit Follow-up PH designs Non-PH designs

RMST Logrank RMST Logrank

(K1, yr) (K2, yr) t∗des n Events n Events t∗des n Events n Events

1 7 8 424 368 415 359 4.4 324 286 412 364

2 6 8 426 363 422 359 4.5 324 281 406 351

3 5 8 432 360 431 359 4.4 325 275 399 337

4 4 8 440 356 444 359 4.5 325 266 393 322

5 3 7.5 463 360 462 359 4.3 328 258 389 305

6 2 7.0 488 359 490 359 4.1 332 245 391 288

7 1 6.7 532 359 533 360 3.8 351 237 406 273

See the text for further details.

http://www.controlled-trials.com/ISRCTN38934710
http://www.controlled-trials.com/ISRCTN38934710
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Table 2 Operating characteristics of the test of RMST difference

Model Recruit Follow-up t∗des Sample RMST test Logrank test

(K1, yr) (K2, yr) size Power Sig. level Power Sig. level

PH 1 7 8 424 89.6 4.6 90.7 4.6

3 5 8 432 90.1 4.6 90.3 4.7

5 3 7.5 463 90.9 5.1 90.7 4.9

7 1 6.7 532 90.5 5.4 90.3 5.1

Non-PH 1 7 4.4 324 89.4 4.5 81.2 4.8

3 5 4.4 325 90.0 5.0 83.2 5.2

5 3 4.3 328 89.5 4.3 84.4 4.5

7 1 3.8 351 91.6 4.8 83.5 5.5

Significance level and power are presented as percentages. Sample size calculations are for hypothetical trials with proportional hazards (PH) or non-proportional
hazards (non-PH) of the treatment effect. Results are given for the RMST test and for the logrank test using the RMST designed sample sizes. Details are as given in
Table 1.

giving a total trial time of up to K = 13 years, was also
envisaged.
To be clear, we remind the reader that t∗ is measured

in analysis time, with each patient’s date of entry as the
origin (t = 0). By contrast, K1 and K2 are measured in
trial time, i.e. in calendar time whose origins are the dates
of randomization of the first and last patient, respectively.
For both logrank and RMST-based sample size calcu-

lations, we fix K1 = 5 and illustrate what happens with
K2 = 3 yr (as per protocol) and with K2 = 5, 8 yr. We find
t∗des as described in the section ‘Determining t∗des’.
We also investigate sample size for an alternative design

based on non-PH of the treatment effect. The right-hand
column of Table 3 shows a hypothetical but plausible
pattern of time-dependent HRs, representing an initially
fairly large treatment effect (HR = 0.65) which disappears
(HR = 1.0) by t = 10 years. The sample sizes for the PH
and non-PH designs are shown in Table 4.
Several features of Table 4 stand out. Not surprisingly,

the sample size depends strongly on the assumed mag-
nitude and pattern of the treatment effect. For the PH
designs, the sample size is about 8 percent larger with the

Table 3 Design parameters for the SORCE trial

Year Trial plan Hypothetical

DFS prob. HR (PH) HR (non-PH)

1 0.779 0.75 0.65

3 0.635 0.75 0.75

5 0.576 0.75 0.85

7 0.532 0.75 0.9

10 0.488 0.75 1.0

13 0.454 0.75 1.0

“DFS prob.” denotes survival probabilities for the disease-free survival outcome.
PH and non-PH refer respectively to designs with (as per protocol) and without
(hypothetical) proportional hazards of the treatment effect.

RMST approach than with the logrank approach. For the
non-PH designs, the sample size is 27 to 42 percent larger
for the logrank than the RMST approach. The RMST
approach has a considerable advantage in the latter case,
presumably because as the HR gets closer to 1, the power
of the logrank test diminishes.

Example of maturity analysis in theMRC RE04 trial
As an example of determining whether trial data are ready
for an analysis of RMST, we consider the MRC RE04 trial
in metastatic kidney cancer [15]. Following an increase
in planned sample size after the start of the trial, the
design involved randomization to two arms with alloca-
tion ratio r = 1 and a target hazard ratio of 0.8 for the
research arm (triple therapy) compared with the control
arm (interferon-α only). The main outcome measure was
all-cause mortality (time to death for any reason). Based
on a previous kidney cancer trial (MRC RE01), median
overall survival time in the control armwas expected to be
one year. The sample size required for power 90% at a two-
sided signficance level of 5% was set according to ART
methodology at 1100 patients and 845 events (i.e. deaths).

Table 4 Total sample size (N) and t∗des for hypothetical
trials based on the design of SORCE

Design K1 K2 t∗des Logrank RMST

(yr) (yr) (yr) n Events n Events

PH 5 3 8 1656 608 1790 658

5 5 10 1509 610 1627 658

5 8 13 1378 612 1488 662

non-PH 5 3 5.4 1621 602 1280 476

5 5 6.0 1803 751 1266 528

5 8 8.0 2008 934 1488 692

Recruitment (K1) is assumed to be for 5 years in all the designs, whereas
follow-up (K2) is varied over 3, 5 and 8 years.
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This assumed the survival curve from the previous trial,
and K1 = 4 yr, K2 = 1 yr. The sample size and events for
an RMST design based on the same assumptions are 1108
patients and 848 events, with t∗des found to be 4.0 yr.
Accrual of patients was actually stopped when 1006

patients had been recruited. The trial opened for recruit-
ment in April 2001 and closed in August 2006. The data
were frozen for final analysis in September 2008, at which
point 691 events (deaths) had been recorded.
Since the accrual and follow-up phases were longer than

originally planned, for an RMST-based maturity assess-
ment we consider a wider range of candidates for t∗final
corresponding to K1 = 2 yr, K2 = 5 yr. We estimate the
survival curve from the data, ignoring treatment differ-
ences. Figure 2 shows the maturity statistic pmat and the
power for t∗ ∈ (2, 7) yr. The best choice of t∗final is 5.4 yr,
at which time the maturity pmat = 83 percent and the
power is about 0.84. The design value, t∗des = 4.0 yr, is a lit-
tle low as a candidate for t∗final, butmay still be a reasonable
option.

Further issues
Comparingmeasures of the treatment effect
Usually, the HR and its CI are reported, and often, the
median survival time and/or estimated survival probabil-
ities at fixed time points are also presented. We propose
the use of RMST and statistics derived from it, as just
discussed. The ‘absolute’ difference in survival (ADS) at a
given time point t∗is defined as Ŝ1 (t∗) − Ŝ0 (t∗), where,
Ŝ0 (.) and Ŝ1 (.) are the estimated survival functions in
the control and research arms, respectively. How do these
four measures compare on several criteria? A list of crite-
ria and our assessments are given in Table 5. The criteria
are framed in such a way that we regard ‘yes’ as advanta-
geous and ‘no’ as disadvantageous.

In general, difficulties with the HR and with taking the
number of events as an index of the ‘maturity’ of the trial
data are the following:

1. In a very large trial, the targeted number of events
can occur relatively ‘early’. However, the resulting
survival functions may not be a reasonable reflection
of the difference between the treatment arms over a
clinically relevant time span. In an extreme case,
researchers planning trials could use this approach to
produce a positive result from early survival
experiences, ignoring the possible later evolution of
the treatment effect.

2. The same number of events may be seen in a large
trial with short follow-up or a small trial with long
follow-up. However, these trials are not ‘equivalent’
in the information they bear, nor in the clinical
lessons that may be learned from them.

3. There are many examples where results appear to
‘change’ over time. In reality, of course, the change is
an illusion caused by ignoring the time element in
reporting the results.

In Table 5, RMST emerges favourably since the only
‘box’ that it fails to ‘tick’ is criterion 7. However, it may
be argued that the need to define a reference time point
is in fact an advantage, since it explicitly incorporates the
time dimension of the trial into the results, which is often
neglected as just discussed. Neither the median nor the
HR do this. This aspect is reinforced in criterion 9.
The absolute difference in survival and the difference

in median survival time, although often quoted, are weak
because they represent only a ‘snapshot’ of the difference
in survival functions. They tell us little about the pre-
vious or subsequent survival experiences. For example,
the survival curves could cross at the median or at some
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Figure 2 Percent maturity (pmat) and power curves as a function of t∗ for the RE04 trial. Vertical lines show t∗final .
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Table 5 Comparison of four measures of the treatment effect in a trial

Criterion Measure

log HR Mediana RMSTa ADSa

1. Is easily interpreted no yes yes yes

2. Does not assume proportional hazards no yes yes yes

3. Reflects entire survival history yes no yes no

4. Is a measure of survival time no yes yes no

5. Can be used with all models no yes yes yes

6. Can be calculated in any dataset yes no yes yes

7. Does not require a time point to be specified yes yes no no

8. Does not change with extended follow-up no yes yes yes

9. Is routinely associated with a clinically meaningful time point no no yes yes

aThe measure is the difference in the given statistic between trial arms.
ADS = absolute difference in survival.

other t∗ but still show a substantial difference in RMST
at t∗final.

Examples of RMST in analysis of several trials
We compare RMST and Cox/logrank analysis in a further
four MRC cancer trials: ASTEC in endometrial cancer
[16] (surgery vs. standard therapy randomization), BA06
in advanced bladder cancer [17], ICON4 in ovarian cancer
[18] and OE02 in oesophageal cancer [19]. In all cases, the
outcome is time to death from any cause (overall survival).
We have chosen these particular trials because the esti-
mated treatment effect is approximately the same (around
HR = 0.85), yet they have widely varying mortality rates.
Note that in the ASTEC trial, mortality in the research
arm is actually non-significantly worse than in the control
arm. Table 6 presents some results.
The logrank and RMST tests of the treatment effect give

P-values with a similar interpretation. A possible excep-
tion is OE02, for which the RMST test at t∗ = 10.8
yr is not significant at the 5 percent level whereas the
Cox test is significant (P = 0.03). However, there is evi-
dence of a non-PH treatment effect in this trial. A hazards
model with a time-dependent treatment effect suggests
that the hazard ratio is below 1 near t = 0 and tends to
approximately 1 over time.
Further insight into the behaviour of the logrank and

RMST tests is provided by Figure 3. We varied t∗ in 30
equal-sized steps between 1 and t∗final years. The smooth
dashed lines are for the RMST test without truncation
(right-censoring) of the data. The corresponding esti-
mates of RMST were obtained at the different values of
t∗ from a flexible parametric model applied to the entire
dataset. The other two lines are for the data truncated
at each value of t∗. The (signed) z-statistic is the log
HR divided by its SE from a Cox model, and the RMST

difference divided by its SE from the RMST analyses. The
z-statistics for the three methods are broadly in agree-
ment in the ASTEC, BA06 and ICON4 trials. For OE02,
however, the z-statistic from the Cox model is fairly con-
stant over time, whereas for the RMST tests it diminishes

Table 6 HR, RMST and derived statistics on survival for
four randomized controlled trials in various cancer sites
conducted by theMedical Research Council

Statistic ASTEC BA06 ICON4 OE02

tmax (yr) 6.8 6.7 6.4 10.8

t∗final (yr) 6.1 6.7 6.3 10.8

S (t∗) 0.72 0.39 0.082 0.11

N (eventsa) 1394 (188) 962 (483) 749 (417) 802 (655)

Design HR 0.75 0.75 0.75 0.75

Achieved HR 1.16 0.85 0.82 0.85
(Cox model)

P-value for HR 0.3 0.07 0.04 0.03
(logrank test)

P-value for non-PH 0.06 0.7 0.6 0.1
(G-T testb)

RMST in control 5.39 3.69 2.46 2.68
arm (μ̂0)

RMST in research 5.28 4.02 2.79 3.13
arm (μ̂1)

Diff. �̂ = −0.11 (0.10) 0.33 (0.18) 0.33 (0.17) 0.46 (0.26)
μ̂1 − μ̂0 (SE)

P-value for 0.3 0.07 0.05 0.08
�̂ (RMST test)

P-value for 0.07 0.4 0.7 0.04
non-PHc

See text for details.
aEvents occurring in the interval (0,t*).
bGrambsch-Therneau test
cFrom a flexible parametric hazards model with a time-dependent treatment
effect.
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long dashed lines) tests in four randomized controlled trials in cancer.

steadily. Presumably the behaviour of the RMST tests
is due to the non-PH pattern of the treatment effect in
OE02. For the Cox test, the effect of an increasing number
of events (effective sample size) may counterbalance the
effect of the HR reducing over time.
A notable feature of Figure 3 is the instability of the z-

statistic (hence P-value) for the tests in the truncated data,
which seems greater for the Cox test. The ‘significance’ of
the tests is subject to the play of chance.

Discussion
The main advantages of our proposed method are inter-
pretability of the RMST difference from a clinical per-
spective as loss of life expectancy (when the outcome of
interest is mortality), and robustness of the estimator to
the proportional hazards assumption. Perhaps the main
disadvantages are the complexity of properly assessing
data maturity (readiness for analysis) and the dependence
of the test statistic on t∗. One could envisage a temptation
to choose t∗ so as to obtain the ‘most significant’ result.
An analysis option (not yet explored in detail) to circum-
vent this problem could be to derive an alternative test
statistic as the minimum z-value for the test of RMST dif-
ference over a sensible range of values of t∗. The correct
significance level of this statistic could be estimated using
permutation-test methodology applied to the treatment
assignment variable. However, such an analysis would be
secondary to the main analysis involving a prespecified t∗.
Sample size calculations are potentially fragile, since

they depend strongly on assumptions. This is seen in the
SORCE example (Table 3) and in other examples. The
problem is not specific to the PH assumption. It is hard

to know in advance whether or not PH is a likely feature
of the data to come, and if not, what a plausible pattern
of time-dependent HRs might look like. In some cases, it
may be reasonable to assume that a treatment effect dwin-
dles over time, for example with treatments that are given
for a relatively short period after randomization, than
for it to remain constant. However, HR patterns between
treatments whose modes of action differ (e.g. surgery vs
chemotherapy, or targeted agent vs conventional therapy)
may be hard to predict. One strategy is to compare the
sample sizes arising from different plausible scenarios that
include PH and non-PH examples, as we have done for
the SORCE example. We would then make an informed
choice based on the available evidence and on biologi-
cal reasoning about the likely treatment effects. Arguably,
the easiest way to define a hypothetical treatment-effect
pattern is through time-dependent HRs or equivalently
through the implied survival curves.
A key element of a discussion of the comparative merits

of the HR and the difference in RMST as outcome mea-
sures concerns relative versus absolute effects. TheHR is a
relative measure which indicates neither the time to event
nor the survival probability in each trial arm. Under the
PH assumption, it is independent of time. The RMST dif-
ference measures the effect of treatment on the restricted
survival time at some t∗. The values of RMST in each
trial arm are absolute measures of survival time. This dual
mode of presentation, as both a relative and an absolute
measure, is an important advantage of RMST. In our view,
the HR’s lack of any absolute component means the HR is
incomplete as an outcome measure. It needs to be accom-
panied by other statistics, such as the estimated median



Royston and Parmar BMCMedical ResearchMethodology 2013, 13:152 Page 13 of 15
http://www.biomedcentral.com/1471-2288/13/152

survival times and/or the survival probabilities at specific
time(s), or indeed the RMST.
The HR can seem impressively large even when the

absolute effect on the time to event is small. Over-
stressing the importance of apparently large relative risks
has often been criticized in the medical and popular sci-
entific literature as misleading for patients and physicians.
For an example in the context of the benefit of breast
cancer screening, see Reference [20] pp. 59–60. Here, we
consider ASTEC vs. OE02 in Table 6. The absolute log
HRs are almost identical yet the absolute RMST difference
at t∗ = 5 years is some 3.4 times greater in OE02 than
in ASTEC (0.29 vs. 0.09 years, i.e. about 3.5 months vs. 1
month). (These results for t∗ = 5 years were calculated
separately; they are not given in Table 6.) The reason, of
course, is that the 5-year survival probability in ASTEC
is much larger than in OE02. The RMST difference of
0.09 years at t∗ = 5 years seen in ASTEC is arguably of
little practical importance. In general, statistically signif-
icant differences in RMST from randomized trials may
appear ‘small’, but they may be more realistic and clini-
cally meaningful than superficially more impressive rela-
tive effects on the hazards. See also Royston et al’s [21]
proposed graphical comparison of observed and imputed
times to event between trial arms, which carries a similar
message.
Here we have focused on RMST mainly as a poten-

tial design tool, having described the use of RMST in the
analysis of trial data in a previous paper [1]. A standard
approach to analysis would be to assume PH, test the
null hypothesis of no treatment effect using the logrank
test, and estimate the HR in a Cox model with random-
ized treatment as the only covariate. Adjustment for other
covariates (e.g. prognostic factors) is readily incorporated.
There are many options for extending the model if non-
PH is detected. However, any such adaptation is likely to
be data-dependent. TheCoxmodel, whether in basic form
or extended, does not readily lend itself to estimating the
RMST [1]. An alternative may be to fit a piecewise expo-
nential model with the knots used in the trial design. If too
many knots are specified, themodel can be over-fitted and
the parameter estimates correspondingly unstable. This
can happen if there are few events between a neighbouring
pair of knots.
A more satisfactory analysis strategy is to use flexible

parametric survival models [10-12] to estimate RMST. In
summary, the PH subclass of these models incorporates
a smooth estimate of the baseline log cumulative hazard
function as a restricted cubic spline function of log time.
The models readily lend themselves to precise estimation
of RMST and RSDST and to extensions which accommo-
date time-dependent treatment effects (i.e. non-PH). An
advantage is that their hazard functions are more realistic
than those from the piecewise exponential model, since

they are smooth functions of time rather than step func-
tions. Parameter estimation by maximum likelihood is
straightforward. However, to our knowledge flexible para-
metric models cannot be used on their own to design a
trial. Piecewise exponential models are needed here, since
they make it easy to specify the model in terms of survival
probabilities and hazards and provide analytic expressions
for the RMST and RSDST. Flexible parametric models are
unsuitable for exploring hypothetical RMST values asso-
ciated with a design with given hazard ratio(s) and control
arm survival function.
We have described the calculation of two primary values

of t∗, namely t∗des and t
∗
final. The former is driven by the the-

oretical structure of the design and the latter by the trial
data as recorded. It is important to note that t∗final does not
depend on the treatment effect observed in the data, but
on the designed difference in RMST and its observed vari-
ance as functions of t∗. In particular, t∗final is not selected
to miminize the P-value for the treatment comparison.
It is data-driven only with respect to the variance of the
RMST difference. However, the value of t∗ at which the
definitive analysis is carried out may be motivated more
by clinical than statistical concerns. A graph of power or
maturity against t∗, as in Figure 2, may be used to decide if
the data are adequate for an analysis using some preferred
value of t∗. If the data are not sufficient, it may be appro-
priate to extend the follow-up period and/or recruit more
patients. In Figure 2, for example, t∗final = 5.4 yr has power
84 percent and maturity 83 percent under the PH design
assumptions, whereas a lower value, say t∗ = 4 yr, might
be preferred; this has power and maturity slightly reduced
to about 80 and 81 percent, respectively.
An important question is whether the RMST-based

sample size calculation we have proposed is robust
enough to be put into practice. Tentatively, we believe it
is. With designs in which PH is assumed and holds, the
logrank- and RMST-based sample size requirements are
similar (see Table 1), and the power for a given sample
size is correspondingly similar. For designs with severe
non-proportional hazards, sample sizes for logrank- and
RMST-based tests can differ markedly. As always with
trial design, the key assumptions of data structure and
relevant parameters critically affect the required sample
size, and some kind of informal sensitivity analysis should
always done.

Conclusions
In summary, we conclude that the HR can often be an
inappropriate and insufficient general measure of the
treatment effect in an RCT, and also that the logrank test
may lack power under some patterns of non-proportional
hazards. We suggest that wider exploration and use of
RMST in the design and analysis of trials with a time-
to-event outcome is merited.
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Appendix: RMST and RSDST for a piecewise
exponential distribution
Assume that the survival time, T, has a piecewise expo-
nential distribution with k+ 1 piecewise constant hazards
h1, . . . , hk , hk+1 in a categorization (τ0 = 0, τ1], (τ1, τ2],
(τ2, τ3], . . . , (τk , τk+1 = ∞) of the time axis. The time
points τ1, . . . , τk are known as knots. Suppose that t∗
belongs to interval (τk , τk+1), so that t∗ > τk . In the sim-
plest case (k = 0), there are no knots and we have a single
exponential distribution with hazard h1, and t∗ > 0.
We wish to calculate the RMST and the RSDST at t∗.

For j = 0, 1, . . . , k the interval duration δj+1 is

δj+1 =
{

τj+1 − τj, j < k
t∗ − τk , j = k

The cumulative hazard function Hj = H
(
τj
)

at τj(
j = 1, . . . , k

)
equals

∑j
i=1 hiδi. Let h0 = H0 = 0. The

survival function for t ∈ (τj, τj+1]
(
j = 0, 1, . . . , k

)
is

Sj+1 (t) = e−Hje−hj+1(t−τj)

For example, the survival function for t ∈ (0, τ1] is S1 (t) =
e0e−h1(t−0) = e−h1t , as expected.
The integrated survival function from 0 to t∗ > τk (i.e.

the RMST) is given by

μ =
∫ t∗

0
S (t)dt =

k∑
j=0

∫ τj+δj+1

τj

Sj+1 (t) dt

Also∫ τj+δj+1

τj

Sj+1 (t) dt =
∫ τj+δj+1

τj

e−Hje−hj+1(t−τj)dt

= e−Hj

∫ δj+1

0
e−hj+1udu

= e−Hj

hj+1

(
1 − e−hj+1δj+1

)
= e−HjBj+1

where for j = 0, . . . , k

Bj+1 = 1 − e−hj+1δj+1

hj+1
(11)

Thus the RMST on (0, t∗) is given by

μ =
∫ t∗

0
S (t)dt =

k∑
j=0

e−HjBj+1

We also need the expectation E
(
X2
j

)
of X2 in the

interval (τj , τj+1] or (τk , t∗], which is

E
(
X2
j

)
= 2

∫ τj+δj+1

τj

Sj+1 (t) tdt

= 2
∫ τj+δj+1

τj

te−Hje−hj+1(t−τj)dt

= 2e−Hj

∫ δj+1

0

(
t + τj

)
e−hj+1tdt

= 2e−Hj

[∫ δj+1

0
te−hj+1tdt + τj

∫ δj+1

0
e−hj+1tdt

]
= 2e−Hj

(
Aj+1 + τjBj+1

)
where Bj+1 is as given in (11) and

Aj+1 =
∫ δj+1

0
te−hj+1tdt

= 1
h2j+1

[
1 − e−hj+1δj+1

(
1 + hj+1δj+1

)]
Hence

E (X) =
k∑

j=0
e−HjBj+1

E
(
X2) = 2

k∑
j=0

e−Hj
(
Aj+1 + τjBj+1

)
var (X) = E

(
X2) − [E (X)]2 (12)

For a single exponential with hazard h, we have k = 0,
τ0 = 0, δ1 = t∗, h1 = h and therefore

A1 = h−2
[
1 − e−ht∗ (1 + ht∗

)]
B1 = h−1

(
1 − e−ht∗

)
μ = E (X) = B1,

σ 2 = var (X) = 2A1 − B2
1
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