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Abstract

Background: In the absence of randomization, the comparison of an experimental treatment with respect to the
standard may be done based on a matched design. When there is a limited set of cases receiving the experimental
treatment, matching of a proper set of controls in a non fixed proportion is convenient.

Methods: In order to deal with the highly stratified survival data generated by multiple matching, we extend the
multivariate permutation testing approach, since standard nonparametric methods for the comparison of survival
curves cannot be applied in this setting.

Results: We demonstrate the validity of the proposed method with simulations, and we illustrate its application to
data from an observational study for the comparison of bone marrow transplantation and chemotherapy in the
treatment of paediatric leukaemia.

Conclusions: The use of the multivariate permutation testing approach is recommended in the highly stratified
context of survival matched data, especially when the proportional hazards assumption does not hold.

Keywords: Highly stratified data, Matched survival data, Multiple matching, Multivariate permutation tests
Background
In clinical trials with right-censored failure time outcome,
inference often focuses on the comparison of survival
curves. When data from observational studies are used to
explore the role of different treatments, the main problem
is to limit the biases due to the lack of randomization.
Matching on relevant baseline features can be used in
order to increase the comparability between subjects trea-
ted with an experimental therapy and those receiving
standard treatment. In settings where matching is done
with a variable number of controls (multiple matching),
highly stratified data are produced, with strata containing
a few, possibly censored, observations. For this reason, the
statistical comparison of survival in the two groups cannot
be directly addressed by means of the usual nonpara-
metric procedures, such as the log-rank test. The stratified
version of these tests, which should account for matching,
is inefficient when the number of strata increases and the
stratum size is small [1]. Furthermore, these methods are
less sensitive when proportional hazard is not satisfied
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and this might often be the case, especially in the clinical
setting that motivated this paper, i.e. the comparison of
bone marrow transplantation and chemotherapy in the
treatment of leukemia [2,3].
The comparison of the survival curves for highly strati-

fied data due to non-paired matching was addressed by
Galimberti et al. [2], who proposed a weighted Kaplan-
Meier estimator for the controls and a nonparametric per-
mutation test on the survival difference at one pre-fixed
time point. The aim of this work is to extend the compari-
son of survival at multiple time points, using the multi-
variate permutation approach originally introduced by
Pesarin [4]. In the proposed procedure, differently from
Pesarin and Salmaso [5], a desirable feature is that there is
no need to resort to the missing data framework in order
to deal with censoring.
Our method is compared with the stratified log-rank

test, the modified log-rank test for highly stratified data of
Schoenfeld and Tsiatis [1] and the Cox model with a sand-
wich robust standard error for the treatment effect [6,7].
There were no natural competitors among other permuta-
tion tests on survival proposed in the literature [8-10].
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The paper is organized as follows. In the next section,
we show how the multivariate permutation approach
can be extended to the survival matched data setting.
We investigate the performance of the proposed test
through simulation studies that are presented in the
Simulation section and we illustrate the method, using
data from the motivating study on childhood leukemia
[11], in the Application section. Finally, we provide a
discussion and concluding remarks.

Methods
Multivariate permutation tests for survival matched data
In the context of non randomized studies, especially in
rare diseases, where only selected patients undergo experi-
mental therapies, matching is an approach to identify a
proper set of controls for an unbiased comparison. This
was the case of a multicenter study conducted in Italy on
the role of allogeneic Bone Marrow Transplantation
(BMT) from matched sibling donors in children with
acute lymphoblastic leukaemia (ALL) who, by presenting
features, have a dismal prognosis [11]. Matching produced
a stratum for each transplanted patient, that included as
many controls as available, in order to recover the max-
imum amount of information in this rare subgroup.
More formally, this setting presents finely stratified

data: each of the k strata (j = 1,. . .,k) has 1+mj subjects,
where the first is the case belonging to the experimental
arm (group 1) and the remaining mj are the matched
subjects in the control arm (group 2).
The available data refer to the potential survival and

censoring times. We assume that, conditionally on the
observed j-th stratum, the survival times of the mj con-
trols are i.i.d., but we cannot exclude, due to matching,
some dependence between the case and the correspond-
ing controls. Moreover, the usual assumption that cen-
soring is independent of the failure mechanism and of
the treatment must hold within stratum. Across strata,
both cases and controls are independent, but not neces-
sarily identically distributed. Finally, under the null hy-
pothesis, the distribution of the survival times of the
case and the matched controls in each stratum is invari-
ant under permutations.
The multidimensional permutation approach intro-

duced by Pesarin is here adapted to the context of sur-
vival analysis with matched data for the comparison of
the marginal survival distributions of the two groups,
S1(t) and S2(t). The procedure is based on a nonpara-
metric combination of multiple, possibly dependent, uni-
variate permutation tests. It relies on the following main
steps: reformulate the inferential question of interest
into a set of sub-questions, set up the partial tests and
set up the form for their combination [4].
Firstly, the null and the alternative hypothesis are

decomposed into a finite set of q sub-hypotheses H0i
and H1i (i=1,. . .,q) with the property that, if H0 is true,
all the H0i are jointly true, while if H1 is true, at least
one sub-hypothesis is true. The standard hypotheses on
the survival distributions are thus rephrased into q sub-
hypotheses H0i, H1i (i=1,. . .,q) so that:

H0: S1(t)=S2(t) becomes H0: \
q

i¼1
H0iwith H0i: S1(ti)=S2(ti),

H1: S1(t)≠S2(t) becomes H1: [q
i¼1

H1i with H1i: S1(ti)≠

S2(ti).
Appropriate partial tests Ti

1 are then performed separ-
ately on each q sub-hypothesis H0i (i=1,. . .,q). We con-
sidered two versions of test statistics that are marginally
unbiased and consistent, as required for the validity of
the procedure [4]. They are based on the distance of the
two survival curves or on their complementary log-log
transformation [12] estimated at q different times points
(t1,..,ti,..,tq):

TS1i ¼ Ŝ1 tið Þ � Ŝ2
w tið Þ i ¼ 1; . . . ; qð Þ

TLSi
1=log{-log[Ŝ1(ti)]}-log{-log[Ŝ2

w(ti)]}

where Ŝ1 :ð Þ is the usual Kaplan-Meier estimate of the

survival distribution in group 1, while Ŝ2
w :ð Þ is a

weighted version, with stratum specific weights used in
group 2 to account for the variable number of subjects
in each stratum [2]. If we indicate with dj(u) and rj(u)
the number of events and the number of subjects at risk
at time u in stratum j, and with wj =1/mj the weight ap-
plied to the mj controls of the stratum, the formula for

Ŝ2
w :ð Þ is:

Ŝ2
w tð Þ ¼

Y
u:u≤t

1�

Xk
j¼1

wj dj uð Þ

Xk
j¼1

wj rj uð Þ

0
BBBBB@

1
CCCCCA

which can also have a product integral representation for
continuous time variables. This estimator has an intuitive
appeal because it can be viewed as a Kaplan-Meier estima-
tor computed on k components, one for each stratum, in
which all the mj controls are given the same weight. The
imbalance in prognostic factors induced by multiple
matching is adjusted giving less weight to individuals from
strata that are over-represented and vice versa. The idea
behind this estimator is to standardize the survival curve
of controls, using the population of cases as reference.

The weighted Kaplan-Meier estimator Ŝ2
w :ð Þ is an un-

biased estimator for S2, characterized by a Gaussian
asymptotic distribution with a variance that can be con-
sistently estimated via bootstrap [2].
The first order tests are performed by considering the

permutation distribution of the estimated distances TSi
1
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and TLSi
1. When the cardinality

Yk
j¼1

mj þ 1
� �

of the per-

mutations is large, due to the large number of strata and
to their size, it is worthwhile approximating the permu-
tation distribution of the q test statistics with a Monte
Carlo strategy that considers B random samples from
the population of all possible permutations. Each of the
B permutation samples is obtained by assigning, within
each observed stratum, one subject to the experimental
treatment and the remaining mj to the standard treat-
ment. The q first order tests are then calculated on each
permuted sample and, at each time point, the partial p-
values λi’s for the q observed TSi

1 or TLSi
1 (i=1,. . .,q) are

obtained from the empirical permutation distribution.
Starting from the q permutation distributions, the p-
values are also calculated for the first order test statistics
of each permuted sample.
In order to test the global null hypothesis H0, the par-

tial tests Ti
1 are subsequently combined in a unidimen-

sional second-order test statistic T2. This combination
has to be done nonparametrically, since the q univariate
tests are dependent, and it is applied to the p-values λi,
which are permutationally equivalent to the partial tests
[4]. Two alternative functions proposed by Fisher and
Tippett, respectively, are considered, which can be ap-
plied on p-values either from TSi

1 or TLSi
1 as follows:

T2
F ¼ �2

Xq

i¼1

log λið Þ

T2
T ¼ max

1≤i≤q
1� λið Þ

As the Tippett combinig function can be written as
1�min 1≤i≤q λi , it has a monotonic relationship with
the well known function min 1≤i≤q λi used by Westfall
and Young [13] in their resampling approach to multiple
testing.
While the q p-values λi are obtained from the marginal

permutation distribution of the first order tests, the
p-value of the global test is derived from the permutation
distribution of the second order test, which is related to
the q-variate distribution in the first step. Note that, no
further permutations are needed at this stage, because
we use, for the global test, the results on the p-values
obtained from each permuted sample that define the
permutation distributions of the first order tests [4].
In the survival setting the definition of the time points

(t1,. . .,ti,. . .,tq) involved in the comparison may be rele-
vant. We explored different strategies: i) fixed time
points, ii) time points identified by percentiles of the
overall event distribution and iii) all the observed event
times included between the 10th and the 90th percentiles
of the overall event distribution.
Results
Simulations
The performance of these tests in the finite sample situ-
ation are evaluated through simulations. The size and
the power are calculated for different alternatives under
proportional hazards and for three different scenarios of
non-proportionality (e.g. survival curves showing both
an early and a late difference or crossing each other).
The behavior of the proposed tests is also explored in
the presence of different number of strata (k=30, 50,
100) and of different degree of strata heterogeneity (no
or low strata effect). The dimension of each stratum is
defined by one case plus the number of controls gener-
ated by a Poisson (μ=4)+1 (1 is added in order to guaran-
tee at least 1 control in each stratum).
In the simulations under H0, the case and the matched

controls share the same conditional piecewise exponen-
tial hazard function: λj(t|αj,bj)= αj[b1I(t≤L)+ b2I(t>L)].
The randomness of λj is determined by αj~G[1/w,w],
where G(a,b) is a Gamma distribution with mean ab and
variance ab2, and the parameter w indicates the level of
heterogeneity across strata (w=0, 0.22; specifically, for
w=0, no strata effect is assumed as αj=1 with probability 1).
Different scenarios are obtained by giving specific
values to the landmark L, to b1 and b2. Under the alter-
native hypothesis, the hazard function for cases was
decreased in order to define a survival which differs
from that of controls, as specified in Figure 1. Censoring
was uniform over 3–6 in order to have approximately
28–38 percent censoring, on average. For all the config-
urations studied, the results are based on 1000 samples
and each of them uses B=2000 Monte Carlo permuta-
tions in order to define the empirical permutation
distributions.
Definitions of the q time points involved in the

comparison are as follows: i) 8 or 4 fixed equi-spaced
times from 0.5-1 to 4, ii) 9 time points identified by
the 10th, 20th,.., 90th percentiles of the overall event
distribution, and iii) all the observed failure times be-
tween the 10th and the 90th percentiles of the overall
event distribution.
The empirical level of the tests is shown in Tables 1.A

(Fisher combining function) and 1.B (Tippett function),
while the power in detecting a difference in survival is
reported in Table 2.A-B, accordingly.
As expected, the performance of the test Under H0 is

generally good in all settings. In particular, with a small
number of strata, the test based on the survival distance
behaves very well. When the complementary log-log
transform is considered, the permutation distribution at
early time points, such as the 10th percentile, may be
very irregular because this transformation magnifies sur-
vival values near one. In order to have a good behavior
even with small number of strata, it is sufficient to start
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Figure 1 Marginal survival curves under H1 in the four scenarios considered in the simulation study. For each scenario, we reported the
stratum hazard functions used for data generation.
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from a higher percentile such as the 20th (data not
shown).
Under H1, as expected, power increases with increasing

number of strata under every scenario and the test has a
good behavior also in the situation of crossing hazards.
No major gain in power is achieved by increasing the
number of fixed time points from 4 to 8 and similar
results are obtained when points are fixed at percentiles of
the event distribution or take 80% of all observed event
times. The fixed time point strategy seems generally more
satisfactory for the proportional hazards and the late dif-
ference scenarios. A clear advantage in the use of the com-
plementary log-log transform is seen only in the early
difference scenario; conversely the survival difference
seems to offer an advantage in the crossing hazards set-
ting. Again, by comparing Table 2.A and 2.B, where the
best performers for each scenario are in bold, the per-
formance under the Fisher and Tippet functions is very
similar, except for an advantage of Tippett in the crossing
hazards scenario.
Results on the comparison of our permutation tests

with other approaches are reported in Table 3. The
stratified log-rank test, the modified log-rank test by
Schoenfeld-Tsiatis and the robust test from the Cox
model including only the covariate for treatment have
size close to the nominal level. The multivariate permu-
tation tests perform better than the latter tests in terms
of power in the crossing hazards and early difference
scenarios, while they have a similar behavior in the pres-
ence of proportional hazards.

Application
The clinical context that motivated this work is a retro-
spective multicentre study on 427 children enrolled be-
tween 1985 and 1994 in high-risk protocols for the
treatment of ALL, where 30 received an allogeneic
bone-marrow transplant after achieving first remission.
In this setting, where transplant was considered as an
experimental treatment to be administered only to
selected patients, we used matching to define the appro-
priate group of children treated with chemotherapy
alone to be used for an unbiased comparison. The
matching procedure was based on 6 factors (centre,
front-line treatment protocol, white blood cell count and
age at diagnosis, immunophenotype and waiting time to
transplant). For each of the 30 BMT cases, at least one
non transplanted matched control was found, with a
maximum of 17 and a median of 3, for a total of 130
controls. The Disease Free Survival (DFS) curves of the
two groups depicted in Figure 2 were estimated using



Table 1 A-B - Simulation results under H0 of the multivariate permutation (two-sided) Fisher (A) and Tippett (B) tests

Scenario* Strata
effect
(w)

N. of
strata
(k)

TSi
1 TLSi

1

4 fixed 8 fixed perc all 4 fixed 8 fixed perc all

A) Fisher test

PH 0 30 0.047 0.046 0.053 0.046 0.046 0.052 0.055 0.043

0 50 0.048 0.041 0.041 0.049 0.052 0.047 0.051 0.045

0 100 0.044 0.045 0.043 0.044 0.047 0.038 0.045 0.045

0.22 30 0.048 0.047 0.055 0.050 0.047 0.052 0.058 0.053

0.22 50 0.050 0.047 0.048 0.050 0.051 0.051 0.053 0.048

0.22 100 0.056 0.051 0.052 0.049 0.054 0.056 0.051 0.053

ED 0 30 0.057 0.056 0.062 0.062 0.065 0.061 0.055 0.054

0 50 0.064 0.063 0.061 0.061 0.066 0.062 0.057 0.049

0 100 0.052 0.050 0.053 0.056 0.050 0.049 0.049 0.053

0.22 30 0.049 0.056 0.057 0.058 0.049 0.052 0.054 0.050

0.22 50 0.038 0.040 0.043 0.042 0.037 0.039 0.044 0.048

0.22 100 0.048 0.049 0.045 0.041 0.049 0.052 0.041 0.042

LD 0 30 0.047 0.047 0.051 0.055 0.046 0.050 0.056 0.053

0 50 0.053 0.054 0.055 0.056 0.060 0.059 0.052 0.054

0 100 0.046 0.048 0.053 0.050 0.049 0.050 0.050 0.049

0.22 30 0.062 0.063 0.066 0.063 0.063 0.065 0.054 0.062

0.22 50 0.059 0.057 0.056 0.057 0.054 0.054 0.056 0.054

0.22 100 0.054 0.054 0.050 0.050 0.055 0.055 0.048 0.050

CH 0 30 0.052 0.049 0.050 0.052 0.059 0.051 0.052 0.057

0 50 0.051 0.050 0.052 0.048 0.051 0.047 0.053 0.055

0 100 0.049 0.046 0.038 0.037 0.050 0.051 0.043 0.047

0.22 30 0.050 0.044 0.053 0.054 0.053 0.049 0.055 0.053

0.22 50 0.043 0.040 0.040 0.038 0.044 0.041 0.049 0.048

0.22 100 0.054 0.060 0.063 0.057 0.061 0.059 0.052 0.055

B) Tippett test

PH 0 30 0.042 0.054 0.053 0.061 0.043 0.067 0.056 0.059

0 50 0.041 0.048 0.043 0.047 0.050 0.056 0.053 0.049

0 100 0.049 0.051 0.058 0.051 0.047 0.050 0.051 0.053

0.22 30 0.057 0.059 0.058 0.065 0.060 0.069 0.053 0.071

0.22 50 0.047 0.051 0.058 0.064 0.047 0.052 0.055 0.057

0.22 100 0.051 0.052 0.056 0.059 0.055 0.058 0.050 0.054

ED 0 30 0.056 0.055 0.059 0.065 0.056 0.060 0.048 0.063

0 50 0.064 0.069 0.066 0.070 0.063 0.065 0.055 0.054

0 100 0.045 0.051 0.060 0.056 0.044 0.053 0.053 0.046

0.22 30 0.053 0.062 0.059 0.066 0.056 0.054 0.062 0.064

0.22 50 0.038 0.043 0.043 0.049 0.046 0.041 0.053 0.053

0.22 100 0.042 0.049 0.038 0.047 0.045 0.053 0.047 0.052

LD 0 30 0.048 0.046 0.056 0.069 0.044 0.063 0.058 0.065

0 50 0.044 0.051 0.055 0.049 0.050 0.061 0.052 0.059

0 100 0.047 0.053 0.055 0.060 0.049 0.049 0.054 0.052

0.22 30 0.061 0.058 0.069 0.066 0.062 0.065 0.056 0.056

0.22 50 0.054 0.055 0.060 0.063 0.052 0.056 0.056 0.061
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Table 1 A-B - Simulation results under H0 of the multivariate permutation (two-sided) Fisher (A) and Tippett (B) tests
(Continued)

0.22 100 0.057 0.055 0.057 0.050 0.062 0.064 0.061 0.057

CH 0 30 0.053 0.047 0.056 0.060 0.053 0.047 0.053 0.055

0 50 0.054 0.049 0.045 0.054 0.051 0.046 0.047 0.063

0 100 0.041 0.048 0.041 0.047 0.042 0.048 0.051 0.059

0.22 30 0.059 0.047 0.054 0.066 0.054 0.055 0.067 0.062

0.22 50 0.046 0.042 0.042 0.048 0.048 0.046 0.061 0.060

0.22 100 0.061 0.062 0.063 0.066 0.061 0.065 0.055 0.054

* PH=Proportional Hazards, ED=Early Difference, LD=Late Difference, CH=Crossing Hazards.
The simulations are based on first order statistics TSi

1 or TLSi
1 under different scenarios and for different choices of time points (4 or 8 fixed or 9 points at 10-90th

percentiles (perc) or 80% of all the observed event times (all)).
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the standard and the weighted version of Kaplan-Meier
for the transplant and the chemotherapy group, respect-
ively. This plot indicates a long term advantage of trans-
plant over chemotherapy after 1 year from transplant,
with a DFS at 3 years of 59.1% (Greenwood s.e. 9.1) and
39.5% (bootstrap s.e. 7.7), respectively.
A local two-sided permutation test was originally used

on the estimated DFS difference of 19.6% at the time point
of 3 years, considered a meaningful time point according
to clinical experience (p-value=0.112). At 3 years, 7 cases
and 39 controls were still at risk and most of the overall
number of events (97%) had already occurred, as shown
by the event distribution below Figure 2. We have now ap-
plied the multivariate permutation approach in order to
compare the two DFS curves with a global test. The Fisher
and the Tippett tests are performed based both on the dir-
ect estimates of survival and on its complementary log-log
transformation, according to different choices of time
points involved in the comparison. Based on previous
studies and knowledge on the treatment implications on
toxicity and survival, the most likely alternative to the null
is a non proportional setting with an early crossing and
late differences in hazards. The result in term of signifi-
cance (p-value=0.199) points to the Tippett test on log-
survival involving 4 points (at 1, 2, 3 and 4 years from
the origin). Other tests on 4 fixed time points, starting
from 0.5 or 1 year (and not necessarily equispaced), are
applied, and results are in keeping with the observation
that curves start diverging at 1 year. The tests involving
the percentiles and all the event times within the 10th and
90th percentile, give p-values ranging from 0.486 to 0.829
(Table 4).
Due to the relatively small sample size, the power is

likely not adequate to detect the advantage given by
transplantation, and this holds true even if we
are applying a more appropriate test with regard
to standard methods (stratified log-rank test,
p-values=0.966; Cox model with robust standard
error, p-values=0.915).
Discussion
This paper provides a global test for the comparison of
survival curves in the context of highly stratified data
produced by matching on a non-fixed proportion, by
extending the multivariate permutation approach pro-
posed by Pesarin [4]. The nonparametric combination
of partial tests is able to capture their underlying de-
pendence without assumptions and to control the level
of significance of the global test, avoiding the issue of
multiplicity. In principle, the proposed tests can be
viewed as a weighted combination of an infinite number
of time points, giving weight 1 to those involved in the
comparison, and weight 0 otherwise. Yet, in survival
analysis, the choice of the time points where partial tests
are performed is a crucial issue. Our approach carefully
considers this aspect by evaluating three different con-
venient strategies among the many possible. The most
simple is the one that identifies a number of fixed time
points. This is appealing for applications where the re-
searcher has reasons for evaluating certain times that are
relevant for the phenomenon. Importantly, given the de-
gree of arbitrariness involved, the choice of the time
points should be carefully done, possibly a-priori, in a
time window where more information is expected, given
the experimental setting and the follow-up. Typically, in
time points near the boundaries, i.e. at the very begin-
ning or on the tail of the survival curves, where few
events are generally observed, the permutation distribu-
tion of the partial tests may be irregular. Following this
consideration, alternative non subjective definitions of
time points are based on the observed distribution of
events, either with a limited number defined by percen-
tiles, or on the whole set of event times within the 10th

up to the 90th percentile.
As expected, the extended simulation study shows

good performances of the proposed test in terms of
alpha coverage. Under the alternative, apparently a slight
advantage is obtained considering all event times for
partial tests in the crossing hazard and early difference



Table 2 A-B - Simulation results under H1 of the multivariate permutation (two-sided) Fisher (A) and Tippett (B) tests

Scenario* Strata
effect
(w)

N. of
Strata
(k)

TSi
1 TLSi

1

4 fixed 8 fixed perc all 4 fixed 8 fixed perc all

A) Fisher test

PH 0 30 0.734 0.723 0.627 0.592 0.744 0.737 0.673 0.651

0 50 0.911 0.906 0.854 0.822 0.909 0.906 0.871 0.847

0 100 0.998 0.996 0.993 0.968 0.997 0.996 0.993 0.978

0.22 30 0.692 0.691 0.606 0.578 0.706 0.720 0.658 0.638

0.22 50 0.882 0.873 0.816 0.795 0.888 0.887 0.839 0.831

0.22 100 0.995 0.995 0.983 0.978 0.997 0.995 0.985 0.981

ED 0 30 0.274 0.274 0.414 0.432 0.302 0.297 0.514 0.534

0 50 0.406 0.408 0.622 0.641 0.443 0.452 0.682 0.699

0 100 0.730 0.746 0.916 0.927 0.760 0.770 0.939 0.937

0.22 30 0.240 0.252 0.376 0.409 0.267 0.285 0.470 0.488

0.22 50 0.387 0.252 0.616 0.632 0.423 0.285 0.671 0.682

0.22 100 0.710 0.727 0.894 0.902 0.739 0.753 0.924 0.929

LD 0 30 0.425 0.408 0.278 0.247 0.408 0.400 0.298 0.266

0 50 0.674 0.642 0.464 0.392 0.648 0.627 0.470 0.406

0 100 0.949 0.937 0.802 0.749 0.940 0.928 0.796 0.691

0.22 30 0.399 0.369 0.243 0.209 0.387 0.373 0.273 0.245

0.22 50 0.626 0.590 0.414 0.359 0.620 0.587 0.440 0.384

0.22 100 0.910 0.890 0.740 0.712 0.908 0.888 0.751 0.725

CH 0 30 0.144 0.165 0.285 0.272 0.079 0.078 0.115 0.099

0 50 0.291 0.321 0.488 0.461 0.162 0.148 0.229 0.207

0 100 0.747 0.799 0.897 0.881 0.560 0.596 0.746 0.729

0.22 30 0.149 0.181 0.273 0.248 0.087 0.089 0.111 0.105

0.22 50 0.292 0.319 0.477 0.419 0.178 0.161 0.237 0.207

0.22 100 0.736 0.794 0.878 0.844 0.575 0.589 0.744 0.668

B) Tippett test

PH 0 30 0.685 0.666 0.586 0.605 0.676 0.654 0.674 0.677

0 50 0.874 0.866 0.828 0.807 0.878 0.869 0.856 0.875

0 100 0.996 0.995 0.991 0.979 0.996 0.994 0.992 0.996

0.22 30 0.646 0.632 0.567 0.572 0.657 0.663 0.659 0.684

0.22 50 0.834 0.826 0.768 0.766 0.850 0.831 0.816 0.814

0.22 100 0.992 0.990 0.976 0.975 0.993 0.990 0.982 0.979

ED 0 30 0.393 0.369 0.351 0.384 0.458 0.458 0.531 0.596

0 50 0.615 0.571 0.579 0.597 0.661 0.646 0.679 0.708

0 100 0.906 0.910 0.904 0.914 0.920 0.924 0.937 0.942

0.22 30 0.369 0.343 0.347 0.365 0.429 0.422 0.501 0.544

0.22 50 0.597 0.343 0.560 0.589 0.652 0.422 0.676 0.699

0.22 100 0.887 0.877 0.896 0.897 0.910 0.901 0.923 0.925

LD 0 30 0.472 0.458 0.392 0.383 0.438 0.442 0.398 0.400

0 50 0.730 0.718 0.644 0.632 0.688 0.683 0.634 0.615

0 100 0.963 0.957 0.926 0.914 0.956 0.950 0.920 0.918

0.22 30 0.425 0.397 0.342 0.318 0.411 0.393 0.363 0.361

0.22 50 0.660 0.650 0.572 0.567 0.658 0.634 0.584 0.566
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Table 2 A-B - Simulation results under H1 of the multivariate permutation (two-sided) Fisher (A) and Tippett (B) tests
(Continued)

0.22 100 0.930 0.924 0.871 0.864 0.927 0.920 0.874 0.858

CH 0 30 0.356 0.418 0.475 0.521 0.183 0.155 0.191 0.163

0 50 0.584 0.636 0.700 0.729 0.380 0.335 0.374 0.347

0 100 0.920 0.931 0.951 0.971 0.854 0.842 0.851 0.848

0.22 30 0.335 0.399 0.433 0.484 0.176 0.165 0.185 0.163

0.22 50 0.560 0.626 0.663 0.722 0.408 0.358 0.385 0.348

0.22 100 0.887 0.921 0.953 0.963 0.830 0.806 0.850 0.836

* PH=Proportional Hazards, ED=Early Difference, LD=Late Difference, CH=Crossing Hazards
The simulations are based on first order statistics TSi

1 or TLSi
1 under different scenarios and for different choices of time points (4 or 8 fixed or 9 points at 10-90th

percentiles (perc) or 80% of all the observed event times (all)). In the body of the table, values in bold identify the strongest results.

Table 3 Simulation results under H0 and H1 of the tests
used for comparative purposes

Scenario* Strata
effect
(w)

N. of
strata
(k)

Under H0 Under H1

(1) (2) (3) (1) (2) (3)

PH 0 30 0.042 0.043 0.049 0.660 0.734 0.770

0 50 0.042 0.043 0.051 0.867 0.923 0.938

0 100 0.054 0.050 0.060 0.995 0.999 1.000

0.22 30 0.044 0.052 0.053 0.635 0.731 0.726

0.22 50 0.057 0.051 0.058 0.827 0.898 0.903

0.22 100 0.056 0.054 0.053 0.986 0.997 0.996

ED 0 30 0.053 0.061 0.064 0.207 0.189 0.216

0 50 0.061 0.067 0.071 0.317 0.262 0.310

0 100 0.049 0.052 0.061 0.620 0.531 0.571

0.22 30 0.046 0.051 0.056 0.204 0.169 0.166

0.22 50 0.037 0.044 0.045 0.292 0.237 0.253

0.22 100 0.051 0.048 0.053 0.596 0.501 0.510

LD 0 30 0.042 0.046 0.054 0.384 0.473 0.520

0 50 0.053 0.059 0.060 0.600 0.731 0.775

0 100 0.052 0.052 0.118 0.863 0.965 0.971

0.22 30 0.049 0.065 0.070 0.338 0.454 0.470

0.22 50 0.046 0.051 0.051 0.553 0.707 0.705

0.22 100 0.051 0.056 0.051 0.816 0.949 0.947

CH 0 30 0.062 0.070 0.076 0.076 0.078 0.082

0 50 0.045 0.045 0.046 0.087 0.119 0.119

0 100 0.041 0.045 0.048 0.095 0.174 0.662

0.22 30 0.046 0.043 0.049 0.079 0.091 0.083

0.22 50 0.040 0.042 0.039 0.101 0.142 0.138

0.22 100 0.063 0.056 0.064 0.116 0.233 0.233

* PH=Proportional Hazards, ED=Early Difference, LD=Late Difference,
CH=Crossing Hazards.
The outcomes of the stratified log-rank test (1), the modified log-rank by
Schoenfeld and Tsiatis for highly stratified data (2) and the Cox model with
sandwich variance that accounts for stratified data with possibly correlated
failure times (3) are reported. In the body of the table, values in bold identify
the strongest results.
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scenarios. We could generally recommend the Tippett
transform with some caution on small number of strata
where, to achieve a regular behaviour, it is however suffi-
cient to start from a percentile higher than the 10th. The
Fisher test is very similar, slightly better under propor-
tional hazards, but worst in the crossing hazards setting.
Differently from what found in a non permutation test
by Klein et al. [12], we do not observe a general super-
iority of the complementary log-log transform of sur-
vival on survival, as distance measure, except in the early
distance scenario. Actually, the Tippett transform
behaves well using the survival distance even with small
number of strata. While a standardized survival differ-
ence could have been considered, the expected gain in
performance would not counterbalance the heavy add-
itional computational effort needed. This because the
standard error of the difference is based on a bootstrap
estimate that should account for the complex form of
dependence possibly induced by matching, that cannot
be easily specified.
In the context of non matched data (or no strata

effect), the proposed multivariate permutation test
maintains a good performance for survival data com-
parison. Indeed, this approach could be useful even in
non matched data in the presence of departures from
the proportional hazards assumption, especially cross-
ing hazards, where an overall test is still matter of
development.
Conditions for the applicability of this approach are

very mild. The appropriate application of the multivari-
ate permutation testing approach relies on the assump-
tions on censoring being independent from the failure
process and treatment within strata. While this could be
considered a weakness, it is indeed the usual assumption
which applies in survival when a correct study planning
is adopted. The test relies also on the assumption of ex-
changeability under the null. In our context, where per-
mutations are within strata, this latter assumption is
reasonable due to matching. Finally, the test can easily
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Galimberti and Valsecchi BMC Medical Research Methodology 2013, 13:16 Page 9 of 10
http://www.biomedcentral.com/1471-2288/13/16
be extended to more than one subject of the experimen-
tal arm in each stratum, modifying the weighting scheme
of the Kaplan-Meier estimator of survival.
Other permutation tests were not suitable for exten-

sion to this context. Specifically, the proposals of both
Pesarin-Salmaso [5] and of Heller-Venkatraman [8] do
not account for stratified and possibly correlated data;
the approach of Sun and Sherman [9] needs relatively
large strata of independent observations, and the versa-
tile test of Shih and Fay [10], while dealing with highly
stratified matched data, behaves similarly to the log-rank
Table 4 Results of different multivariate permutation
(two-sided) tests applied to the application

Time
points
strategy

N. of time points
(years)

Global p-value

TSF
2 TLSF

2 TST
2 TLST

2

fixed 4 (0.5,1,2,3) 0.387 0.375 0.263 0.245

fixed 4 (1,1.5,2,3) 0.348 0.338 0.225 0.212

fixed 4 (1,2,3,4) 0.232 0.221 0.213 0.199

perc 9 (0.16-1.74)* 0.665 0.675 0.515 0.486

all 52 (0.19-1.71)* 0.799 0.829 0.630 0.579

* min and max time points.
Results of the comparison of Disease Free Survival (DFS) curves of
transplanted patients (n=30) and matched chemotherapy controls (n=130) are
reported. Global p-values are shown for Fisher and Tippett second order
statistics based on the distance of DFS curves (TSi

1) or their transformation
(TLSi

1) and for different choices of the time points (fixed or points at 10-90th

percentiles (perc) or 80% of all the observed event times (all)).
test or its stratified version, depending on the level of
inter-strata heterogeneity.

Conclusions
In conclusion, our approach is different from other per-
mutation tests proposed for survival analysis [8-10], as it
relies on the multivariate permutation approach origin-
ally introduced by Pesarin [4]. It is recommended in the
highly stratified context of matched data where it is
proven by simulations to be at least equal or superior to
the stratified log-rank test, the modified log-rank test for
highly stratified data and a Cox model with robust vari-
ance estimate. Preference to this test should be definitely
given when the proportional hazards assumption does
not hold, even in non matched data. As a general indica-
tion, we would suggest the application on survival differ-
ences at fixed time points for the first order test and the
Tippett transform for the global combining function.
This test requires some computational effort, but it is, in
our experience, quite feasible with ad-hoc routines (one
in fortran, as well as a function in R, can be provided by
the authors upon request).
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