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Abstract

Background: Interaction in clinical trials presents challenges for design and appropriate sample size estimation.
Here we considered interaction between treatment assignment and a dichotomous prognostic factor with a
continuous outcome. Our objectives were to describe differences in power and sample size requirements across
alternative distributions of a prognostic factor and magnitudes of the interaction effect, describe the effect of
misspecification of the distribution of the prognostic factor on the power to detect an interaction effect, and
discuss and compare three methods of handling the misspecification of the prognostic factor distribution.

Methods: We examined the impact of the distribution of the dichotomous prognostic factor on power and sample
size for the interaction effect using traditional one-stage sample size calculation. We varied the magnitude of the
interaction effect, the distribution of the prognostic factor, and the magnitude and direction of the misspecification
of the distribution of the prognostic factor. We compared quota sampling, modified quota sampling, and sample
size re-estimation using conditional power as three strategies for ensuring adequate power and type | error in the
presence of a misspecification of the prognostic factor distribution.

Results: The sample size required to detect an interaction effect with 80% power increases as the distribution of
the prognostic factor becomes less balanced. Misspecification such that the actual distribution of the prognostic
factor was more skewed than planned led to a decrease in power with the greatest loss in power seen as the
distribution of the prognostic factor became less balanced. Quota sampling was able to maintain the empirical
power at 80% and the empirical type | error at 5%. The performance of the modified quota sampling procedure
was related to the percentage of trials switching the quota sampling scheme. Sample size re-estimation using
conditional power was able to improve the empirical power under negative misspecifications (i.e. skewed
distributions) but it was not able to reach the target of 80% in all situations.

Conclusions: Misspecifying the distribution of a dichotomous prognostic factor can greatly impact power to detect
an interaction effect. Modified quota sampling and sample size re-estimation using conditional power improve the
power when the distribution of the prognostic factor is misspecified. Quota sampling is simple and can prevent
misspecification of the prognostic factor, while maintaining power and type | error.
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Background

Randomized controlled trials (RCTs) are the gold stand-
ard for evaluating the efficacy of a treatment or regimen.
While for most RCTs the primary hypothesis is the
overall comparison of two (or more) treatments, there
has been a continuing discussion over the last two
decades about the use of subgroup analyses and formal
tests of interaction in RCTs [1-7]. According to the
most recent CONSORT statement, which was published
in 2010, the analysis of subgroups should be pre-
planned and accompanied by a formal test of interaction
[8]. However, systematic reviews of medical and surgical
RCTs have shown that many of the analyses of
subgroups in RCTs have not been pre-planned and have
not been accompanied by a formal test of interaction
[1-4]. The percentage of trials reporting their results
using a formal interaction test was 13% in 1985 [1], 43%
in 1997 [2], 6% from 2000 to 2003 [3], and 27% from
2005 to 2006 [4].

Investigators planning subgroup analyses within the
framework of RCTs are encouraged to design RCTs to
detect interaction effects using a formal interaction test.
While statistical software such as nQuery Advisor and
SAS can handle power and sample size calculations for
detecting interaction effects, a modest body of literature
exists describing the effect of the magnitude of the inter-
action effect and distribution of the prognostic factor
have on power and sample size. Two articles by Brookes
and colleagues showed that there is low power to detect
an interaction, scaled as a contrast of cell means, when a
study is powered only to detect the main effect unless
size of the interaction effect is nearly twice as large as
the main effect [6,7]. They also showed that power for
the interaction test is maximized when the prognostic
factor is distributed evenly.

There are many instances in which investigators
may be interested in studying the interaction between
a prognostic factor and treatment. For example, an in-
vestigator is interested in studying the effect in im-
proving functional limitation in persons with meniscal
tear and concomitant knee osteoarthritis (OA). For
this disease, the two treatment choices are performing
arthroscopic partial meniscectomy (APM) and phys-
ical therapy (PT). However, the investigator also
hypothesizes that the effect of APM compared to PT
on functional limitation varies by knee OA severity.
In this case, knee OA severity is the prognostic factor
and how it is distributed will impact the sample size
required to detect the interaction between treatment
and OA severity.

This article has three objectives. First, we sought to
describe differences in power and sample size requirements
across alternative distributions of a prognostic factor
and magnitudes of the interaction effect. Second,
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we describe the effect of misspecification of the prognostic
factor distribution and how such misspecification affects
the power to detect an interaction effect. Third, we
describe and discuss three methods of handling
misspecification of the prognostic factor distribution
by potential readjustment of the sample size or strat-
egy during a trial. Two of these methods are
sampling-based and do not require an interim statis-
tical testing of the outcome. The third method uses a
two-stage adaptive design approach that re-estimates
the sample size based on the conditional power at an
interim analysis where 50% of the patients have been
enrolled.

Methods

Overview

We conducted an analysis examining the impact of how
different distributions of a dichotomous prognostic fac-
tor affect the power (and sample size needed to obtain
80% power) to detect an interaction between the prog-
nostic factor and treatment in RCTs. We also studied
the impact of misspecifying (positive and negative
misspecifications) the distribution of the prognostic fac-
tor on power and sample size. We varied the magnitude
of the interaction effect, the distribution of the prognos-
tic factor, and the magnitude of the misspecification.
Lastly, we compare three methods for ensuring appro-
priate overall power and type I error under the
misspecification of the distribution of the prognostic fac-
tor. These methods are quota sampling, modified quota
sampling, and sample size re-estimation using condi-
tional power.

Specification of key parameters used in the paper
Treatment variable

The treatment variable was distributed as a binomial
variable (active vs. placebo) with probability of 0.5. For
the purposes of this paper the treatment variable was
assumed to always have a balanced distribution (i.e. 50%
on level 1 receiving active treatment; 50% on level 2 re-
ceiving placebo). For illustration purposes, we assumed
that APM was the active treatment and that PT was the
placebo.

Prognostic factor

The prognostic factor was defined as dichotomous vari-
able with &; representing the j" level of the prognostic
factor. When referring to the distribution of the prog-
nostic factor we indicated the percentage in the k; level
of the prognostic factor, defined as p;. We varied p;
from 10% to 50% in 10% increments.
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Misspecification of the prognostic factor

The misspecification of the prognostic factor was defined
by the parameter ¢q. The misspecification could be positive
or negative with negative misspecification implying less
balance (more skew) and positive misspecification implying
more balance (less skew). For example, if the planned dis-
tribution of the prognostic factor was 20% and the actual
distribution of the prognostic factor was 25%, then the
misspecification of the prognostic factor (gq) was +5%.
Possible values of g were -15%, -5%, 0 (ie. no
misspecification), +5%, and +15%.

Outcome variable

We assumed that our outcome variable was continuous
and normally distributed. In our example, the outcome
can be interpreted as the improvement in function after
APM or PT as measured by a score or scale. We speci-
fied the mean improvement for all four possible
combinations of treatment and the prognostic factor.
We considered two different values (25 and 15) for the
mean improvement in the active/k; treatment/prognos-
tic factor combination (i.e. APM/mild knee OA severity).
The mean improvement in the active/k,, placebo/k;, and
placebo/k, groups were held constant at 5, 5, and 0 re-
spectively. We assumed a common standard deviation
(0) of 10 for all four combinations.

Magnitude of the interaction

We defined the magnitude of the interaction between
prognostic factor and treatment effect according to the
method by Brookes and colleagues [6,7]. Let y; be mean
improvement in the i treatment and ;j” level of the
prognostic factor. We then defined the treatment effi-
cacy in the j level of the prognostic factor as:

6 = Hij — Hoj (1)

We then defined the interaction effect (denoted as 6)
as follows:

0 =081 — 02 = (Hy; — Hoy) — (W1o — Hp2) (2)

Thus 6, which served as the basis of our choice of
mean improvement values, varied as y;; varied. The
magnitudes of the interaction effect that we considered
were 15 and 5. The estimate of the interaction effect was
defined as follows:

0 = (F11 — X21) — (F12 — 22) (3)

Then, the variance of the interaction effect under
balanced treatment groups and distribution of the
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prognostic factor p; can be derived as follows (note that
N equals the total sample size for the trial):

VAR (é) = VAR((Z11 — %21) — (%12 — F22))

= VAR(;CH) + VAR(%Zl) + VAR(;VlQ) + VAR(;CD)
o> o o> o?

=t —t— 4 —
nmi N1 HMip N
0.2 0'2 0'2
= + +
05xp1*N 05+ (1—p;)*«xN 05%p; «N
+ o
0.5% (1 —p1)*«N
40? 40? 40’

p— + p—
pi*N (1—=p1)*N pix(1—p1)*N
(4)

It is clear from the equation as the prevalence of the
prognostic factor (p;) increases, the variance decreases,
which would imply that the power increases for a fixed
sample size.

Initial sample size for interaction effects

The sample size required for the i treatment and ;™
prognostic factor level to detect the interaction effect
described under a balanced design (i.e. p; =0.5) with a
two-sided significance level of a and power equal to 1-
has been previously published by Lachenbruch [9].

4021+ 21 a),)’ s
. )

In these formulas z;_g represents the z-value at the 1-3
(theoretical power) quantile of the standard normal distri-
bution and z;_,» represents the z-value at the 1-%/,
(probability of a type I error) quantile of the standard nor-
mal distribution. Under a balanced design with p; = 0.5 we
can just multiply #;; by four to obtain the total sample size
since there are four combinations of treatment and prog-
nostic factor. A limitation of this formula is that it uses
critical values from the standard normal distribution ra-
ther than the Students t-distribution as most statistical
tests of interaction are performed using a t-distribution.
To account for this we calculated the total sample size
required to detect an interaction effect with a two-sided
significance level of a and power equal to 1- 3

I/lij =

1. Use formula 5 (above) to calculate the sample size
required for each combination of treatment and
prognostic factor under a balanced design.

2. Calculate a new sample size (”Z) required for each
combination of treatment and prognostic factor under
a balanced design using the following formula 6 below.
In this formula the z-critical values have been replaced
with t-critical values with 7; degrees of freedom.
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40°(ty g -]t/ o))
nlj = 62

(6)

3. Set n; equal to n}; and repeat step 2.

4. Repeat step 3 until 7;; converges. This will usually
occur after 2 or 3 iterations.

5. Lastly, to correct for imbalance in the prognostic
factor, multiply #;; by m to obtain the final total
sample size N.

Effect of misspecifying the distribution of the prognostic
factor

The effect of misspecifying the distribution of the prog-
nostic factor was evaluated using power curves. The for-
mula used by Lachenbruch was extended to incorporate
the Student’s t-distribution [9]. Power for the interaction
test, where ¥ is the cumulative distribution function of
the Student’s t-distribution, by actual prevalence of the
prognostic factor (p; +¢q) and magnitude of the inter-
action effect was calculated using equation 7 below.

2
Power =1 -V N(pi+q)(1 —p1 —q)0 e
40?2 (/2.1\1—4)

(7)

Strategies for accounting for the misspecification of the
distribution of the prognostic factor

Quota sampling

The quota sampling approach was performed using the
following steps. First, for a given set of parameters, we
would determine the sample size needed to detect an
interaction effect with 80% power. We then fixed the
number of participants to be recruited for each level of
the prognostic factor. For example, if the final total sam-
ple size was 200 and the planned distribution of the
prognostic factor was 30% in the k; group and 70% in
the k», group then exactly 60 subjects would be recruited
in the k; group and 140 in the k, group. This method
removes the variability in the sampling distribution and
ensures that the sampled prognostic factor distribution
always matches what was planned for. Because of this
approach, the observed distribution of the prognostic
factor in the trial will always match the planned distribu-
tion and there will be no misspecification. However, this
method may require turning away potential subjects be-
cause one level of the prognostic factor is already filled,
delaying trial completion. Also, it may reduce the exter-
nal validity of the overall treatment results as the trial
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subjects can become less representative of the
unselected population of interest. Because of these
limitations we also considered a modified quota sam-
pling approach.

Modified quota sampling

The modified quota sampling approach was performed
using the following steps. First, as in the quota sampling
approach, the sample size needed to detect an inter-
action effect with 80% power was determined for the
pre-specified parameters. Next, the simulated study en-
rolled the first %/, subjects. After the first */, subjects
were enrolled we tested to see if the sampling distribu-
tion of the prognostic factor was different from what
was planned for using a one-sample test of the propor-
tion. If this result was statistically significant at the 0.05
level then a quota sampling approach was undertaken
for the second "/, subjects to be enrolled to ensure that
the sampling distribution of the prognostic factor
matched the planned distribution exactly. If the result
was not statistically significant then the study continued
to enroll normally, allowing for variability in the distri-
bution of the prognostic factor.

Sample size re-estimation using conditional power

The last method for accounting for the misspecification
of the distribution of the prognostic factor used the con-
ditional power of the interaction test at an interim ana-
lysis to re-estimate the sample size. We modified the
methods of Denne to carry out this procedure [10]. We
assumed that the interim analysis occurred after the first
Ny, subjects were enrolled. The critical value at the
interim analysis (c;) and the final analysis (c;) were
determined by the O’Brien-Fleming alpha-spending
function [11] using the SEQDESIGN procedure in the
SAS statistical software package. We also used the
SEQDESIGN procedure to calculate a futility boundary
at the interim analysis (b;). Since these critical values are
based on a standard normal distribution and not the
student’s t-distribution we converted the critical values
to those based on the student’s t-distribution. First, we
converted the original critical values to the corresponding
percentile of the standard normal distribution. We then
converted these percentiles to the corresponding critical
value of the Student’s t-distribution with N-4 degrees of
freedom.

At the interim analysis, if the absolute value of the
interaction test statistic was less than the futility bound-
ary (t;<b;) then we stopped the trial for futility and
considered the result of the trial to be not statistically
significant. If the absolute value of the test statistic was
greater than the interim critical value (c;) then we
stopped the trial for efficacy and considered the result of
the trial to be statistically significant. If absolute value of
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the test statistic was greater than b; but less than ¢; then
we evaluated the conditional power and determined if
sample size re-estimation was necessary. The following
paragraphs outline this procedure.

The following is the conditional power formula
proposed by Denne for the two group comparison of
means:

o] 2V — Ay —
\/ Ny — N1

Here, ¢, is the final critical value, n, is the sample size
at the final analysis, n; is the originally planned total
sample size, z; is the test statistic for the interaction at
the interim analysis, 7; is sample size at the interim ana-
lysis, § is the difference in means, and o is the common
standard deviation for the two groups. We updated the
formula by replacing z; with ¢; (because the interaction
test uses the Student’s t-distribution), § (difference in
means between groups) with 6 (magnitude of the inter-
action effect), and @ (cumulative distribution function of
a standard normal distribution) with ¥ (cumulative dis-
tribution function of a student’s t-distribution). Recall
that p; is the proportion in the k; group and o is the
common standard deviation:

cCP=1-

(8)

(ne—m1)0+/p1(1-p1)
@ CZ\/% - tl\/n_l T e

CP=1-
\/ 1y — N1

(©)

Initially #, = n, as conditional power is calculated as if
you were to not re-estimate the sample size. The values
of 6, 0, and p; for the conditional power formula were
estimated at the interim analysis. If the conditional
power was less than 80% then a new n, was estimated
such that conditional power was 80% and a new final
critical value, c,, was calculated as a function of the ori-
ginal final critical value, ¢y, and the interim test statistic
t; using the following formula:

(10)

In equation 10, y; ="/, and y, ="/, so that the
final critical value is also a function of #;, n, (the new
total sample size), and n, (the original total sample size).
Since all values except n, are fixed, we can calculate the
new critical value ¢, for new final sample sizes ..
According to Denne, this method for re-estimating the
sample size maintains the overall Type I error rate at a
(equal to 0.05 in our case) [10]. The final sample size 7,
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and final critical value ¢, were chosen so that the condi-
tional power formula shown in equation 9 was equal to
80%. If the conditional power was greater than 80% at
the interim analysis then we used the originally
calculated #; as the final sample size (15, = n;) so that the
final sample size was only altered to increase the condi-
tional power to 80%.

Validating the conditional power formula

To ensure that the modification the conditional power
formula (formula 9) was appropriate, we performed a
validation study using simulations. For each combination
of prevalence of the prognostic factor and magnitude of
the interaction ran 10 trials to obtain 10 interim test
statistics for each combination of parameters. At the in-
terim analysis we calculated the conditional power based
on the hypothesized values of 6, ¢, and p;. For each trial,
the second half of the trial was simulated 5,000 times to
obtain the empirical conditional power. Since there were
10 different combinations of prevalence of the prognos-
tic factor and magnitude of the interaction effect and 10
trials for each combination, the plot generated 100
points. We generated a scatter plot of the empirical con-
ditional power based on 5,000 replicates against the
calculated conditional power (Figure 1). Values that line
up along the y=x line demonstrate that formula
provided an accurate estimation of the conditional
power.

Simulation study details

Five thousand replications were performed for each
combination of the interaction effect and proportion at
level k;. We first evaluated the empirical power for
detecting the interaction effect without accounting for
misspecification of the distribution of the prognostic fac-
tor. We varied the misspecification of the prognostic fac-
tor at —15%, -5%, 0%, +5%, and +15%. For the quota
sampling method we did not vary the misspecification of
the distribution of the prognostic factor because the def-
inition of the method does not allow for misspecifications.
While we did not expect the quota sampling method to
have power or type I error estimates that differ from the
traditional one-stage sampling design under no misspe-
cification, we conducted the simulation study for this
study design method to confirm there was no impact on
power and type I error. For the modified quota sampling
method and sample size re-estimation using conditional
power we used the same misspecifications as described
above.

We calculated the overall empirical power for the
interaction effect for all three methods. This was defined
as the percentage of statistically significant interaction
effects across the 5,000 replicates. Empirical type I error
was calculated in a similar fashion for these three
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Simulated conditional power

0.0 0.1 02 03 0.4

Conditional power calculated at interim analysis

Figure 1 Results of the conditional power validation displaying a plot of the empirical conditional power (y-axis) and calculated
conditional power calculated at the interim analysis (x-axis). The solid line represents the y =x line.
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methods, but the interaction effect was assumed to be
zero and the sample size we used was the sample sizes
for the planned interaction effects of 15 and 5. For the
sample size re-estimation method we also calculated the
empirical conditional power. This was defined as the
number of statistically significant interaction effects
detected at the 0.05 level among trials that re-estimated
the sample size. Because the sample size could change,
we also calculated the mean and median final sample
size for the entire procedure.

The margin of error for empirical power and type I error
was calculated using the half width of the 99% confidence
interval based on a binomial distribution with a sample size
of 5,000. Since trials were planned with 1- =0.80 a = 0.05
this led to margins of error equal of 0.015 and 0.008 when
assessing empirical power and type I error respectively.

Results

Effect of misspecifying the distribution of the prognostic
factor on power for the interaction test

Power curves when using the traditional study design are
shown in Figure 2. There was a small difference in power
when comparing the magnitude of the interaction effect
and holding the planned prevalence of the prognostic fac-
tor and the misspecification of the prognostic factor equal.
This was due to rounding up of the final sample size and
the choice of using the t-critical values instead of the z-
critical values, which were larger when the magnitude of
the interaction was larger. In short, if the actual prevalence
is closer to 50%, the power is higher than planned, and if

the actual prevalence is farther away from 50%, the power
is lower than planned, see also Figure 2 and equation 4.

Performance of the quota sampling procedure

The quota sampling procedure performed well in terms
of empirical power (Table 1) and type I error (Table 2)
as a strategy to account for misspecifying the distribu-
tion of the prognostic factor. The empirical power was
reached or exceeded the target power of 80% for all
combinations of € and distributions of the prognostic
factor. The type I error was near the target type I error
of 5% for all combinations of sample size and
distributions of the prognostic factor.

Performance of the modified quota sampling procedure
Under no misspecification of the distribution of the
prognostic factor, the modified quota sampling proced-
ure performed well with empirical power greater than or
equal to 80% across all situations (Table 1). The type I
error rate was also near 5% for all combinations under
no misspecification (Table 2).

Under negative misspecifications of the distribution of
the prognostic factor, empirical power was improved in
comparison to doing nothing but 80% power was not
achieved in all cases (Table 3). The ability of the proced-
ure to attain 80% power under misspecifications of the
prognostic factor was dependent on the percentage of
trials that switched to quota sampling after 50% enroll-
ment. The likelihood of switching to quota sampling was
related to the magnitude of the interaction effect, the
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Figure 2 Power using traditional study design by magnitude of the interaction effect, planned prevalence of the prognostic factor,
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planned distribution of the prognostic factor, and the
magnitude of the negative misspecification. When the
magnitude of the interaction effect was five and the
misspecification of the distribution of the prognostic fac-
tor was —15%, greater than 99.8% of the trials switched
to the quota sampling method and the procedure
attained 80% power. However, when the magnitude of
the interaction effect was 15, and the misspecification of
the distribution of the prognostic factor was —-5%, the
modified quota sampling approach only attained 80%
power when the planned distribution of the prognostic
factor was 40% or 50% (Table 3).

For positive misspecifications of the distribution of the
prognostic factor, the modified quota sampling proced-
ure attained 80% for all combinations of the magnitude
of the interaction effect and planned distribution of the
prognostic factor (Table 3).

Type I error was maintained at 5% or within the margin
of error for all combinations of sample size, planned dis-
tribution of the prognostic factor, and misspecification of
the distribution of the prognostic factor (Table 4).

Validating the conditional power formula

Figure 1 shows the validation results of the conditional
power formula used in this paper. The points line up
along the y=x line, which implies that the formula we
used to calculate the conditional power was similar to
the empirical conditional power. These results give us
confidence that the sample size re-estimation presented
in the next section performed as expected.

Performance of the sample size re-estimation using
conditional power procedure

Under no misspecification of the distribution of the
prognostic factor, using the sample size re-estimation
procedure resulted in an increase in overall power due
to the requirement of conditional power of 80% at the
interim analysis. Across different combinations 6 and
the planned distribution of the prognostic factor, the
empirical power ranged between 88% and 91% (Table 1).
Despite the increase in power, type I error was maintained
at 5% or less for all of the simulations under no
misspecification of the distribution of the prognostic
factor (Table 2).

When we assumed there was a misspecification of
—-5% for the distribution of the prognostic factor, the em-
pirical power was greater than 80% except when the
planned distribution of the prognostic factor was 10%.
In this case the empirical power was 72%-73%, which
was an improvement compared to using the traditional
one-stage design (Figure 2). For a misspecification of the
distribution of the prognostic factor of -15% and
planned prognostic factor distribution of 20%, the em-
pirical power was also less than 80% (empirical power of
56%-60%), but was higher than using the traditional
one-stage design (Figure 2). The inability to attain 80%
power in these situations was directly related to the fact
that more trials were stopped for futility at the interim
analysis. In the situations where the empirical power
failed to attain 80% power the percentage of trials stop-
ping for futility ranged between 15% and 26% (Table 5).
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Table 1 Empirical power for all three methods when there was no misspecification of the distribution of the

prognostic factor

¢] Planned distribution of the prognostic Planned n; Quota Modified quota Sample size re-estimation using
factor sampling sampling conditional power

5 10% 1,418 0.8088 0.8054 0.8836

20% 798 0.8152 0.8082 0.8916

30% 608 0.8178 0.8014 0.8870

40% 532 08116 0.8036 0.8866

50% 512 0.8156 0.8098 0.8974
15 10% 178 0.8556 0.8204 0.8890

20% 100 0.8490 0.8128 0.8930

30% 78 0.8442 0.8316 0.9012

40% 68 0.8556 0.8322 0.9038

50% 64 0.8412 0.8256 0.9082

The margin of error based on the 99% confidence interval is 0.015.

The empirical type I error was below 5%, suggesting
room for power to gain by changing the critical values of
¢; and ¢, for all combinations of 6, planned distribution
of the prognostic factor, and misspecification of the dis-
tribution of the prognostic factor. Under the null hy-
pothesis, the percentage of trials stopping for futility
ranged between 42% and 45%, while the percentage of
trials stopping for efficacy was at most 0.6% (Table 6).

Conditional properties are displayed in Table 7. In al-
most all cases the empirical conditional power greater
than 80%. The two situations in which the empirical
conditional power was less than 80% was when there
was a negative misspecification of —15% of the distribu-
tion of the prognostic factor coupled with an initial
planned distribution of the prognostic factor of 20%.
Here the empirical conditional power was 76% for 6
equal to 5 and 15. The mean total sample size was al-
ways greater than the original planned sample size. Some
of these mean total sample sizes were more than double
the final sample size. However, the median sample size

was equal to or very close to the original total sample
size in all cases (Table 7).

Discussion

We evaluated the impact of misspecifying the distribu-
tion of a prognostic factor on the power and sample size
for interaction effects in an RCT setting. We showed
that negative misspecification of the distribution of the
prognostic factor resulted in a loss of power and a need
for an increased sample size, because the planned distri-
bution of the prognostic factor moved further away from
a balanced design.

We evaluated three methods for handling misspecifying
the distribution of the prognostic factor when investigat-
ing interaction effects in an RCT setting. The first two
methods dealt with how the subjects would be sampled.
The quota sampling method removed any variability in
the prognostic factor and by definition misspecification of
the distribution of the prognostic factor was not possible.
For example if a trial was set to enroll 200 subjects with

Table 2 Empirical type | error for all three methods when there was no misspecification of the distribution of the

prognostic factor

6  Planned distribution of the prognostic ~ Planned n; Quota Modified quota  Sample size re-estimation using conditional
factor sampling sampling power
0 10% 1,418 0.0496 0.0534 0.0210
20% 798 0.0484 0.0522 0.0260
30% 608 0.0494 0.0464 0.0286
40% 532 0.0510 0.0514 0.0302
50% 512 0.0532 0.0540 0.0248
0 10% 178 0.0494 0.0512 0.0248
20% 100 0.0488 0.0516 0.0274
30% 78 0.0536 0.0524 0.0224
40% 68 0.0472 0.0496 0.0302
50% 64 0.0482 0.0482 0.0328

The margin of error based on the 99% confidence interval is 0.008.
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Table 3 Empirical power and percentage of trials switching to the quota sampling scheme for the modified quota

sampling method

6 Planned distribution of the prognostic factor Planned n, Empirical power Percent of trials switching to quota sampling
Misspecification of the prognostic factor: -5%
5 10% 1418 0.8012 99.98%
20% 798 0.7736 74.08%
30% 608 0.7802 47.52%
40% 532 0.7932 36.64%
50% 512 0.8060 35.50%
15 10% 178 06636 33.04%
20% 100 0.7400 11.06%
30% 78 0.7940 11.84%
40% 68 0.8164 11.90%
50% 64 08122 8.48%
Misspecification of the prognostic factor: -15%
5 10% 1418 - -
20% 798 0.8022 100.00%
30% 608 0.8024 100.00%
40% 532 0.8058 99.94%
50% 512 0.8090 99.82%
15 10% 178 - -
20% 100 0.7788 89.06%
30% 78 0.7834 63.64%
40% 68 0.7904 49.70%
50% 64 0.8038 40.00%
Misspecification of the prognostic factor: +5%
5 10% 1418 0.8000 98.28%
20% 798 0.8090 67.72%
30% 608 0.8278 49.32%
40% 532 0.8092 37.08%
50% 512 0.7984 36.30%
15 10% 178 0.8880 35.14%
20% 100 0.8656 16.62%
30% 78 0.8542 10.94%
40% 68 0.8350 7.86%
50% 64 0.8198 8.60%
Misspecification of the prognostic factor: +15%
5 10% 1418 0.8738 100.00%
20% 798 0.8010 100.00%
30% 608 0.8092 99.98%
40% 532 0.8088 99.80%
50% 512 0.8064 99.86%
15 10% 178 0.8942 97.82%
20% 100 0.8504 72.44%
30% 78 0.8572 50.72%
40% 68 0.8466 3848%
50% 64 08174 40.88%

The margin of error based on the 99% confidence interval is 0.015.
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Table 4 Empirical type | error and percentage of trials switching to the quota sampling scheme for the modified quota
sampling method

06  Planned distribution of the prognostic factor ~ Planned n,  Empirical type | error  Percent of trials switching to quota sampling

Misspecification of the prognostic factor: -5%

0 10% 1418 0.0528 99.90%
20% 798 0.0506 74.26%
30% 608 0.0498 47.34%
40% 532 0.0480 36.66%
50% 512 0.0492 36.06%
0 10% 178 0.0566 34.74%
20% 100 0.0496 12.12%
30% 78 0.0528 11.24%
40% 68 0.0452 11.30%
50% 64 0.0522 8.80%
Misspecification of the prognostic factor: -15%
0 10% 1,418 - -
20% 798 0.0500 100.00%
30% 608 0.0496 100.00%
40% 532 0.0518 99.92%
50% 512 0.0568 99.76%
0 10% 178 - -
20% 100 0.0578 89.60%
30% 78 0.0522 62.82%
40% 68 0.0542 50.56%
50% 64 0.0478 41.20%
Misspecification of the prognostic factor: +5%
0 10% 1418 0.0568 98.68%
20% 798 0.0490 68.74%
30% 608 0.0490 48.10%
40% 532 0.0508 36.48%
50% 512 0.0508 36.64%
0 10% 178 0.0504 34.46%
20% 100 0.0534 16.32%
30% 78 0.0496 10.90%
40% 68 0.0450 8.50%
50% 64 0.0502 8.94%
Misspecification of the prognostic factor: +15%
0 10% 1418 0.0462 100.00%
20% 798 0.0490 100.00%
30% 608 0.0484 100.00%
40% 532 0.0516 99.76%
50% 512 0.0522 99.86%
0 10% 178 0.0452 97.48%
20% 100 0.0444 70.72%
30% 78 0.0526 51.00%
40% 68 0.0524 38.60%
50% 64 0.0528 40.72%

The margin of error based on the 99% confidence interval is 0.008.



Table 5 Empirical power and the percentage of trials stopping for futility and efficacy for sample size re-estimation using conditional power

(2] Planned distribution of the prognostic factor Planned n, Empirical power Percent stopping for futility Percent stopping for efficacy
Misspecification of the prognostic factor: -5%
5 10% 1418 0.7324 16.58% 5.76%
20% 798 0.8410 10.34% 11.76%
30% 608 0.8616 9.02% 13.72%
40% 532 0.8754 8.24% 1542%
50% 512 0.8868 7.64% 16.22%
15 10% 178 0.7246 17.14% 7.90%
20% 100 0.8232 12.26% 11.82%
30% 78 0.8736 8.94% 14.76%
40% 68 0.8936 7.72% 15.80%
50% 64 0.9010 7.10% 16.38%
Misspecification of the prognostic factor: -15%
5 10% 1418 - - -
20% 798 05614 26.06% 3.5%
30% 608 0.7536 15.46% 7.3%
40% 532 0.8304 10.72% 10.80%
50% 512 0.8750 8.34% 14.32%
15 10% 178 - - -
20% 100 0.6026 22.68% 4.96%
30% 78 0.7634 15.76% 8.50%
40% 68 0.8412 10.78% 11.86%
50% 64 0.8734 9.32% 14.76%
Misspecification of the prognostic factor: +5%
5 10% 1418 0.9528 3.10% 27.44%
20% 798 09194 5.58% 20.94%
30% 608 0.9064 6.26% 18.36%
40% 532 0.8898 7.18% 17.16%
50% 512 0.8868 7.52% 16.02%
15 10% 178 0.9476 3.94% 29.36%
20% 100 09194 5.70% 21.78%
30% 78 0.9204 5.94% 20.38%
40% 68 09146 6.36% 18.28%
50% 64 0.9056 6.96% 15.88%
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Table 5 Empirical power and the percentage of trials stopping for futility and efficacy for sample size re-estimation using conditional power (Continued)

Misspecification of the prognostic factor: +15%

5 10% 1418 0.9868 0.94% 45.24%
20% 798 0.9494 3.38% 27.26%
30% 608 09186 5.34% 20.84%
40% 532 0.8990 6.98% 17.12%
50% 512 0.8822 8.00% 14.30%
15 10% 178 0.9902 0.78% 49.94%
20% 100 0.9584 3.18% 29.86%
30% 78 0.9412 4.32% 2232%
40% 68 0.9108 6.56% 17.12%
50% 64 08816 8.76% 13.84%

The margin of error based on the 99% confidence interval is 0.015.
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Table 6 Empirical type | error and the percentage of trials stopping for futility and efficacy for sample size re-estimation using conditional power

2] Planned distribution of the prognostic factor Planned n, Empirical type | error Percent stopping for futility Percent stopping for efficacy
Misspecification of the prognostic factor: -5%
0 10% 1418 0.0278 43.48% 0.24%
20% 798 0.0264 44.54% 0.26%
30% 608 0.0262 42.66% 0.20%
40% 532 0.0280 44.16% 0.24%
50% 512 0.0246 42.88% 0.30%
0 10% 178 0.0304 42.94% 040%
20% 100 0.0276 42.44% 0.28%
30% 78 0.0252 43.16% 0.54%
40% 68 0.0230 43.08% 044%
50% 64 0.0298 42.00% 0.56%
Misspecification of the prognostic factor: -15%
0 10% 1418 - - -
20% 798 0.0254 43.62% 0.24%
30% 608 0.0278 42.94% 0.30%
40% 532 0.0282 44.00% 0.36%
50% 512 0.0248 42.62% 0.32%
0 10% 178 - - -
20% 100 0.0326 44.24% 0.50%
30% 78 0.0282 42.52% 0.44%
40% 68 0.0286 42.62% 042%
50% 64 0.0296 43.26% 0.50%
Misspecification of the prognostic factor: +5%
0 10% 1418 0.0314 41.46% 0.36%
20% 798 0.0284 42.94% 0.22%
30% 608 0.0296 44.76% 0.44%
40% 532 0.0312 43.82% 032%
50% 512 0.0290 44.16% 0.36%
0 10% 178 0.0284 43.64% 0.30%
20% 100 0.0274 43.30% 0.38%
30% 78 0.0296 43.66% 044%
40% 68 0.0280 44.24% 0.48%
50% 64 0.0290 43.82% 0.46%
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Table 6 Empirical type | error and the percentage of trials stopping for futility and efficacy for sample size re-estimation using conditional power (Continued)

Misspecification of the prognostic factor: +15%

0 10% 1418 0.0244 43.32% 0.28%
20% 798 0.0274 44.44% 0.34%
30% 608 0.0232 43.98% 0.20%
40% 532 0.0290 43.18% 0.32%
50% 512 0.0284 44.22% 0.32%
0 10% 178 0.0282 43.36% 0.38%
20% 100 0.0282 42.50% 0.36%
30% 78 0.0266 43.92% 0.34%
40% 68 0.0266 44.30% 0.46%
50% 64 0.0248 42.48% 0.34%

The margin of error based on the 99% confidence interval is 0.008.
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Table 7 Percentage of trials re-estimating the sample size, conditional power among trials that re-estimated the sample size and overall mean and median
sample size for sample size re-estimation using conditional power

[Z] Planned distribution of the prognostic factor Planned n, Percent re-estimating sample size Empirical conditional power Mean sample size Median sample size
Misspecification of the prognostic factor: 0%

5 10% 1418 37.44% 0.9471 2,500 1,418
20% 798 37.30% 0.9566 1470 798
30% 608 37.74% 0.9671 1,143 608
40% 532 38.00% 0.9689 984 532
50% 512 39.44% 0.9660 989 512

15 10% 178 37.44% 0.9701 327 178
20% 100 40.48% 0.9674 202 100
30% 78 39.28% 0.9695 150 78
40% 68 42.02% 09719 155 68
50% 64 43.58% 0.9748 154 64

Misspecification of the prognostic factor: -5%

5 10% 1418 49.70% 0.8881 3,568 1,418
20% 798 43.12% 0.9429 1,696 798
30% 608 40.98% 0.9458 1,231 608
40% 532 38.56% 0.9570 1,062 532
50% 512 38.82% 0.9629 987 512

15 10% 178 45.00% 0.8738 402 178
20% 100 42.54% 0.9342 219 100
30% 78 43.56% 0.9660 171 78
40% 68 43.38% 09779 153 68
50% 64 44.40% 0.9770 155 64

Misspecification of the prognostic factor: -15%

5 10% 1418 - - - -
20% 798 51.98% 07618 2425 865
30% 608 47.34% 0.8952 1,439 608
40% 532 44.96% 0.9346 1,155 532
50% 512 4142% 0.9546 1,028 512

15 10% 178 - - - -
20% 100 48.70% 0.7573 267 100
30% 78 46.80% 09167 190 78
40% 68 47.38% 0.9565 161 68
50% 64 44.50% 0.9685 148 64
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Table 7 Percentage of trials re-estimating the sample size, conditional power among trials that re-estimated the sample size and overall mean and median
sample size for sample size re-estimation using conditional power (Continued)

Misspecification of the prognostic factor: +5%

5 10% 1418 25.94% 0.9861 1,984 1,418
20% 798 33.26% 0.9747 1,310 798
30% 608 35.76% 0.9676 1,096 608
40% 532 37.68% 0.9618 975 532
50% 512 39.24% 0.9623 969 512

15 10% 178 28.32% 0.9845 263 178
20% 100 35.36% 09762 177 100
30% 78 37.42% 0.9840 153 78
40% 68 43.32% 0.9797 150 68
50% 64 45.72% 0.9790 157 64

Misspecification of the prognostic factor: +15%

5 10% 1418 15.04% 0.9960 1472 1418
20% 798 27.34% 0.9824 1,159 798
30% 608 34.22% 0.9673 1,007 608
40% 532 38.58% 0.9725 1,026 532
50% 512 41.56% 0.9644 1,045 512

15 10% 178 14.40% 0.9944 190 89
20% 100 30.38% 0.9888 159 100
30% 78 37.62% 0.9856 149 78
40% 68 43.78% 0.9753 151 68
50% 64 48.00% 0.9708 168 64
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30% in the k; level of the prognostic factor then enroll-
ment would be capped at 60 subjects in the k; level and
140 in the k, level. This method did a good job of
maintaining the power at 80% and controlling the type I
error at 5%. The modified quota sampling approach did
not perform as well in all situations. In summary, this
method enrolled subjects randomly for the first half the
trial. The sampling method would switch to the quota
sampling approach if the distribution of the prognostic
factor differed significantly from what was planned. Power
was maintained at 80% when the percentage of trials
switching to the quota sampling approach was large.
However, when the percentage switching was small and
there was a negative misspecification of the distribution of
the prognostic factor, the power was compromised, but
rarely substantially.

The last method used conditional power at an interim
analysis (after 50% enrollment) to re-estimate the sample
size. We adapted the method used by Denne [10]. This
method resulted in more optimal overall power and type
I error estimates than the modified quota sampling
procedure. The main reason this method could not
maintain empirical power at 80% under a negative
misspecification is that too many trials stopped for futil-
ity before the sample size could be re-estimated and all
of the type II error was used up at the interim analysis.
This result does not diminish the value of the sample
size re-estimation procedure since misspecification of
other trial parameters that diminish power would have a
similar effect.

The findings from our study detail methods for hand-
ling the misspecification of the distribution of a prog-
nostic factor when detecting an interaction effect in an
RCT setting. An advantage of the quota sampling ap-
proach over using the conditional power formula is that
the final sample size does not need to be changed and
an interim analysis that uses some of the alpha level
does not need to be undertaken. However, the quota
sampling approach is sensitive to distortions in misspecifying
the distribution of the prognostic factor in terms of trial
duration as it may take longer to recruit the necessary
patients from the appropriate level of the prognostic fac-
tor. Using sample size re-estimation does not have this
issue, but it is sensitive to the values used in the condi-
tional power formula. In particular, the mean sample size
tended to be larger the original planned sample size in
situations where the misspecification was leading to a
more balanced design. In theory, this should increase the
power and reduce the sample size needed. However, in
some of the simulations in which the conditional power
was low, but did not reach the futility stopping rule, the
new sample size estimated was very large, resulting in an
outlier. These outliers inflated the final mean sample size.
To overcome this, we also reported the median final

Page 17 of 18

sample size of the simulations, which was less than or
equal to the originally planned sample size.

As with any study that uses simulations, there are sev-
eral limitations to our study. One limitation is that not
all interaction effects were explored and we only study a
2 by 2 interaction effect. However summarizing the
interaction effect with one contrast would not be feasible
if three or more treatments or levels of the prognostic
factor were explored. Future work could explore looking
at these interaction effects. We also did not examine the
impact of informative cross-over. Many times subjects
randomized to one arm (ex. non-surgical therapy) in a
study will cross-over to another arm (ex. surgical ther-
apy). The impact of differing cross-over rates should be
explored.

Another limitation is that we did not look at the im-
pact of unequal variances. This should be the goal of fu-
ture work as levels of a prognostic factor can impact
variability in the outcome.

Lastly, we only studied the impact of one sample size re-
estimation procedure as described by Denne in 2001 [10].
However, there are many different methods of re-estimating
the sample size that could be studied [12]. However, the
method described by Denne still is a valid and acceptable
method according to the FDA guidelines on Adaptive
Design Clinical Trials for Drugs and Biologics [13].

Conclusions

We examined three methods for dealing with the
misspecification of the distribution of the prognostic fac-
tor when determining the treatment by prognostic factor
interaction effects in an RCT setting. Sample size re-
estimation using conditional power was able to improve
the power when there was a negative misspecification of
the distribution of the prognostic factor while maintaining
appropriate type I error. As more studies seek to explore
interaction effects as their primary outcome in RCTs,
these methods will be useful for clinicians planning their
studies. Further research should look at the impact of
cross-over between treatment groups.
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