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Background: Functional data analysis (FDA) is increasingly being used to better analyze, model and predict time
series data. Key aspects of FDA include the choice of smoothing technique, data reduction, adjustment for
clustering, functional linear modeling and forecasting methods.

Methods: A systematic review using 11 electronic databases was conducted to identify FDA application studies
published in the peer-review literature during 1995-2010. Papers reporting methodological considerations only

Results: In total, 84 FDA application articles were identified; 75.0% of the reviewed articles have been published since
2005. Application of FDA has appeared in a large number of publications across various fields of sciences; the majority
is related to biomedicine applications (21.4%). Overall, 72 studies (85.7%) provided information about the type of
smoothing techniques used, with B-spline smoothing (29.8%) being the most popular. Functional principal component
analysis (FPCA) for extracting information from functional data was reported in 51 (60.7%) studies. One-quarter (25.0%)
of the published studies used functional linear models to describe relationships between explanatory and outcome
variables and only 8.3% used FDA for forecasting time series data.

Conclusions: Despite its clear benefits for analyzing time series data, full appreciation of the key features and value of
FDA have been limited to date, though the applications show its relevance to many public health and biomedical
problems. Wider application of FDA to all studies involving correlated measurements should allow better modeling of,
and predictions from, such data in the future especially as FDA makes no a priori age and time effects assumptions.
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Background

Recent increased interest in the application of statistical
modeling to medicine, biomedicine, public health, biology,
biomechanics and environmental science has largely been
driven by the need for good data to inform government
policy and planning processes for health service delivery
and disease prevention. Importantly, such models will only
be useful in the long term if they are accurate, based on
good quality data, and generated through application of
robust appropriate statistical methods. Functional data
analysis (FDA) is one such approach towards modeling
time series data that has started to receive attention in the
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literature, particularly in terms of its public health and bio-
medical applications.

Commonly, time series data are treated as multivariate
data because they are given as a finite discrete time series.
This usual multivariate approach completely ignores im-
portant information about the smooth functional behavior
of the generating process that underpins the data [1]. It
also suffers from issues associated with highly correlated
measurements within each functional object. The basic
idea behind FDA is to express discrete observations arising
from time series in the form of a function (to create func-
tional data) that represents the entire measured function
as a single observation, and then to draw modeling and/or
prediction information from a collection of functional data
by applying statistical concepts from multivariate data
analysis. In doing so, it has the advantage of generating
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models that can be described by continuous smooth dy-
namics, which then allow for accurate estimates of param-
eters for use in the analysis phase, effective data noise
reduction through curve smoothing, and applicability to
data with irregular time sampling schedules. Ramsay [2,3]
presents a strong argument for FDA.

Ramsay and Dalzell [4] present several practical rea-
sons for considering functional data:

1) smoothing and interpolation procedures can yield
functional representations of a finite set of
observations;

2) it is more natural to think through modeling
problems in a functional form; and

3) the objectives of an analysis can be functional in
nature, as would be the case if finite data were used
to estimate an entire function, its derivatives, or the
values of other functionals.

Miiller has recently described important characteristics
of FDA [5]. The FDA approach is highly flexible in the
sense that the timing intervals for data observations do
not have to be equally spaced for all cases and can vary
across cases. Importantly, FDA methods are not necessar-
ily based on the assumption that the values observed at
different times for a single subject are independent. Al-
though functional data themselves are not new, a new
conceptualization of them has become necessary because
of the increasing sophistication of available data collec-
tions [4]. Data collection technology has evolved over
recent decades, allowing more dense sampling of observa-
tions over time, space, and other continuum measures.
Such data are usually interpreted as reflecting the influ-
ence of certain smooth functions that are assumed to
underlie and to generate the observations. Although clas-
sical multivariate statistical techniques are often applied to
such data, they do not take advantage of additional infor-
mation that could be implied by the smoothness of under-
lying functions. In particular, FDA methods can often
extract additional information contained in the function
and its derivatives [6,7] that is not normally available from
application of traditional statistical methods [1]. Because
the FDA approach essentially treats the whole curve as a
single entity, there is also no concern about correlations
between repeated measurements. This represents a change
in philosophy towards the handling of time series and cor-
related data [8].

There are a number of good illustrations of applica-
tions of FDA; for example, Ramsay and Silverman [9,10]
using curves as data, Locantore et al. [11] with images as
data, and Yushkevich and Pizer [12] where the data
points are shape representations of body parts. Applica-
tion of FDA has also been published across various sci-
entific fields including analysis of child size evolution
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[9], climatic variation [4,13], handwriting in Chinese [14],
acidification processes [15], land usage prediction based
on satellite images [16], medical research [17-19], behav-
ioral sciences [20], term-structured yield curves [21], and
spectrometry data [22]. Most recently, Ullah and Finch
[23] found FDA to be an effective exploratory and model-
ing technique for highlighting trends and variations in
the shape of the age—falls injury incidence relationship
over time.

In contrast to most other methods commonly used to
model trends in time series data, a key strength of the
FDA approach is that it makes no parametric assumptions
about age or time effects. The FDA methods for modeling
and forecasting data across a range of health and demo-
graphic issues also have significant advantages for better
understanding trends, risk factor relationships, and the ef-
fectiveness of preventive measures [24,25]. In the book
Functional Data Analysis, Ramsay and Silverman [9] give
an accessible overview of the foundations and applications
of FDA. In an earlier book entitled Applied Functional
Data Analysis, the same authors [10] provide many exam-
ples that share the property of being functional forms of a
continuous variable, most often age or time. In 2004,
Statistica Sinica published a special issue that included
two relevant review articles that dealt exclusively with the
close connection between longitudinal data and functional
data [26,27]. In his PhD thesis, Ullah [28] described the
significance and application of FDA in demographic data
settings. Software developed for MATLAB, S-PLUS and R
by Ramsay and Silverman specifically to support FDA is
available from <http://www.psych.mcgill.ca/misc/fda/>.

Because the application of FDA is still relatively novel,
especially to public health and biomedical data, this
paper reviews applications of the approach to date with
the aim of encouraging researchers to adopt FDA in fu-
ture studies. This paper begins with a systematic review
of the focus and application features of published peer-
reviewed FDA studies. In doing so, it provides a sum-
mary of the extent to which FDA has been applied in
different fields, including an overview of the nature of
the time series variables/data used. For each of the iden-
tified studies, this paper also describes the features of
FDA that were used, including the:

(1)representation of data via principal components
analysis, which plays a key role in defining
smoothness and continuity conditions of the
resulting data;

(2)classification of data, which produces different
functional groups (or clusters) for gaining more
sophisticated knowledge of different pathways and/
or functions for large scale data;

(3)functional linear models used for testing the effects
on outcomes in functional form; and
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(4)forecasting via stochastic methods, to measure the
forecast uncertainty through the estimation of a
prediction interval.

Methods

This review was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) Statement [29]. We conducted a sys-
tematic search of 11 electronic databases to identify peer-
reviewed FDA application studies published between Janu-
ary 1995 and December 2010. The databases used were
Academic Search Premier, ScienceDirect, SpringerLink,
Cambridge Journals, MEDGE (Informit), Oxford Journals,
PubMed, Sage Journals Online, Web of Science, Wiley
Interscience Journals, and MEDLINE. We used the phrase
functional data analysis to identify relevant articles, and
considered only English language articles published in
peer-reviewed journals. In addition to the electronic data-
base search, the search strategy included secondary
searching of the reference lists of identified articles.

Inclusion and exclusion criteria

Studies were eligible for inclusion if they were original
research articles in peer-reviewed journals reporting an
application of FDA. We excluded studies of statistical

Page 3 of 12

methodology development without application, and ab-
stracts, letters, and conference papers.

Identification of studies

The first author, with the assistance of two research assis-
tants, sourced and screened all identified articles. This in-
cluded viewing titles and reading abstracts. We obtained
full text versions of potentially eligible articles, assessed
them against the exclusion/inclusion criteria, and removed
obvious exclusions.

In the first review phase, 334 articles were identified.
Figure 1 summarizes the numbers of studies identified and
the reasons for exclusion at each stage. Searching the titles
and abstracts of identified studies excluded 160 (47.9%)
articles that were not directly relevant to statistical FDA
applications. These included reports of functional magnetic
resonance imaging (fMRI) to assess patterns of brain acti-
vation in patients suffering from chronic traumatic brain
injury [30], functional performance in participants with
functional ankle instability [31], and the relationship be-
tween neurocognitive function and noncontact anterior
cruciate ligament injuries [32].

In the second phase, we conducted a complete detailed
review of the remaining 174 retrieved articles to ensure
they fully met the inclusion and exclusion criteria. A

-

Phase Included studies

334 articles identified
through keyword phrase:
functional data analysis

]

Excluded studies

160 excluded after viewing titles and

Y

2 174 articles retrieved for

detailed review

abstracts

102 excluded

76 No FDA application

3 72 articles retained

15 Papers related to justification of
FDA theory, not examples of its
application

11 Not a full peer-reviewed article

12 articles identified from the

A

references of searched articles

4 84 articles included in the
final in-depth review

analysis (FDA).

Figure 1 Systematic search strategy used to identify 84 peer-review studies with published application of functional data
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further 102 articles were excluded at this stage, leaving 72
peer reviewed articles for the third phase. Studies excluded
at this stage were mainly those that justified FDA theory ra-
ther than presenting examples of its application [8,33-35].
A further 12 articles were found in the manual search of
reference lists of the 72 retained articles.

We retained a final set of 84 articles for detailed review.
The lead author reviewed each paper in terms of key FDA
criteria, as outlined below, and assessed its field of applica-
tion and the specific FDA methods applied. Figure 1 uses
the PRISMA [29] flowchart to summarize all stages of the
paper selection process.

Results

Overview of the published FDA studies

Table 1 summarizes the final set of reviewed papers, and
shows fields of application, outcome of interest, and use
of the following important FDA features:

e smoothing technique;

e use of functional principal component analysis
(EPCA);

e type of clustering adjustment;

e functional linear modeling (FLM) approach adopted
to relate explanatory and outcome variables; and

e type of forecasting (if any).

The earliest identified application of FDA was in 1995
and 75% of the reviewed articles were published since
2005. This reflects increasing recognition of the import-
ant features of functional data and awareness of the de-
velopment of new statistical approaches and software for
handling them.

While diverse fields were covered in the published
studies, almost 21% of the studies related specifically to
biomedical science (18 identified papers), followed by
biomechanics applications (11 papers). Other fields of
application were medicine (10), linguistics (6), biology
(4), ecology (4), psychology (4), meteorology (4), envir-
onmental studies (4), demography (3), finance (3), neur-
ology (2), economics (2), engineering (2), agriculture (1),
physiology (1), information technology (1), education
(1), chemistry (1), geophysics (1), and behavioral science
(1). In relation to specific health issues, the most com-
mon topics were analyses of kinematics gait data (9 pa-
pers), magnetic resonance imaging (6 papers), and yeast
cell cycle temporal gene expression profiles (6 papers).

Important features of the published FDA studies

Table 1 summarizes the published studies in terms of
their use of the following key features of FDA: the
reported smoothing technique, FPCA, clustering, the
adopted forms of the FLM and forecasting. The import-
ance of each of these features is explained below and an
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overview given of how they were handled in the pub-
lished studies.

Smoothing techniques

Smoothing is the first step in any FDA, and its purpose
is to convert raw discrete data points into a smoothly
varying function. This emphasizes patterns in the data
by minimizing short-term deviations due to observa-
tional errors, such as measurement errors or inherent
system noise. When reporting FDA studies, it is import-
ant to state the smoothing approach used because obser-
vational errors always exist in longitudinal data.

Table 1 summarizes the various smoothing techniques
used to estimate functions from the discrete observa-
tions reported in the reviewed literature. Overall, all ex-
cept twelve of the studies (i.e. 85.7% of the reviewed
studies) provided information about the type of smooth-
ing technique used. Although some authors believe that
FDA can be considered as a smoothed version of multi-
variate data analysis, smoothing techniques should still
be used to reduce some of the inherent randomness in
the observed data [1,25,113].

Overall, B-spline smoothing was the most popular
smoothing technique used (25 papers), presumably be-
cause of its simplicity and flexibility for tackling a wide
range of nonparametric and semiparametric modeling sit-
uations. A common approach towards B-spline smoothing
is to construct a large number of knots (as the smoothing
parameter) to reduce the effective degrees of freedom and
increase smoothness in the overall function estimate
[114,115]. Other smoothing techniques adopted in the
published studies included use of Fourier smoothing (8
papers), regression splines (6), kernel smoothing (7), poly-
nomial splines (5), cubic splines (3), smoothing splines (3),
wavelet bases (3), roughness penalties (2), local polyno-
mials (2), local quadratics (1), local weighted regression
(1), P-splines (1) and log-splines (1).

Ramsay and Silverman [9] emphasize that the choice of
smoothing technique is dependent upon the underlying
behavior of the data being analyzed. Ideally, the smoother
should reflect or have features that match those of the
data. For example, Fourier smoothers are traditionally
used when the data are cyclical or periodic. Environmental
diurnal ozone and NO, cycles [71,116], trends in ecologic-
ally meaningful water quality variates in ecology [81], cash
flows in finance [92] and fetal heart rate monitoring in
medicine [18,19] are examples of the application of
Fourier smoothers. Splines (regression splines, polynomial
splines, B-spline) are typically chosen to represent
noncyclical nonperiodic data [25,51,84], and wavelet bases
are chosen to represent data displaying discontinuities
and/or rapid changes in behavior [117,118]. Most recently,
Ullah and Finch [23] wused constrained penalized
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Table 1 Areas of application and the functional data analysis (FDA) features used in the 84 peer-review papers
reporting application of FDA

Year Field of Outcome of interest FDA features Reference
study Smoothing Data Clustering FLM Forecasting
reduction
2010 Biomechanics Walking velocity on force platform - - - FRM - [36]
Biomechanics Kinematic gait data Polynomial spline  FPCA - - - [37]
Biomedicine  Diffusion tensor imaging fiber images Kernel - - FRM - [38]
Biomedicine  Gene expression microarray data Local polynomial FPCA FEM - - [39]
Biomedicine  Spinal cord dorsal horn neurons Locally weighted - K-Means - - [40]
regression (LOESS)
Demography  Age-specific mortality rates Kernel FPCA - - - [41]
Environment  Gas emissions Kernel - - - - [42]
Geophysics  Magnetometer Kernel FPCA - FRM - [43]
Medicine Human growth - FPCA - - - [44]
Medicine Age-specific breast cancer mortality rates  Penalized FPCA - - State space [45]
regression spline model
Medicine Age-specific fall injury incidence rates Penalized FPCA - - State space [23]
regression spline model
Medicine Human vision Wavelet - - FANOVA - [46]
2009 Biology Temporal fertility trajectories of medfly - FPCA - FMANOVA - [47]
Biomechanics Kinematic gait data - - - FRM - [48]
Biomedicine  3-Tesla magnetic resonance imaging - FPCA - - - [49]
data
Biomedicine  Denaturing gradient gel electrophoresis ~ B-spline FPCA HCA - - [50]
data
Biomedicine  microRNA transfection time-series B-spline FPCA - - - [51]
microarray expression images
Biomedicine  Paediatric diffusion tensor imaging B-spline FPCA - - - [52]
images
Biomedicine  Positron emission tomography time Local polynomial FPCA - - - [53]
course data
Meteorology  Clickstream web data (Hurricane Katrina) ~ B-spline - - FANOVA - [54]
2008 Biomechanics Ankle dorsiflexion, knee flexion, Achilles Roughness penalty  FPCA - - - [55]
tendon, calcaneal and leg
abduction angles
Biomedicine  Colon carcinogenesis experiments Regression splines  FPCA - - - [56]
Biomedicine  Diffusion tensor imaging fiber images B-spline FPCA - - - [52]
Biomedicine  Temporal gene expression profiles for the Smoothing spline  FPCA - FRM - [57]
Drosophila life cycle
Biomedicine  Time-course gene expression data B-spline - SVM - - [58]
Biomedicine  Time-course gene expression data B-spline FPCA LDA, QDA - - [59]
KNN, SYM
Demography Mortality, fertility and migration rates Weighted penalized FPCA - - State space [60]
regression spline model
Ecology Plankton monitoring data Roughness penalty  FPCA - - - [61]
Environment  Diurnal ozone and NOx cycles for Fourier FPCA HCA - - [62]
transportation emission control
Finance Cash flow and transactions Wavelet FPCA - - FAR [63]
Finance Price formation and online auctions Polynomial spline - - FRM - [64]
Linguistics Speech production variability in fricatives  B-spline FPCA - - - [65]

of children and adults
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Table 1 Areas of application and the functional data analysis (FDA) features used in the 84 peer-review papers

reporting application of FDA (Continued)
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Meteorology
Psychology

2007 Biology

Biomedicine

Demography

Engineering

Environment

Environment

Medicine

Medicine

Medicine

Neurology
2006 Biology

Behavioural

Biomechanics
Biomechanics

Biomechanics

Ecology

T
Linguistics

Physiology

Psychology

2005 Biology

Biomechanics

Biomedicine
Biomedicine

Ecology

Education
Finance

Linguistics

Psychology
2004 Chemistry

Medicine

Meteorology

Plasma biomarkers
Emotional responses of musical listeners

Time-course gene expression yeast
cell cycle

MRl images
Mortality and fertility rate

Radar waveforms

Diurnal ozone/NOx cycles and
transportation emissions

Stratospheric ozone levels

Age-specific breast cancer mortality rates

Women urinary hormone profiles at
midlife

Haemoglobin levels in renal anaemia

Joint coordination data in motor
development

Time-course gene expression yeast
cell cycle

Male medfly calling behaviour
Kinematic gait data (knee flexion angle)
Knee joint kinematics in the vertical jump

Kinematic gait data
(sit to stand movements)

Water quality trend data
(nutrient and sediment)

Software complexity measure
Tongue tip velocity

Blood lactate for running speed on a
treadmill

Tension judgement in music
Protein expression profiles
Joint angles describing the limb motion

Functional magnetic resonance imaging
data from 1.5-Tesla Magnetom vision

Functional magnetic resonance imaging
data from 3.0 T Allegra system-

Smith Mclntyre grab species

Trends in Mathematics and Science
Achievement (TIMSS) score

Cash flows in point of sale and
ATM networks

Speech movement records
Tension judgement in music
Molecular weight distributions
Esophageal bolus flow

Biomarkers

Kernel
Cubic B-spline
B-spline

B-spline

Penalized
regression spline

Kernel

Fourier

Cubic spline

Weighted local
quadratic

Cubic spline

B-spline
B-spline

B-spline

Cubic B-spline
B-spline
B-spline

Fourier

Smoothing spline
B-spline

Polynomial spline

B-spline
P-spline
Regression spline

B-spline

B-spline

Nonparametric
spline

Fourier

Wavelets

B-spline

FPCA

FPCA

FPCA
FPCA

FPCA

FPCA

FPCA

FPCA
FPCA
FPCA

FPCA

FPCA

FPCA
FPCA
FPCA

FPCA

FPCA
FPCA

B-spline -

Cubic spline  FPCA

FLR

LDA

HCA
CARTKNN

FRM
FANOVA

FANOVA

FANOVA

State space
model

State space
model

(771
(78]
[79]
[80]
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Table 1 Areas of application and the functional data analysis (FDA) features used in the 84 peer-review papers

reporting application of FDA (Continued)
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Neurology Automated atlas-based head - - - - - [98]
size normalization
Psychology ~ Musical emotions and tension B-spline - - - - [99]
2003 Biomechanics Digitized images of hand drawing curves Fourier FPCA - FANOVA - [100]
generated by subjects treated with
various facial preparation
Biomedicine  Longitudinal plasma folate data Weighted local FPCA - - - [101]
polynomial spline
2002 Agriculture Lodging score for rice fields based on a Fourier - - FRM - [102]
digital overhead image
Biomedicine  Myocardial contractile function images Cubic B-spline  FPCA - - - [103]
Economics Monthly nondurable goods production B-spline - - - - [104]
index
Medicine Foetal heart rate data Fourier - - FRM - 18]
Medicine Foetal heart rate data Fourier - - FLRM - [19]
2001 Satellite Radar electromagnetic signals Kernel FPCA - - [105]
2000 Biomechanics Handwriting in Chinese B-spline  FPCA EDO - - n4
Linguistics Harmonics-to-noise ratio of voice signals B-spline - - - - [106]
Meteorology  Annual cycle of sea surface temperatures Polynomial spline - - - FAR [107]
1999 Linguistics Harmonics-to-noise ratio of voice signals - - - - - [108]
1998 Ecology Abundance of the gray-sided vole Log-spline  FPCA - - - [109]
Clethrionomys rufocanus
1996 Linguistics Vocal tract lip motion during speech Smoothing spline FPCA - FANOVA - [110]
1995 Biomechanics Records of the force exerted by pinching - FPCA - - - [111]
a force meter with the tips of the thumb
and forefinger an opposite sides
Economics Income distribution - FPCA - - - [112]

FPCA - Functional principal component analysis; FEM - Functional embedding; HCA - Hierarchical cluster analysis; SVM - Support vector machine; LDA- Linear
discriminant analysis; QDA - Quadratic discriminant analysis; KNN- K-nearest neighbours; MBC - Model based clustering; CART - Classification and regression tree;
EDO - Estimated differential operators; FLM - Functional linear model; FRM - Functional linear regression model: FANOVA - Functional ANOVA; FMANOVA - Functional
MANOVA; FFT - Functional F test; FLRM - Functional logistic regression model: FAR - Functional auto regressive model.

regression splines with a monotonic constraint to repre-
sent their smooth curves of falls incidence rates.

Data reduction
The FPCA is one of the most popular multivariate analysis
techniques for extracting information from functional data
[119,120]. This approach reduces the dimensions of a data
set in which there are a large number of interrelated vari-
ables, while still holding as much of the total variation as
possible. This reduction is obtained by transforming the
data to a new set of variables, or principal components, that
are uncorrelated and ordered so that the first few retain
most of the variation present in all of the original variables.
The use of FPCA was reported in 51 (60.7%) of the
reviewed studies (Table 1). It has been successfully applied
to real life problems such as modeling the curvature of the
cornea in the human eye [11], in a set of density curves
where the argument variable is log income [121], and
fMRI scans of areas in the human brain [88]. Many differ-
ent applications of principal component analysis to

functional data have been developed, including a useful
extension of FPCA that allows the estimation of har-
monics from fragments of curves [122]. Although FPCA is
an important feature of FDA, not all studies reported it
because they did not undertake data reduction. For ex-
ample, Roislin et al. [48] used a functional regression
model to estimate the effects of gender, age, and walking
speed on kinematic gait data; Park et al. [58] classified
gene functions using a support vector machine (clustering)
for time-course gene expression data; and Lucero [93]
used only a B-spline to smooth the harmonics-to-noise ra-
tio of voice signals. None of these applications required
FPCA to reduce the data.

Clustering

While FPCA results in dimension reduction, FPCA vector
scores can be used for clustering different functions/com-
ponents using standard clustering methods. Clustering is
one of the most frequently used techniques for partitioning
a dataset into subgroups that contain instances that are



Ullah and Finch BMC Medical Research Methodology 2013, 13:43
http://www.biomedcentral.com/1471-2288/13/43

similar to each other while being clearly dissimilar to those
of other groups. In a functional context, clustering helps to
identify representative curve patterns and individuals who
are very likely to be involved in the same or similar pro-
cesses. For example, in time-course microarray experi-
ments, thousands of gene expression measures are taken
over time [123] and an important problem is to discover
functionally related genes that could then be the target for
new gene regulatory networks or functional pathways.
Clustering of data allows identification of groups of genes
with similar expression patterns to identify such networks
and pathways.

A number of clustering methods were reported in the
reviewed literature (Table 1) and most of these were ex-
ploratory techniques for gene expression data. Overall,
15 studies (17.9%) reported some form of clustering.
Biologists and ecologists used clustering to classify genes
[68,76] and ecological components [81,90] within their
studies. The most commonly applied clustering algorithms
were hierarchical in nature (7 papers). Hierarchical algo-
rithms define a dendrogram (tree) relating similar objects
in the same sub-trees. In each step, similar sub-trees (clus-
ters) are merged to form a dendrogram that clearly shows
the different distinct clusters. Other reported clustering
methods were linear discriminant analysis (LDA) (2 pa-
pers), k-nearest neighbors (KNN) (3), support vector ma-
chine (SVM) approaches (2), model-based clustering
(MBC) (1), quadratic discriminant analysis (QDA) (1) and
estimated differential operators (EDO) (1).

The LDA and QDA are both classical clustering methods
and commonly used in microarray analysis [124,125]. Ap-
plication of LDA is based on finding linear combinations of
gene expression levels called discriminants that maximize
the ratio of between-group variation to within-group vari-
ation. The QDA approach is a generalization of the linear
classifier, allowing covariance matrices to be heterogeneous,
whereas LDA functions are based on the assumption that
covariance matrices of each of the classes are equal. This
assumption relaxation can prevent individuals from being
placed into classes with larger variance on their covariance
matrix diagonals. The KNN is a nonparametric classifica-
tion method based on the distance between individuals
[126,127]. For example, Song et al. [59] proposed KNN to
classify time-course gene expression profiles based on infor-
mation from the data patterns. The SVM approach [128] is
an extremely powerful methodology for classification prob-
lems and has a wide range of applications. Recently, this
method has received much attention in classification prob-
lems that arise with the analysis of microarray data [58,59].
The MBC method assumes that the data are generated by a
multivariate normal mixture distribution with appropriate
means and covariance matrix [129]. Song et al. [68]
have applied this method of clustering time-course gene
expression data.

Page 8 of 12

Functional linear models

An interesting application of FDA involves the construc-
tion of functional models that describe the relation be-
tween an outcome variable and an explanatory variable.
Such models are termed functional linear models (FLMs).
The number of published applications involving functional
data has been steadily growing. In functional linear
models, the functions could be the outcome or the predic-
tors or both.

Of the reviewed studies in Table 1, 21 (25.0%) reported
some form of FLM. The approach most favored by authors
was a basic functional linear regression model (12 papers).
When the outcome variable is in its functional form and
the relationship is almost linear, the methodology is called
functional linear regression model, or FRM. Functional
ANOVA (FANOVA) was used in eight studies. Vines et al.
[85] developed a functional F test (FFT) for linear models
with functional outcomes in their psychological study for
measuring tension judgment in music. They illustrated how
to apply the FFT to longitudinal data where intrasubject re-
peated measures are viewed as discrete samples from an
underlying curve with a continuous functional form. One
study applied a functional logistic regression model (FLRM)
to fetal heart rates [18] and another applied functional
multivariate analysis of variance (FMANOVA) to temporal
fertility trajectories of medfly populations [47].

Forecasting framework

The recent introduction of stochastic methods for fore-
casting functional data has significant advantages over the
standard approaches for better understanding trends, risk
factor relationships, and the effectiveness of preventive
measures. A major advantage of these methods is that they
can measure forecast uncertainty through the estimation
of prediction intervals for future data. For this reason,
the FDA forecasting approach has started to receive atten-
tion in both demographic and medical applications
[24,25,28,60]. To date there has only been limited applica-
tion of FDA to epidemiological studies relating to the pre-
diction of incidence/prevalence rates, with only one recent
study applying it to forecast the incidence of fall-related
severe head injuries [23].

Overall, only seven of the reviewed studies (8.3%)
reported any FDA-derived forecasting. A state space
model was the most common approach for forecasting
functional data in these studies (5 papers). In the forecast-
ing process, the authors estimated the coefficients from a
time series, with one value representing each time point,
and a state space model was used to model and forecast
these time series coefficients [23-25,28,130].

Discussion
Modern data analysis has greatly benefited from the de-
velopment of FDA methods and their application to time
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series data. Although used by statisticians for many
years, FDA provides a relatively novel approach to mod-
eling and prediction that is highly suitable for public
health and biomedical applications. This paper has sum-
marized papers describing FDA applications with a main
emphasis on five popular features: smoothing, FPCA,
clustering, FLM, and forecasting.

Overall, the published FDA application studies demon-
strate the value of this approach for exploring complex
multivariate functional relationships and its major
strength of being able to model the functional form of
time series data. Different approaches allow for FDA
representations as smooth functions, and the published
studies used a range of smoothing techniques for the es-
timation of discretely observed data. The FDA approach
of initially smoothing the data and then using the
smoothed observations for modeling and forecasting is a
major methodological improvement over methods that
simply fit linear/non-linear trends to observed data.
These FDA approaches are very suitable for widespread
public health and biomedical applications. Although
some authors believe that FDA can be considered as a
smoothed version of multivariate data analysis, recent
work has shown the advantage of direct application of
smoothing techniques to reduce some of the inherent
randomness in the observed data [1,25,113].

The theoretical and practical developments that have oc-
curred over recent years mean that researchers can now
successfully apply FPCA to many practical problems, with
main attention given to the reduction of data dimensions
to a finite level and identification of the most significant
components of the data. High dimensional data signifi-
cantly slow down conventional statistical algorithms and in
some cases it is not feasible to use them in practice. This
means that standard classification methods can suffer from
difficulties when handling such data. Some studies need to
compress their data to facilitate exploration of the most
important features (e.g., characteristics of genes from entire
time-course data). In such instances, dimension reduction
should be applied to keep only the relevant information
and for removing correlations. This will both speed up and
improve the accuracy of subsequent analyses and model-
ing. The FPCA has proven to be a key technique for di-
mension reduction, reported in most of studies reviewed
here. It can also be used to investigate the variability of
data with respect to individual curve shapes [131].

One of the major application areas highlighted in this re-
view is an apparent increasing interest in clustering and
classification techniques, especially for time-course gene
expression data. The clustering is useful for detecting pat-
terns and clusters in high dimensional functional data.
Functional clustering is used to search for natural group-
ings of data with similar characteristics. Unlike conven-
tional clustering that requires measuring multivariate data
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at the same time points to calculate Euclidean ‘distances’
between observations, functional clustering can derive a
broader class of distance measures even if the original
measurements are not time-aligned among sampling units,
as is common in public health applications. The reason for
the popularity of functional clustering is that it can classify
time series data into different classes without requiring a
priori knowledge of data.

A very interesting application of FDA involves the con-
struction of linear models that describe the relation be-
tween an outcome variable and explanatory variables with
functional nature. The FLMs have recently gained popu-
larity and the related literature has been steadily growing
with several studies using covariates to explain functional
variables. Overall, FRM and FANOVA methods were the
most prominent in the reviewed literature. Reasons for
not using FLM techniques are unclear but might include a
lack of knowledge about the value of building functional
models for public health and biomedical data. However,
the use of FLM is not always necessary and depends on
the specific research questions.

Public health researchers now recognize the importance
of understanding trends in high dimensional time series
data. Policy makers, for example, need information about
predicted trends to inform their decision-making about
public health and economic investments to reduce the
burden into the future [132]. It is critical that such predic-
tions are robust and based on the best available statistical
modeling approaches to minimize possible errors in the
forecasts. This is also true for other areas of public health
and biomedicine. The new FDA forecasting approaches
[23,25] are a natural extension of methods developed for
mortality and fertility forecasting that have evolved over
the last two decades in demography [25,133,134]. The
methodology has therefore been used in a number of
demographic applications and there have been various ex-
tensions and modifications proposed [25,134]. Somewhat
surprisingly, the use of FDA forecasting in public health
and biomedical applications has been limited to date.

Conclusion

In summary, this paper describes FDA and its important
features as applied to time series data from various fields.
Functional data analysis provides a relatively novel model-
ing and prediction approach, with the potential for many
significant applications across a range of public health and
biomedical applications. Importantly, not all FDA features
always need to be used in a single study and the selection
of specific analysis features will depend on the underlying
behavior of the data, the nature of study and the specific
research questions being posed. Consideration should be
given to wider application of FDA and its important mod-
eling features so that more accurate estimates for public
health and biomedical applications can be generated.
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