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Abstract

Background: Within longitudinal epidemiological research, ‘count’ outcome variables with an excess of zeros
frequently occur. Although these outcomes are frequently analysed with a linear mixed model, or a Poisson mixed
model, a two-part mixed model would be better in analysing outcome variables with an excess of zeros. Therefore,
objective of this paper was to introduce the relatively ‘new’ method of two-part joint regression modelling in
longitudinal data analysis for outcome variables with an excess of zeros, and to compare the performance of this
method to current approaches.

Methods: Within an observational longitudinal dataset, we compared three techniques; two ‘standard’ approaches
(a linear mixed model, and a Poisson mixed model), and a two-part joint mixed model (a binomial/Poisson mixed
distribution model), including random intercepts and random slopes. Model fit indicators, and differences between
predicted and observed values were used for comparisons. The analyses were performed with STATA using the
GLLAMM procedure.

Results: Regarding the random intercept models, the two-part joint mixed model (binomial/Poisson) performed
best. Adding random slopes for time to the models changed the sign of the regression coefficient for both the
Poisson mixed model and the two-part joint mixed model (binomial/Poisson) and resulted into a much better fit.

Conclusion: This paper showed that a two-part joint mixed model is a more appropriate method to analyse
longitudinal data with an excess of zeros compared to a linear mixed model and a Poisson mixed model. However,
in a model with random slopes for time a Poisson mixed model also performed remarkably well.
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Background
Within longitudinal epidemiological research, ‘count’
outcome variables frequently occur. Nowadays it is
possible to analyse longitudinal ‘count’ outcome
variables with advanced statistical techniques such as
mixed models. Because ‘count’ data often follow a
Poisson distribution, these data are mostly analysed
with longitudinal Poisson regression. In many situations
‘count’ data does not exactly follow a Poisson distribution;
they are often overdispersed, (i.e. the variance of the
outcome variable is higher than the mean value). One of
the solutions to deal with this overdispersion in count data
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is to use a negative binomial regression analysis [1]. How-
ever, overdispersion in the count variable is mostly caused
by an excess of zeros, which cannot completely be
controlled by assuming a negative binomial distribution.
Examples of data with an excess of zeros (which are also
known as ‘semicontinuous’ data) [2] within the field of
epidemiology are: the number of hypoglycaemic events in
diabetics, the number of hospitalisations in the general
population, the number of sports injuries, the number of
falls in a group of elderly people and the number of
cigarettes smoked.
The classical methods to analyse outcome variables

with an excess of zeros are to reduce the informa-
tion in the data to either a dichotomous outcome
variable (mostly comparing zero versus non-zero) or
a categorical outcome variable (mostly comparing
zero versus two groups of non-zero outcomes in
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which the groups are divided according to the me-
dian of the non-zero part). Sometimes, researchers
try to transform (with a logarithmic transformation)
a Poisson distribution with many zeros into a
normally distributed variable. However, zeros cannot
be log transformed and other computations such as
adding ‘1’ to the ‘count’ outcomes with an excess of
zeros before log transforming does not solve the
problem either.
To properly address the problem of excess of zeros,

several so-called two-part statistical models have been
developed. These models, which are particularly popular
in econometrics, are also known as mixed response or
mixed distribution models and they include zero-inflated
Poisson (ZIP) regression, zero-inflated negative bino-
mial (ZINB) regression, sample selection methods,
and hurdle models [3-16]. The idea behind these two-
part approaches is that the outcome variable has a
mixed distribution (i.e. a binomial distribution to deal
with zero versus non-zero, and a Poisson (or other)
distribution to deal with the non-zero part of the
distribution). In the standard two-part approaches the
two processes are split and for every process different
regression coefficients are obtained. This also means
that different sets of covariates can be included, one
set for the binomial process (zero versus non-zero)
and one set for the Poisson process. In a ZIP model,
for instance, one regression coefficient reflects the
relationship of a certain covariate with zero versus
non-zero, while another regression coefficient reflects
the relationship with the ‘count’ outcomes above zero.
[17,18]. For some research questions (e.g. investigating
the determinants of smoking behaviour) this is a nice
feature. However, in many situations one regression
coefficient for each covariate would be preferable (e.g.
the analysis of hypoglycaemic events). Despite the
preference of one regression coefficient, it should be
realized that this regression coefficient is somewhat
difficult to interpret, because it combines a binomial
and a Poisson process into one coefficient. Models
that provide one set of regression coefficients for the
binomial distribution and Poisson (or other) distribu-
tion combined are known as two-part joint regression
models [19-22]. For longitudinal data analysis these
two-part joint regression models are almost never
used in epidemiological practice.
The objective of this paper is to introduce a relatively

‘new’ method of a two-part joint mixed model (bino-
mial/Poisson) in longitudinal data analysis for ‘count’
outcome variables with an excess of zeros. Further-
more, the performance of this new method will be
compared to a linear mixed model and a Poisson
mixed model; two models that are frequently used for
longitudinal epidemiological data.
Methods
Dataset
The observational longitudinal dataset used for the ana-
lyses was obtained from the Study of the Psychological
Impact in Real care of Initiating insulin glargine
Treatment (SPIRIT) conducted between 2005 and
2009. This study aimed to examine the use of insulin
glargine (a long acting insulin analog) on general
emotional well-being, diabetes symptom distress and
worries about hypoglycaemia in Dutch type 2
diabetes patients who previously used oral anti-
hyperglycaemic medication. Type 2 diabetes patients
who used oral anti-hyperglycaemic agents were
recruited from 363 Dutch primary care practices,
which were spread across the country. This resulted
in a total sample of 889 patients. Measurements
were conducted at baseline, after three and after six
months. Results from this study have been presented
previously [23]. We re-analysed the data in order to
assess the development over time in hypoglycaemic
events for diabetic patients, and the difference
between low and high educated diabetes patients
with three different mixed models.

Statistical methods
All analyses were performed within the framework of
longitudinal mixed models, The general idea behind
mixed models for longitudinal data analysis is that an
adjustment is made for the correlated outcome
observations within individuals over time by estimating
either the differences in average values of the outcome
and/or the differences in relationships with time-
dependent covariates. These differences i.e. variances are
known as random effects and can be added to the inter-
cept of the regression model (i.e. random intercept) and/
or to the different regression coefficients of time-
dependent covariates (i.e. random slopes) [24-26]. In this
paper two ‘standard’ approaches, i.e. a linear mixed
model treating the outcome variables as normally
distributed and a Poisson mixed model treating the
outcome variables as Poisson distributed, will be
compared with a two-part joint regression model in
order to analyse the development over time and to
analyse the differences between low and high
educated patients. Equation 1a shows the linear mixed
model with only a random intercept, while equation 1b
shows the linear mixed model with both a random
intercept and a random slope for time.

yij ¼ β1 þ ζ1j
� �þ β2xij þ ∈ij ð1aÞ

yij ¼ β1 þ ζ1j
� �þ β2 þ ζ2j

� �
xij þ ∈ij ð1bÞ
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Where yij is the hypoglycaemic score for the jth patient
at the ith time, xij is the corresponding time, β1 the fixed
intercept of the patients,ζ1j the patient-specific random
intercept, β2 the fixed slope of the patients, ζ2j the
patient-specific random slope, and ζij is a patient-specific
residual error term at the ith time [26]. It was assumed
that each of the two variations in the random intercept
and the random slope was normally distributed with an
average of zero and a variance σ2. Furthermore, the
Poisson (ln(μij)) mixed model can be specified in a
similar way.
For the two-part joint approach, a binomial/Poisson

mixed distribution was used. The general idea behind
this mixture is that the outcome variable has a binomial
distribution for the zero versus non-zero part and a
Poisson distribution for the non-zero part. The binomial
distribution is modelled by a logit link function, while
the Poisson distribution is modelled by a log link
function. The response probability of a longitudinal
two-part joint binomial/Poisson regression model can
be written down as:

Pr yij xij
�� � ¼ π1g yij; μij ¼ 0

� �
þ π2g yij; μij ¼ exp x0ijβ

� �� ��

ð2Þ
The first part of the equation has a mean of zero and

the second part of the equation has a mean that depends
on the covariates (time). π1 and π2=1−π1 are the compo-
nent weights/latent class probabilities and g(yij;μij) is the
Poisson probability for count yij with mean μij [27]. A
full explanation of the mathematical background of the
analyses with mixed distribution models can be found in
other papers [28-36]. For the two-part joint model, ran-
dom intercepts and random slopes can be added in a
similar fashion as for the linear mixed model.
In the present analyses, educational level was modelled

as a dichotomous variable distinguishing between low
and high education (with low education as reference),
time was modelled as a categorical variable (represented
by two dummy variables, with baseline as reference).
Two model fit parameters were used to compare the
three models with each other. Firstly, the Bayesian infor-
mation criterion (BIC) was used. The BIC is an indicator
of model fit, based on the −2 log likelihood, but taking
Table 1 The proportion and median of diabetes patients with

Low education

≥ 1 hypoglycaemic events n Percentage Median
(≥ 1 hyp)

n

T0 (Baseline) 140 (34.5%) 4 157

T1 (3 months) 121 (36.9%) 3 141

T2 (6 months) 105 (37.9%) 2 117

* Having zero hypoglycaemic events is the complement of ≥ hypoglycaemic events
into account the number of parameters estimated [37].
A lower BIC indicates a better performance of the
model. Secondly, predicted frequencies (including the
random effects) of the outcome variable, obtained when
fitting the models, were compared to observed frequen-
cies in hypoglycaemic events to compare the accuracy of
the different models. This comparison was graphically
presented in scatter plots. In addition, the means of the
squared residuals (MSR) were computed for the different
models. A lower MSR indicates a better performance of
the model.
All analyses were performed with Stata (version 11.1)

[38]. Estimations were performed with the GLLAMM
procedure [26,39], using adaptive quadrature to estimate
the random effects. Scatter plots were created within
PASW Statistics 18 [40].

Results
Table 1 shows the number, the proportion, and the
median of the patients who have experienced ≥1
hypoglycaemic event for the three measurements over
time by education as well as for the total number of
patients. The proportion of both lower and higher
educated patients that experienced ≥1 hypoglycaemic
event increased over time. 34.5% of the lower educated
patients experienced ≥1 hypoglycaemic event at baseline
and after six months this increased to 37.9%, for the
higher educated patients the percentage increased from
43.1% to 50.4%. In contrast, the median number of
events for subjects with ≥1 hypoglycaemic event
decreased over time. For the lower educated patients the
median decreased from 4 to 2 and for the higher
educated patients from 4 to 3. Table 2 shows the results
of the analyses relating the hypoglycaemic events
(dependent variable) to educational level (independent
variable) when the number of hypoglycaemic episodes
was treated as normal, Poisson or binomial/Poisson
(two-part joint) distributed. All three models showed a
significant positive relationship between education and
the number of hypoglycaemic events. The model fit was
best for the two-part joint mixed model (binomial/
Poisson) (BIC: 6687.64, MSR: 7.26). Furthermore,
Figure 1 depicts the accuracy of the different analyses
in scatter plots of observed vs. predicted values. The
≥ 1 hypoglycaemic event by time and educational level*

High education Total

Percentage Median
(≥ 1 hyp)

n Percentage Median
(≥ 1 hyp)

(43.1%) 4 297 (38.6%) 4

(49.3%) 3 262 (42.7%) 3

(50.4%) 3 222 (43.6%) 3

.



Table 2 Regression and model fit parameters for the three longitudinal models with a random intercept, evaluating
the difference in hypoglycaemic events for education*

Linear mixed model Poisson mixed model Two-part joint mixed model (binomial/Poisson)

Coef. Std. Err. P > |z| Coef. Std. Err. P > |z| Coef. Std. Err. P > |z|

Educational level (high education) 1.14 (0.36) 0.001 0.66 (0.15) 0.000 0.62 (0.15) 0.000

BIC 11842.87 7609.073 6687.639

Mean squared residual 13.75 9.73 7.26

Abbreviation: Regression coefficients (Coef.), Standard errors (Std. Err.), P-value (P > |z|), Bayesian information criterion (BIC).
* Education is time independent, therefore random slopes could not be calculated.
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binomial/Poisson model clearly performed best espe-
cially in correctly predicting the number of patients
with zero events.
Table 3 shows the results of the analyses regarding the

development over time as independent variable with
only a random intercept. In all three models the regres-
sion coefficients for time were negative, and the
corresponding P-values at T2 were significant. Compa-
ring both the fit indicators (Table 3) and the accuracy
(Figure 2), similar results were found as for the analyses
comparing higher and lower educated patients. The two-
part joint model (binomial/Poisson) had the best model
fit (BIC: 7013.64, MSR: 6.56) and was also best in
correctly predicting the zero events. However, the
models changed considerably once random slopes for
time were added to the models (Table 4): The signs of
the regression coefficients for the Poisson mixed model
and the two-part joint mixed model (binomial/Poisson)
changed from negative to positive. The regression
coefficients derived from the Poisson mixed model
changed from −0.11 (3 months) and −0.26 (6 months) to
0.28 (3 months) and 0.38 (6 months) when random
slopes were included. For the two-part joint mixed
model (binomial/Poisson) the regression coefficients
changed from −0.18(3 months) and −0.27 (6 months) to
0.12 (3 months) and 0.25 (6 months). Adding random
Figure 1 Scatter plots of the observed vs. predicted values for the th
hypoglycaemic events for education.
slopes to the models resulted in a much better fit for the
Poisson (BIC: 6774.75, MSR: 0.24) and the two-part joint
mixed model (binomial/Poisson) (BIC: 6467.55, MSR:
0.30). Furthermore, the predicted values (Figure 3) for
the Poisson mixed model and the two-part joint mixed
model (binomial/Poisson) were in close accordance to
the observed values. However, to a small extent there
was still a difference in the correctly estimated zeros in
favour of the two-part joint mixed model (binomial/
Poisson). In total, 89.5% of the zeros were correctly
estimated for the Poisson mixed model and 92.8% of the
zeros were correctly estimated for the longitudinal
two-part joint mixed model.

Discussion
This study showed that the two-part joint mixed model
(binomial/Poisson) model performed much better than
the ‘conventional’ mixed models when only a random
intercept was added to the models. This was especially
the case in estimating the excess of zeros. However, when
random slopes were added to the models, performance of
the Poisson mixed model increased considerably and
performed more or less the same as the two-part joint
mixed model (binomial/Poisson).
It is known from the literature that Poisson regression

can handle even a high fraction of zeros [1]. In the
ree longitudinal models with a random intercept, evaluating the



Table 3 Regression and model fit parameters for the three longitudinal models with a random intercept, evaluating
the difference in development of the hypoglycaemic events over time

Linear mixed model Poisson mixed model Two-part joint mixed model (binomial/Poisson)

Coef. Std. Err. P > |z| Coef. Std. Err. P > |z| Coef. Std. Err. P > |z|

T1 (3 months) −0.31 (0.26) 0.220 −0.11 (0.11) 0.333 −0.18 (0.12) 0.129

T2 (6 months) −0.73 (0.24) 0.002 −0.26 (0.11) 0.015 −0.27 (0.10) 0.010

BIC 12395.09 7983.639 7013.644

Mean squared residual 13.61 9.02 6.56

Abbreviation: Regression coefficients (Coef.), Standard errors (Std. Err.), P-value (P > |z|), Bayesian information criterion (BIC).

Spriensma et al. BMC Medical Research Methodology 2013, 13:27 Page 5 of 7
http://www.biomedcentral.com/1471-2288/13/27
present study the percentage of subjects having zero
events was relatively high and decreased over time
from 61.4% to 56.4%. However, it is not exactly
known to what extent the Poisson distribution would
be able to model the excess of zeros. In addition, the
performance of the Poisson mixed model regarding
the number of zeros improved considerably when
random slopes were added to the model. Surprisingly,
adding random slopes to the model resulted not only
in a much better fit, but also in a sign change for the
development over time in both the Poisson mixed
model and the two-part joint mixed model (binomial/
Poisson). Although is it not clear why this sign
change occurs, a possible explanation can be that in a
model with a random intercept, only the ‘average’
values are allowed to differ between the subjects and
therefore the regression coefficient obtained from
these analyses only reflects the ‘average’ decrease in
the number of events. When adding random slopes to
the models, also the development over time is allowed to
differ between the subjects. Therefore, an analysis with
both a random intercept and random slopes also reflects
the increased probability of having an event. This leads to
a much better fit and a positive regression coefficient
instead of an inverse one.
Figure 2 Scatter plots of the observed vs. predicted values for the th
the difference in development of the hypoglycaemic events over tim
The interpretation of the regression coefficients of the
linear mixed model and the Poisson mixed model are
quite straightforward. For example, the interpretation of
the relation between education and hypoglycaemic
events can be interpreted as following for the linear
mixed model (Table 2): Higher educated diabetic
patients have 1.14 more events than (on average over
time) compared to lower educated diabetic patients. For
the Poisson mixed model the regression coefficient can
be interpreted as (Table 2): exp (0.66) = 1.93. On average
over time, higher educated diabetic patients have an
increased prevalence rate of 93% in hypoglycaemic
events compared to lower educated diabetic patients.
The interpretation of the regression coefficient of the
two-part joint mixed model is somewhat more
complicated, since the model gives a combined regres-
sion coefficient for the binomial process and the Poisson
process. However, some researchers have interpreted the
regression coefficient of a two-part joint model as being
the result for the cases that are above the limit [41]
p. 320, [42] p. 503. These cases above the limit would
be interpreted in the same way as a Poisson model i.
e. higher educated diabetic patients have an increased
prevalence rate of 86% in hypoglycaemic events compared
to lower educated diabetic patients (exp(0.62) = 1.86).
ree longitudinal models with only a random intercept, evaluating
e.



Table 4 Regression and model fit parameters for the three longitudinal models with a random intercept and random
slopes for time, evaluating the difference in development of the hypoglycaemic events over time

Linear mixed model Poisson mixed model Two-part joint mixed model (binomial/Poisson)

Coef. Std. Err. P > |z| Coef. Std. Err. P > |z| Coef. Std. Err. P > |z|

T1 (3 months) −0.35 (0.27) 0.201 0.28 (0.16) 0.093 0.12 (0.15) 0.424

T2 (6 months) −0.82 (0.26) 0.001 0.38 (0.17) 0.027 0.25 (0.16) 0.128

BIC 12198.49 6774.745 6467.549

Mean squared residual 5.12 0.24 0.30

Abbreviation: Regression coefficients (Coef.), Standard errors (Std. Err.), P-value (P > |z|), Bayesian information criterion (BIC).
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To overcome the problem of the interpretation of a
combined regression coefficient, McDonald and
Moffit [41] have developed a decomposition tech-
nique for the regression coefficient of a two-part
joint binomial/normal (tobit) model. The general
idea of their decomposition technique is that the
regression coefficient combines two interpretations:
1) The difference in the outcome variable of being
above the limit, weighted by the probability of being
above the limit; and 2) the difference in the prob-
ability of being above the limit, weighted by the
expected value of the outcome variable if above the
limit [43]. In theory, this technique could also be
used for two-part joint models that, instead of using
a normal distribution, use another distribution such
as the Poisson distribution for the values that are
above zero.
In the present paper a two-part joint model was used

to model the number of hypoglycaemic events obtaining
a shared regression coefficient for both the binomial and
the Poisson distribution combined. An important reason
why one regression coefficient is preferred is that the
outcome variable in this example (i.e. the number of
hypoglycaemic events) should be seen as one process
that cannot be split into two processes with separate
Figure 3 Scatter plots of the observed vs. predicted values for the th
slopes for time, evaluating the difference in development of the hypo
regression coefficients. In contrast, sometimes it is
better to analyse the data with a two-part separate
model, leading to separate regression coefficients for
both parts of the process. An example could be the
analysis of determinants of smoking behaviour, which
can be different for the logistic part of the analysis
and the Poisson part. The logistic part of the
analysis may need a set of covariates in order to
model why some people smoke and others do not
smoke, furthermore a different set of covariates may
be needed to model how many cigarettes a person
will smoke.
Conclusions
This paper showed that the two-part joint mixed
model (binomial/Poisson) is a more appropriate
method for the analysis of longitudinal data with an
excess of zeros when only a random intercept is
included into a model. However, in the model with
random slopes for time, also the Poisson mixed
model performed remarkably well. In addition, more
research is needed on the interpretation of the
regression coefficients of the longitudinal two-part
joint model.
ree longitudinal models with a random intercept and random
glycaemic events over time.
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