Payet et al. BVIC Medical Research Methodology 2013, 13:26
http://www.biomedcentral.com/1471-2288/13/26

BMC
Medical Research Methodology

RESEARCH ARTICLE Open Access

A statistical model to assess the risk of
communicable diseases associated with
multiple exposures in healthcare settings

Cécile Payetm*, Nicolas Voirin', Philippe Vanhems'? and René Ecochard®

Abstract

Background: The occurrence of communicable diseases (CD) depends on exposure to contagious persons. The
effects of exposure to CD are delayed in time and contagious persons remain contagious for several days during

which their contagiousness varies. Moreover when multiple exposures occur, it is difficult to know which exposure
is associated with the CD.

Methods: A statistical model at the individual level is presented to estimate the risk of CD to patients, in healthcare
settings, with multiple observed exposures to other patients and healthcare workers and unobserved exposures to
unobserved or unobservable sources. The model explores the delayed effect of observed exposure, of source
contagiousness and of unobserved exposure. It was applied to data on influenza-like illness (ILI) among patients in a
university hospital during 3 influenza seasons: from 2004 to 2007. Over a total of 138,411 patients-days of follow-up,

epidemic situation.

64 incident ILI cases were observed among 21,519 patients at risk of ILI.

Results: The ILI risk per 10,000 patients-days associated with observed exposure was about 129.1 (95% Credible
Interval (Crl): 84.5, 182.9) and was associated at 72% with exposures to patients or healthcare workers 1 day earlier
and at 41% with the 1st day of source contagiousness. The ILI risk associated with unobserved exposure was 0.8
(95% Crl: 0.3, 1.6) per 10,000 patients-days in non-epidemic situation in the community and 4.3 (95% Crl: 0.4, 11.0) in

Conclusions: The model could be an interesting epidemiological tool to further assess the relative contributions of
observed and unobserved exposures to CD risk in healthcare settings.
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Background
The occurrence of communicable diseases (CD) depends
on exposure to contagious persons. This concept, called
dependent happenings [1,2], should be considered in
statistical models to assess CD risk, for example by in-
corporating explicative variables describing exposure [2].
Exposure to infection refers to the potentially infec-
tious contacts a person has and some knowledge of
natural disease history is needed to define exposure.
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Once a person exhibits symptoms of CD, only exposures
that have occurred in period compatible with the incuba-
tion period of the susceptible host may lead to transmis-
sion. Also, exposure to an infectious individual could
only lead to a subsequent infection (or disease) if expos-
ure happens during the infectious period of the infected
person. But, infectious periods and incubation periods
differ individually and neither the durations of these
periods nor the level of viral shedding are generally
known. However, timing of exposure and contagiousness
of the source are two important determinants of the risk
of infection that can be included in statistical models
aiming to analyze infectious diseases data.

Considering the moment of exposure, the effects of
exposures to CD are often delayed in time and CD
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occurring at a given time can potentially be attributed to
past exposures at different times (i.e. lags). The effects of
exposure are distributed over a specific time period and
can be modeled with several parameters to explain the
contribution of exposures at different lags.

Similarly, regarding the source, contagious persons re-
main contagious for several days during which their con-
tagiousness varies. It is, therefore, expected that the
effects of exposure also vary with source contagiousness,
the effects being distribution over the days of the conta-
gious period.

Consequently, the effects of exposure on CD risk can be
modeled as the joint result of delayed effects associated
with lags and effects associated with the source person’s
contagiousness, and a probabilistic approach may allow es-
timating the distributions of the risk according to lags and
the source person’s contagiousness.

We propose a statistical model at the individual level
to assess CD risk, in healthcare settings, among patients
who may be subjected to multiple exposures. In this
context, all sources of infection (patients, HCWs, or
visitors) are usually imperfectly identified. So, it is im-
portant to consider not only observed exposure to
other patients and healthcare workers (HCWs) but also
exposures to unobserved or unobservable sources such
as symptomatic infectious persons unnoticed during ob-
servation, asymptomatic persons or external sources.
Incidence of CD in the community can be used to rep-
resent the unobserved exposures. The proposed model
explores the delayed effect of multiple observed
exposures, of source contagiousness and of unobserved
or unobservable exposures. It was applied to data on
influenza-like illness (ILI) among patients in a univer-
sity hospital.

Methods
Model
A patient can contract a CD during his/her stay in a
healthcare setting. This hospital-acquired CD may result
from exposure to contagious HCWs or contagious
patients as well as contagious persons coming from out-
side the healthcare setting, such as visitors. In addition,
these exposures are usually imperfectly identified in
epidemiologic studies because generally clinical cases are
of interest. Exposures can be observed (i.e. documented),
unobserved (i.e. unnoticed) or unobservable (e.g. asymp-
tomatic contagious persons). In the following, only the
term “unobserved exposure” will be used but it must be
remembered that it referred to “unobserved and unob-
servable exposure”. Separating these two effects is out of
the scope of the present work.

When a hospitalized person has a CD, multiple
exposures delayed in time may be consistent with dis-
ease onset and it is difficult to know with certainty
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which exposure is associated with the CD. The model is
based on the concept that escaping to infection from
each exposure is required to avoid infection. If )Lj-}bsemd
is the CD risk associated with observed exposure (w;),
then the cumulative risk of escaping CD following a

Wi
series of exposures is H(l —A;bsemd) . In other
ij

words, to avoid CD, a patient should escape infection
from all exposures.

To estimate the CD risk to patients, taking into ac-
count the effect of observed exposure associated with
lags and the day of source person contagiousness as well
as unobserved exposure, we constructed the model at
the individual level, so that, for a given patient and day,
CD risk A can be modeled as follows:

y~Bernoulli (1) )
A=1-— (1 o )Lunobserved)H <1 - )LgbserVEd> ij

J

where y = 1 if the patient has a CD and y = 0 if not, w;; is
observed exposure, equals 1 if the patient has been
exposed to patients or HCWs i days earlier at their i
contagiousness day and w;; =0 if not, A*"*? is the CD
risk associated with observed exposure, and Junobserved o
the CD risk associated with unobserved exposure. As
represented by y, the model includes ILI cases and non-
cases. Patients were followed since admission at hospital.
Censoring occurred for cases at the time of ILI and non-
cases were followed up to discharge. So each admitted
patient contributed to the risk set, until onset of ILI for
cases and until discharge for non-cases. In addition, ILI
patients were assumed to be immunized after ILI and
therefore no more at risk.

To define maximum lag, we assume a maximum incu-
bation period of the CD of I days. Thus, exposure of a
patient can be defined as the presence of a contagious
person in the same ward during the preceding I days.
Contagious persons remain contagious for a given
period and in the following, we assume a maximum con-
tagiousness period of J days.

Observed exposure

For capturing the effects of observed exposure, we used
an approach belonging to the context of the transmis-
sion models based on “who acquires infection from
whom” (WAIFW) matrices , for which estimation
methods are available elsewhere [3,4]. The CD risk
observed exposure can be decomposed as follows (see
Additional file 1):

A;bserved —1— exp(—kai b])

with constraints Zi“i =1 and Z}'bj =1, where k is a

scale parameter representing the CD risk, [a,...4,. ..,
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a]t being the distribution vector of this risk over the
preceding i days, and [by,. . .,b;. . .,bj] being the distribu-
tion vector of risk over j days of source contagiousness.
This decomposition in 2 dimensions allows easy inter-
pretation of parameters and makes the assumption of in-
dependence between the effect of lags and of the day of
contagiousness. It also supposes that the risk is constant
a given day for a given individual which is plausible since
exposure is not expected to vary in this interval.

Unobserved exposure

In the model, we allowed exposures to unobserved
sources such as exposures to symptomatic contagious
persons unnoticed during observation, asymptomatic
persons or external sources. We further assumed that
unobserved exposure depended on the community inci-
dence of CD. The CD risk associated with unobserved
exposure in a healthcare setting can then be written as
follows:

i

Aunobserved = exp (ﬁNGu p j + /))E,“’ i x)

where x =1 if the epidemic threshold has been reached on
a given day in the community and x =0 if it has not been
reached. When CD incidence in the community is below
the epidemic threshold, A“"7%med = exp(pNen - epidemicy
This risk is increased by factor f“™ when the incidence
in the community is above the epidemic threshold.

Inference methods

We combined two methods for inference. First, max-
imum likelihood estimates of the model parameters were
estimated as well as their 95% confidence intervals (95%
CI) obtained from the Hessian matrix. The optim func-
tion in R was used. Then, the number of cases being
small, a Bayesian inference was performed to obtain
more robust intervals estimates. MCMC (Markov Chain
Monte Carlo) methods [5] gave posterior parameters
means and 95% credible intervals (95% Crl) from 2.5%
and 97.5% quantiles of posterior distribution. Parameters
were assigned non-informative priors [6]. Three inde-
pendent MCMC with 3 different initial values were run
in parallel to assess convergence on posterior parameter
distributions and to check that the results were not sen-
sitive to the choice of starting values. Gelman and Rubin
convergence criteria [7] was also calculated and
examined. After an initial burn-in period of 20,000
iterations, 80,000 iterations served to compute posterior
parameter distributions. MCMC were analyzed with
OpenBugs and the coda package in R.

Exposure to ILI in healthcare settings
The model was applied to assess the effects of exposure
on ILI risk in healthcare settings. The data originated
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from 3 sources. The first source was a prospective obser-
vational study carried out between November 15, 2004
and April 15, 2007 at Edouard Herriot Hospital in Lyon,
France [8]. During the study, each participating ward
was followed-up daily to detect ILI cases. A case was
defined as an adult patient or HCW presenting with
fever (237.8°C) and cough or sore throat. A non-case
was defined as a patient or a HCW free from ILI during
the study period. As secondary source, all hospital data
(admission/discharge dates and ward) on cases and non-
cases were extracted from the hospital’s information sys-
tem. Data on HCW work periods were included. To
quantify exposure to ILI and to define lags, the max-
imum incubation period was set at /=5 days [9]. There-
fore, for each patient, exposure was defined as the
presence of a contagious person in the same ward and
on 5 previous days. We assumed a contagious period for
ILI of /=6 days, starting 1 day before symptom onset
[9]. Having a small number of cases, exposures to conta-
gious persons 4 and 5 days earlier were grouped to-
gether. Similarly, exposures occurring during the 4th to
6th days of the source contagiousness were pooled. The
third source was the French Institute for Public Health
Surveillance [10], for defining epidemic and non-
epidemic periods in the Rhone-Alpes region.

We assumed that infected patients didn’t become sus-
ceptible again and therefore follow-up was censored the
day of ILI onset for cases and the day of discharge for
patients free from ILI. Over a total of 138,411 patient-
days (19,773 weeks) of follow-up, 64 incident ILI cases
were observed among 21,519 patients at risk of ILL

Results
Parameter estimation by maximum likelihood and
Bayesian inference gave similar results (Table 1).

The daily ILI risk per 10,000 patients-days associated
with observed exposure was 129.1 (95% Crl: 84.5, 182.9).
The ILI risk associated with unobserved exposure was
0.8 (95% CrL: 0.3, 1.6) in non-epidemic situation in the
community and 4.3 (95% Crl: 0.4, 11.0) in epidemic situ-
ation. The distribution of ILI risk according to lags was
72%, 6%, 12% and 10% for observed exposures occurring
1, 2, 3 and 4-5 days earlier respectively. The distribution
of this risk was 41%, 19%, 25% and 14% during observed
exposure to patients or HCWs 1 day before their symp-
tom onset, 1st, 2nd and 3rd to 5th days after symptom
onset respectively.

Figures 1 and 2 present the daily ILI risk according to
the day of contagiousness, lags and epidemic threshold
in the community (see Additional file 1 for details of
calculations). In the figures, each bar represents the risk
of ILI associated with one exposure at a given lag and a
given day of contagiousness, in the absence of all other
exposures. The results indicate that ILI risk was highest
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Table 1 Parameter estimates of Influenza-Like llIness (ILI) risk in a university hospital by 2 inference methods

Maximum likelihood Bayesian inference

Mean 95% confidence interval Mean 95% credible interval
ILI risk associated with unobserved exposure (per 10,000 patients-days)
No epidemic in the community 0.8 03-16 0.8 03-16
Epidemic in the community 43 04-11.0 43 04-11.0
ILI risk associated with observed exposure (per 10,000 patients-days) 129.1 84.5-182.9 129.1 84.5-182.9
Distribution of risk according to lags
1 day 82 51-95 72 52-89
2 days 1 0-98 6 0-21
3 days 15 0-81 12 1-32
4 to 5 days 2 -* 10 0-27
Total 100 - 100 -
Distribution of risk according to the source’s contagious period
1 day before the onset of source symptoms 47 24-71 41 21-62
1st day after the onset of source symptoms 17 6-42 19 4-39
2nd day after the onset of source symptoms 24 8-51 25 9-44
3rd to 5th days after the onset of source symptoms 12 -* 14 4-29
Total 100 - 100 -

*Confidence interval not computable because this parameter was inferred from others.

when observed exposure took place the previous day
whatever the day of contagiousness and ILI incidence in
the community. A slight decrease in risk was observed
with the day of contagiousness.

Discussion
In the present work, a statistical individual model allows
estimation of CD risk to patients who may have had

multiple observed exposures and unobserved exposures in
healthcare settings. The model is defined at the patient and
daily levels, which allowed capturing individual and tem-
poral variations of observed and unobserved exposures to
finally precisely assess the relationship between exposures
and CD risk. An additional feature of the model is to inte-
grate the natural history of the disease. Then, the model
can serve to identify days of exposure associated with
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ILI risk per 10,000 patients-days

1 day before symptom
onset

1st day of symptoms

Day of source contagiousness

O4- to 5- day lag
m3-day lag
m2-day lag

B 1-day lag

2nd day of symptoms 3rd to 5th days of

symptoms

Figure 1 Risk of Influenza-Like lliness (ILI) associated with exposure to a patient or a healthcare worker according to a given lag and
day of source contagiousness in a healthcare setting during community epidemic period. Each bar represents the risk of ILI associated
with one exposure at a given lag and a given day of contagiousness, in the absence of all other exposures.
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ILI risk per 10,000 patients-days

1 day before symptom
onset

1st day of symptoms

Contagious period of the source

Figure 2 Risk of Influenza-Like lliness (ILI) associated with exposure to a patient or a healthcare worker according to a given lag and
day of source contagiousness in a healthcare setting outside community epidemic period. Each bar represents the risk of ILI associated
with one exposure at a given lag and a given day of contagiousness, in the absence of all other exposures.

0O4- to 5- day lag
m3-day lag
m2-day lag

B 1-day lag

3rd to 5th days of
symptoms

2nd day of symptoms

increased risk of CD as well as days of contagiousness
associated with heightened risk of disease transmission.

Application of this model to ILI showed that, on any
given day, the observed ILI risk among adult patients
was 129.1 per 10,000 patients-days and was mainly
associated with exposures to patients or HCWs 1 day
earlier and during the 1st day of source contagiousness.
These results suggest 1) that the incubation period of ILI
could be <24 h, and 2) that ILI could be transmitted when
the source has no symptoms yet (for ILI, contagiousness
starts 1 day before symptom onset [9]). In addition, the ILI
risk appeared to decrease gradually, depending on the day
of contagiousness. These results are consistent with
current knowledge on ILI [9,11], which supports potential
application of the model in hospital epidemiology.

These results indicate that prevention measures, such
as closing wards, restricting visits, avoiding contact be-
tween healthy patients and contagious patients or
HW(Cs, isolating contagious persons, or antiviral treat-
ment and prophylaxis, should be started as soon as a case
is suspected. A delay in alert or implementation of these
measures could increase the risk of transmission. In
addition, contact tracing may be useful to identify
patients who may have been in contact with a contagious
symptomatic patient or HCW the day preceding his or
her symptom onset. These results are proposed for ILI
and influenza among adult patients, but the model could
be easily extended to children with longer contagious
periods, to different subtypes of influenza viruses with
various natural histories, and to other infections sharing
similar routes of transmission and natural histories.

In comparison to observed exposure, unobserved expos-
ure accounted for a small part of the total transmission.

This may suggest that contagious persons unnoticed dur-
ing observation, asymptomatic persons or external sources
may play a limited role in ILI transmission in healthcare
settings, compared to symptomatic sources. It is unlikely
that symptomatic persons or external sources were missed
because the ILI definition we used had a high sensitivity. A
lower infectiousness of asymptomatic sources may also ex-
plain this slight effect. However, interestingly, the effect of
unobserved exposure seems to increase, by a 5-fold factor,
during epidemic period compared to non-epidemic period.
In absence of an active surveillance, this result is in favor
of limiting exposures during epidemic period or during
emergencies such as a pandemic. It could be also an argu-
ment to promote influenza vaccination for patients as well
as for HCWs.

The approach presented here had some limitations.
Exposure was defined as the presence of a contagious
person in the same ward and this definition ignored in-
formation on actual contacts between persons. In prac-
tice, however, it is difficult to follow each individual to
find out with whom, when and for how long he/she
came into contact with other individuals. In addition,
the definition of exposure may seem more appropriate
than contact because it includes all ILI transmission
types. We did not follow patients outside hospital and it
is possible that some patients presented ILI just after
discharge. In this case, it is possible that transmission
was underestimated. The bias was limited, the statistical
model taking into account the censoring process, i.e. the
discharge of the patients. The model was based on the
assumption of independence between the lag of expos-
ure and the day of source contagiousness. While this as-
sumption appeared to be weak in our case, there were
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other ways to estimate the parameters of a WAIFW
matrix, for example, by equality constraints between
parameters [3]. However, this hypothesis had the advan-
tage of facilitating the estimation and interpretation of
parameters. Equality constraints seem to be not entirely
appropriate and could limit study of the influence of the
day of contagiousness and of the lag of exposures on CD
risk. However, shape constraints [12], reflecting the nat-
ural history of disease or adding a priori information,
should be considered in future improvements of the
model. For example, incubation [9,11] and contagious-
ness periods [9] follow upswing and downswing trends,
and it would be interesting to consider such information
in the model.

Due to the hierarchical structure of the hospital (i.e.
patients in wards and wards in the hospital), it is likely
that patients in the same wards may be not independent.
A mixed effects model would be an interesting extension
of the model, by adding a ward-specific scale parameter
(k) representing a possibly different CD risk for each
participating ward in the study. However the low num-
ber of events per ward (some wards experienced no ILI)
would not have permitted to obtain reasonable estimates
under the mixed-effects version of the model. It would
be relevant to apply this model and its extensions to lar-
ger datasets.

Conclusions

Our results disclosed that the presence of a contagious
patient or HCW dramatically increased the risk of ILI to
other patients. Therefore, the proposed statistical model
could be an interesting epidemiological tool to further
assess the relative contribution of observed and unob-
served exposures to CD risk in healthcare settings. Be-
yond the statistical approach, these results will be
helpful to improve daily prevention of CDs in hospitals.
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observed exposure.
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