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Abstract

Background: Using covariance or mean estimates from previous data introduces randomness into each power value
in a power curve. Creating confidence intervals about the power estimates improves study planning by allowing
scientists to account for the uncertainty in the power estimates. Driving examples arise in many imaging applications.

Methods: We use both analytical and Monte Carlo simulation methods. Our analytical derivations apply to power for
tests with the univariate approach to repeated measures (UNIREP). Approximate confidence intervals and regions for
power based on an estimated covariance matrix and fixed means are described. Extensive simulations are used to
examine the properties of the approximations.

Results: Closed-form expressions are given for approximate power and confidence intervals and regions. Monte
Carlo simulations support the accuracy of the approximations for practical ranges of sample size, rank of the design
matrix, error degrees of freedom, and the amount of deviation from sphericity. The new methods provide accurate
coverage probabilities for all four UNIREP tests, even for small sample sizes. Accuracy is higher for higher power values
than for lower power values, making the methods especially useful in practical research conditions. The new
techniques allow the plotting of power confidence regions around an estimated power curve, an approach that has
been well received by researchers. Free software makes the new methods readily available.

Conclusions: The new techniques allow a convenient way to account for the uncertainty of using an estimated
covariance matrix in choosing a sample size for a repeated measures ANOVA design. Medical imaging and many other
types of healthcare research often use repeated measures ANOVA.
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Background
Motivation
Computing power for a linear model involving repeated
measures requires specifying a set of means and a covari-
ance matrix. Scientists usually feel comfortable specify-
ing a pattern of means that corresponds to a difference
of clinical or scientific importance. However, specifying
plausible variance and covariance values usually requires
estimates from a previous study.
Using data from a previous study to estimate the covari-

ance matrix makes the power value a random variable.
Kraemer, et al. [1] noted that if the estimated variance is
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too small, i.e., when the pilot study is overly favorable,
power will be over-estimated. Conversely, if the estimated
variance is too large (pilot study overly conservative),
power will be under-estimated. Maxwell [2] conducted
simulations to illustrate the amount of bias that can occur.
Taylor and Muller [3] and Muller and Pasour [4] derived
exact distributions of noncentrality and power in univari-
ate linear models based on all combinations of estimated
variance and means. The results account for power com-
puted conditional on a previous result being significant,
or conditional on a previous result being non-significant.
The former creates optimistic bias, while the latter creates
pessimistic bias.
Providing confidence intervals to account for the uncer-

tainty inherent in the random power values would be
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useful for study planning. For example, a lower bound
for power would allow stating that a test has power of at
least “P” to detect an effect, with a specified confidence. A
confidence region for a power curve would be even more
informative.
Medical imaging research motivated the work here

because it often generates the type of complete data that
can be handled with the univariate approach to repeated
measures (UNIREP). Muller, et al. [5] reviewed the advan-
tages gained by being able to use the UNIREP model, a
special case of the general linear mixed model. The same
authors described accurate and convenient power approx-
imations for UNIREP analysis. The four UNIREP tests,
Box conservative, Geisser-Greenhouse, Huynh-Feldt, and
the uncorrected, all use the same test statistic. For
data analysis, UNIREP tests differ only by their respec-
tive degrees of freedom due to different degrees of
freedom multipliers, which measure sphericity in the
error covariance for the hypothesis variables. Muller and
Stewart [6] provided detailed discussion of the basic the-
ory for both the null and non-null cases. Earlier work
detailed basic UNIREP theory. Box [7,8], Geisser and
Greenhouse [9,10] and Huynh and Feldt [11] gave null
results. Davies [12] and Muller and Barton [13,14] treated
the non-null case.
Browne [15] evaluated the impact of using a pilot study

to estimate the variance for a t-test. More generally,
Taylor and Muller [16] demonstrated how to construct
exact power confidence intervals for the general linear
univariate model for a data-estimated variance and fixed
means. The same authors also generalized the result to
provide an exact confidence region around a power curve.
Parallel results for the UNIREP setting would be equally
useful. We generalize the methods in Taylor and Muller
[16] to UNIREP tests for repeated measures. We use ana-
lytic and simulation results to demonstrate that the tech-
niques allow computing approximate confidence intervals
and regions for power with good accuracy for the UNIREP
tests, based on an estimated covariance matrix and fixed
means.

Existing results
A vector z, (n × 1), is lower case bold. A matrix, Z,
is upper case bold with transpose Z′, inverse Z−1 and
generalized inverse Z−. Also, 1n is an (n × 1) vector
of 1’s and In is an (n × n) identity matrix. A diago-
nal matrix with (i, i) element zi is written Dg(z). The
expected value, variance, and trace are E (Z), V (Z), and
tr(Z), respectively. Throughout, Z ∼ χ2 (ν,ω) indi-
cates that Z has a noncentral chi-square distribution
with ν degrees of freedom and noncentrality ω, while
Z ∼ χ2(ν) indicates a central distribution. Similarly,
Z ∼ F (ν1, ν2,ω) indicates X has a noncentral F distri-
bution with ν1 numerator and ν2 denominator degrees of

freedom, and noncentrality ω with cumulative distribu-
tion function FF (ν1, ν2,ω). A central F is written Z ∼
F (ν1, ν2) with quantile q indicated F−1

F (q; ν1, ν2). Writ-
ing z ∼ Np (μ,�) indicates z (p × 1) is Gaussian with
mean μ and covariance � (p × p). If Z (N × p) has inde-
pendent rows and [rowi (Z)]′ ∼ Np

(
μi,�

)
, then S =

Z′Z ∼ Wp (N ,�,�) indicates S follows a Wishart dis-
tribution with N degrees of freedom, covariance �, and
noncentrality � = E

(
Z′)E (Z) �−1.

The general linear multivariate model,

Y = XB + E ,
(N × p) (N × q × p) (N × p) (1)

assumes N independent rows and [rowi (Y )]′ ∼
Np
(
[rowi (X)B]′ ,�

)
. In the model, X is the fixed, known

design matrix with 1 ≤ rank(X) ≤ q, and B contains
fixed, unknown regression coefficients. For repeated mea-
sures ANOVA, one-group designs have rank(X) = 1, and
two-group comparisons have rank(X) = 2. The associated
general linear hypothesis is

H0 : � = CBU = �0 ,
(a × b) (a × q) (q × p) (p × b) (a × b)

(2)

such that C defines the between-subject effects (rank a)
while U defines the within-subject effects (rank b).
Requiring estimable � and full rank {C,U} ensure a
testable hypothesis. Appropriate selections of the contrast
matrices (C and U) and null matrix (�0) allows test-
ing important one-degree-of-freedomparameters, such as
the difference between twomeans, or a comparison of two
trends.
For M = C

(
X ′X
)− C′, unscaled noncentrality is � =

(� − �0)
′ M−1 (� − �0), scaled noncentrality is � =

��−1∗ . Here �∗ = U ′�U = ϒDg(λ) ϒ ′ is the covari-
ance matrix among the hypothesis variables, with ϒϒ ′ =
ϒ ′ϒ = Ib, and λ = {λk} the eigenvalues. Estimates are
B̃ = (X ′X

)− X ′Y and �̂ = Y ′
[
I − (X ′X

)− X ′
]
Y/νe, with

νe = N − rank (X), the error degrees of freedom. Fur-
thermore, �̂ = CB̃U , �̂ = (�̂ − �0)′M−1(�̂ − �0) ∼
Wb (a,�∗,�) and �̂∗ = U ′�̂U , with νe�̂∗ ∼ Wb (νe,�∗).
The sum of squares hypothesis matrix is SH = �̂ and
the sum of squares error matrix is SE = νe�̂∗, which
are independent of one another. The notation follows
that in Muller and Stewart [6]. Additional notation is in
Appendix A.
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The univariate approach to repeated measures can
be expressed in terms of the general linear multivari-
ate model. The Box conservative (Box), the Geisser-
Greenhouse (GG), the Huynh-Feldt (HF), and the
uncorrected (Un) UNIREP tests use the same test statistic,

Tu = tr(�̂)
/
a

tr(�̂∗)
, (3)

and a central F distribution to approximate the null distri-
bution of Tu,

Pr {Tu ≤ t} ≈ FF (t; abε, νebε, 0) . (4)

The sphericity parameter, ε = tr2(�∗)/[ btr(�2∗)], quan-
tifies the spread of population eigenvalues and is used
to discount the degrees of freedom. The term sphericity
reflects the fact that uncorrelated Gaussian variables with
equal variances in three dimensions have a spherical scat-
tergram. The eigenvalues of �∗ are the variances of the
(uncorrelated) principal components of the hypothesis
response variables. Perfect sphericity requires ε=1, which
occurs with all eigenvalues equal. Minimal sphericity has
ε = 1/b, which occurs with one nonzero eigenvalue.
Other patterns of �∗ have 1/b < ε < 1.
The Box conservative test uses the fixed, lower bound of

ε, while the uncorrected test uses the fixed, upper bound
of ε. With sphericity (ε = 1), the uncorrected test is exact
and uniformly most powerful (among similarly invariant
tests). The Geisser-Greenhouse andHuynh-Feldt tests use
the observed data to estimate ε. The Geisser-Greenhouse
estimator, ε̂ = tr2(�̂∗)/btr(�̂

2
∗), is the maximum likeli-

hood (ML) estimator. The Huynh-Feldt estimator, ε̃ =
(Nb̂ε − 2) / [b (νe − b̂ε)] was proposed as the ratio of two
unbiased estimators. Their claim holds only for the spe-
cial case of rank(X) = 1. Lecoutre [17] provided a
more general form. In turn, Gribbin [18] and Chi et al.
[19] described a rank-adjusted approximately unbiased
estimator, ε̃r = [(νe + 1) b̂ε − 2] / [b (νe − b̂ε)], which
applies to any general linearmultivariate model. The rank-
adjusted power approximation was shown through sim-
ulations to approximate observed mean power values as
well as, or better than, the Huynh-Feldt power approxima-
tion (Chi et al. [19]). Only the rank-adjusted Huynh-Feldt
estimator will be considered in the remainder of the paper.
Although the four UNIREP tests all use the same test

statistic, they each use a different measure of sphericity,
here indicated e. For data analysis, all four tests use a crit-
ical value q(e) = F−1

F (1 − α, ν1e, ν2e). Here ν1 = ab and
ν2 = bνe. The Box test uses e = 1/b, the GG test uses
e = ε̂, HF uses e = ε̃, and the uncorrected test uses e = 1.
The p-value is then computed, for observed test statistic t,

as p = 1 − F (t, ν1e, ν2e). In all cases 1/b ≤ ε̂ ≤ ε̃ ≤ 1.
In turn, the p-values always have the reverse order, with
the Box p-value being largest, and the uncorrected being
smallest.
Muller et al. [5] showed that the distribution function

of the UNIREP test statistic can be expressed exactly in
terms of the distribution function of the sum of b posi-
tively and b negatively weighted independent chi-squares,
namely ykh ∼ χ2 (a,ωk) and yke ∼ χ2 (νe),

Pr {Tu ≤ t} = Pr
{
tr(�̂)

/
a

tr(�̂∗)
≤ t
}

= Pr

⎧⎨⎩
b∑

k=1
λkykh − (ta/νe)

b∑
k=1

λkyke ≤ 0

⎫⎬⎭
(5)

Muller et al. [5] also reported accurate F approximations
of the form

Pr {Tu ≤ t} ≈ Pr
{

λ∗1y∗1/(ab)
λ∗2y∗2/ (bνe)

≤ t
}

= FF
(
t
λ∗2
λ∗1

ab
ν∗1

ν∗2
bνe

; ν∗1, ν∗2,ω∗
)
. (6)

Here, y∗1 ∼ χ2 (ν∗1,ω∗), y∗2 ∼ χ2 (ν∗2), tr(�̂) ≈ λ∗1y∗1
and νetr(�̂∗) ≈ λ∗2y∗2. Parameters λ∗1, ν∗1, ω∗, λ∗2, and
ν∗2 are defined in Appendix A. Power analysis involves
{λk} and {ωk}, with

ωk = υ ′
k�υk/λk , (7)

the diagonal elements of the scaled noncentrality, �∗ =
ϒ ′�ϒDg(λ)−1 = �∗Dg(λ)−1.

Methods
Estimating approximate UNIREP power with estimated
covariance and fixed means
By extending results in Muller et al. [5], the following
lemma helps simplify the F approximations. Appendix B
contains all proofs.

Lemma 1. The constant in the critical value of the
UNIREP test statistic approximation introduced by
Muller et al. [5] is equal to 1,

λ∗2
λ∗1

ab
ν∗1

ν∗2
bνe

= 1. (8)
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Thus,

Pr {Tu ≤ t} ≈ Pr
{

λ∗1y∗1/(ab)
λ∗2y∗2/ (bνe)

≤ t
}

= FF (t; ν∗1, ν∗2,ω∗) . (9)

For known covariance and means, the power approxi-
mations for the Box, Geisser-Greenhouse, rank-adjusted
Huynh-Feldt, and uncorrected tests are all of the form

P = 1−FF
[
F−1
F (1− α; e1 · ab, e2 · bνe) ; e3 · ab, e4 · νeb,

tr (�)

λ/e5

]
.

(10)

Here, λ is equal to tr (�∗) /b with b equal to the
rank of �∗, and ω∗ = tr (�) /

(
λ/e5
)
. Table 1 con-

tains values for e1 through e5 for the four UNIREP
tests when εd = ε = tr2(�∗)/btr(�2∗), and εn =[
tr2(�∗) + 2tr(�∗)tr (�/a)

] {
b
[
tr(�2∗) + 2tr(�∗�/a)

]}
.

The expressions for εd and εn were derived using the
properties described in Lemma B.1.

In practice, some elements of {e1, e2, e3, e4, e5, tr(�), λ}
may be estimated and hence random. The random ele-
ments imply random power values, as with estimated
covariance and fixedmeans, {�̂∗,�}, for �̂∗=Ê′Ê/νest , the
unbiased restricted maximum likelihood (REML) estima-
tor. A distinction must be carefully maintained between
the estimation study and target study. The estimation
study provides the covariance estimate and has sample
size Nest, design matrix rank of rank(Xest), and νest =
Nest − rank (Xest) degrees of freedom. The target study
for which power is desired has sample sizeN, rank(X) and
νe = N − rank (X) degrees of freedom.
The ML estimator from the Geisser-Greenhouse test,

ε̂ = tr2(�̂∗)/[ btr(�̂
2
∗)], is an obvious estimator for the

target study’s ε. For power analysis, a parallel estimator is
available for εn:

ε̂n = tr2(�̂∗) + 2tr(�̂∗)tr (�/a)

b
[
tr(�̂2

∗) + 2tr(�̂∗�/a)
] . (11)

A better choice, given in the following lemma, uses a
ratio of unbiased estimators. The result generalizes the
rank-adjusted Huynh-Feldt estimator for data analysis.
Appendix B has derivations of moments as well as all
proofs.

Lemma 2. For the non-null case, a ratio estimating εn in
terms of correlated, but unbiased, estimators is

Table 1 Sphericity multipliers for UNIREP power
approximations for fixedmeans

Multipliers

Covariance Test e1 e2 e3 e4 e5

�∗(known) Un 1 1 εn εd εn

HF E (̃ε) E (̃ε) εn εd εn

GG E (̂ε) E (̂ε) εn εd εn

Box 1/b 1/b εn εd εn

�̂∗(estimated) Un 1 1 ε̃n ε̂d ε̃n

HF ε̃r ε̃r ε̃n ε̂d ε̃n

GG ε̂d ε̂d ε̃n ε̂d ε̃n

Box 1/b 1/b ε̃n ε̂d ε̃n

The corresponding estimator for the null case is
ε̃r = [(νest + 1) b̂ε − 2] / [b (νest − b̂ε)], the rank-adjusted
Huynh-Feldt sphericity estimator.

For estimated covariance and fixed means, approximate
estimated UNIREP power is

P = 1−FF

[
F−1
F (1− α; e1 · ab, e2 · bνe) ; e3 · ab, e4 · νeb,

tr (�)

λ̂/e5

]
,

(13)

with λ̂ = tr(�̂∗)/b, and e1 through e5 estimated if
unknown (Table 1). Nearly every combination of ε̂n, ε̃n,
ε̂d, ε̃r , 1 and 1/b was examined for each UNIREP test for
the wide range of simulations discussed inMuller et al. [5].
The values chosen provided the most accurate results. In
retrospect, they are natural choices as well.

Approximate UNIREP power confidence intervals
The solution to the UNIREP problem parallels the solu-
tion to the univariate problem in Taylor and Muller
[16]. The methods apply to any general linear hypothe-
sis, including one degree-of-freedom contrasts, such as
pair-wise group comparisons and differences in linear
trend between two groups. Tests giving scalar secondary
parameters are also common for one-group designs
and two-group comparisons. For known covariance and
means, e5 is defined to be εn (Table 1), and the noncentral-
ity in equation 9 is ω∗ = [tr (�)] /(λ/εn) = [tr (�)] /λ∗1
with λ = tr(�∗)/b and λ∗1 = λ/εn. For εn =[
tr2(�∗) + 2tr(�∗)tr (�/a)

] {
b
[
tr(�2∗) + 2tr(�∗�/a)

]}
.

Therefore, it follows that

ω∗ = tr (�) · tr (�∗) + 2tr (�/a)
tr(�2∗) + 2tr (��∗/a)

. (14)

ε̃n = νest (νest + 1) tr2(�̂∗) − 2νesttr(�̂
2
∗) + 2 [νest (νest + 1) − 2] tr(�̂∗)tr (�/a)

b
{
ν2esttr(�̂

2
∗) − νesttr2(�̂∗) + 2 [νest (νest + 1) − 2] tr(�̂∗�/a)

} . (12)
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For estimated covariance and fixed means, a ratio
involving one biased and two unbiased estimators
(Lemma B.2) for estimating λ∗1 may be written as

λ̃∗1 = tr(�̂2
∗) + 2tr(��̂∗/a)

tr(�̂∗) + 2tr (�/a)
. (15)

In parallel to the univariate setting, the distribution of
λ̃∗1 can be approximated with a Satterthwaite approxi-
mation: λ̃∗1ν∗/λ∗1 ∼ χ2 (ν∗) with ν∗ = (bνest) · ε̂d/̃εn.
Lower and upper tail probabilities, αL and αU , respec-
tively, define the confidence coefficient, pCL = 1−αL−αU .
Also, cαL = F−1

χ2 (αL; ν∗) and cαU = F−1
χ2 (1 − αU ; ν∗).

Approximate confidence limits for the noncentrality may
be calculated using the following:

Pr
{
cαL <

λ̃∗1ν∗
λ∗1

< cαU
}

≈pCL (16)

Pr
{

cαL
λ̃∗1ν∗

<
1

λ∗1
<

cαU
λ̃∗1ν∗

}
≈pCL (17)

Pr
{
tr (�) cαL

λ̃∗1ν∗
<

tr (�)

λ∗1
<

tr (�) cαU
λ̃∗1ν∗

}
≈pCL (18)

Pr
{
tr (�) cαL

λ̃∗1ν∗
< ω∗ <

tr (�) cαU
λ̃∗1ν∗

}
≈pCL . (19)

Approximate lower and upper bounds are therefore
ω̃∗L = tr (�) cαL/̃λ∗1ν∗ and ω̃∗U tr (�) cαU /̃λ∗1ν∗. The
strict monotone dependence of the noncentral F function
on the noncentrality ensures an approximate confidence
interval for power. Lower and upper bounds on power are,
with e1 through e4 defined in Table 1 for �̂∗,

P̃L = 1− FF
[
F−1
F (1 − α; e1 · ab, e2 · bνe) ; e3 · ab, e4 · νeb, ω̃∗L

]
(20)

and

P̃U = 1−FF
[
F−1
F (1 − α; e1 · ab, e2 · bνe) ; e3 · ab, e4 · νeb, ω̃∗U

]
.

(21)

Taylor and Muller [16] recommended one-sided power
confidence intervals by noting that “the change from a
one-sided to a two-sided confidence interval has little
effect on the upper bound, but a large effect on the lower
bound”. Muller and Fetterman [20] provided examples of
a one-sided power confidence interval in the univariate
case.

Approximate UNRIEP power confidence regions for power
curves
The new methods allow calculating a confidence interval
for a single power value. The logic of a proof in Taylor
and Muller ([16] equations 2.1-2.13 and surrounding text)

Figure 1 Approximate 95% confidence region for predicted
power of the rank-adjusted Huynh-Feldt test of interaction over
tr (�)withN = 10 and population ε = 0.720 for conditions
described in Section ‘Simulation 1 with rank (X) = 1 (one-group
repeated measures ANOVA)’.

guarantees that accurate confidence regions are provided
by the point-wise calculations. The proof may be sketched
for the present setting as follows. Equations 14-21 estab-
lish the validity of the approximate confidence interval
for a particular alternative hypothesis, as specified by the
scalar constant tr(�). The randomness in the noncentral-
ity arises from a scalar random variable, λ̃∗1, analogous
to a variance. Equation 19 describes a single event with
a specified probability. The inequality defining the event,
and the associated probability, do not change for differ-
ent values of the scalar constant tr(�). The smooth and
strictly monotone dependence of power on the noncen-
trality ensures the validity of equations 20-21. The proof
is completed by noting that the monotonicity extends the
simultaneity property to the power confidence region.
Figure 1 gives an example plot of approximate power

confidence regions surrounding the predicted power
curve for the rank-adjusted Huynh-Feldt test for ε =
0.720. Graphical representations such as Figure 1 help
researchers accurately recognize the amount of uncer-
tainty in their power calculation, and lead to better deci-
sions about design.
In some cases scientists prefer to consider sample size as

a function of the pattern of mean differences. The theory
already presented allows plotting sample size as a func-
tion of mean difference, albeit with a shift in algorithm.
The power function must be numerically inverted to solve
for the sample size desired. Taylor and Muller [16] out-
lined the steps of algorithm needed for the univariate case.
Details are not presented here for the sake of brevity.

Results
Simulation overview
The accuracy of the new approximate confidence intervals
is evaluated for a wide range of conditions. Appendix C
contains more details of the simulations and examples. All
simulations were conducted in SAS/IML (SAS 9.1, SAS
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Institute, 2003) using a version of LINMOD 3.4 modified
to include the rank-adjusted Huynh-Feldt estimator and
test. Predicted power values and approximate power con-
fidence intervals were computed using a similarly mod-
ified version of POWERLIB 2.03. The modified versions
of LINMOD and POWERLIB are available at http://www.
health-outcomes-policy.ufl.edu/muller/ .

Simulation 1 with rank (X) = 1 (one-group repeated
measures ANOVA)
The accuracy of the new approximate confidence inter-
vals were evaluated for a completely within-subject design
with p = 9 repeated measures, N ∈ {10, 20, 40}, and
q = rank (X) = 1. Values for B, contrast matrices C,
U , and �0 were chosen to test a within-subject inter-
action for α = 0.05. The model was chosen to ensure
predicted power values for the Geisser-Greenhouse test
of 0.20, 0.50, and 0.80, using the power approximation
in Muller et al. [5]. Population covariance matrices were
chosen to provide ε ∈ {0.282, 0.505, 0.720, 1.00}. The
sphericity values were selected to cover a range of eigen-
value patterns (i.e., patterns of the principal component
variances) arising from the structure of �∗. For exam-
ple, if b = 3, then λ = [

1 0.12 0.12
]′ gives ε ≈

0.50. In turn, λ = [
1 0 0

]′ gives ε = 1/3 ≈ 0.33.
Pseudo-random realizations of the error matrix, E, were
generated and tests were calculated. The observed mean
power values for the four UNIREP tests were calcu-
lated and tabulated for 500,000 replications per condi-
tion.
For the conditions described above, additional pseudo-

random realizations of the error matrix were generated
using an estimating study with sample size, Nest, of 10
and rank of X, rank(Xest), of 1 with 500,000 replica-
tions per condition for all four UNIREP tests. Corre-
sponding estimated covariance matrices were calculated,
as well as lower and upper bounds for power. Both
one- and two-sided confidence intervals were evaluated
with target coverages of 90% and 95%. The number of
replications gave a standard error of estimated coverage
probability less than or equal to 0.0003 for 1 − α =
0.95, and 0.0004 for 1 − α = 0.90, nearly guaran-
teeing 3 digits of accuracy. Only coverage of observed
mean power values, and not predicted, was tabulated. The
accuracy of the predicted power values, with respect to
the observed, made it essentially redundant to consider
both.
Only the worst case results for two-sided 95% con-

fidence intervals are presented here. The worst cases
occurred with the smallest sample size for the target study.
Table 2 contains results for the Box conservative test with
a target sample size of 10. For a wide range of sphericity
values and target power values, the target 95% estimated
coverage is consistently reached. The two cases in which

Table 2 Target 95% CI (two-sided) estimated coverage
(×100) of simulated population power forN = 10
Test ε Power Lower tail Coverage Upper tail

0.282 0.123 1.1 97.8 1.1

0.535 1.9 97.0 1.1

0.930 1.7 97.3 1.0

0.505 0.054 0.1 97.3 2.6

0.266 0.5 97.0 2.5

Box 0.690 1.1 97.0 1.9

0.720 0.052 0.4 94.1 5.5

0.227 0.6 96.8 2.6

0.569 1.4 97.0 1.6

1 0.023 0.6 85.1 14.3

0.117 0.5 96.0 3.5

0.350 0.8 97.8 1.4

0.282 0.155 3.1 94.7 2.2

0.585 2.6 95.6 1.8

0.942 1.8 96.6 1.6

0.505 0.162 5.4 87.7 6.9

0.520 3.8 90.6 5.6

GG 0.870 2.6 92.4 5.0

0.720 0.203 2.4 92.3 5.3

0.539 2.6 94.1 3.3

0.856 3.3 94.2 2.5

1 0.161 0.7 95.6 3.7

0.438 1.4 97.0 1.6

0.751 2.7 96.2 1.1

0.282 0.166 3.8 93.5 2.7

0.602 2.8 95.2 2.0

0.946 1.9 96.3 1.8

0.505 0.210 8.2 82.9 8.9

0.592 4.7 88.5 6.8

HF 0.902 2.9 90.9 6.2

0.720 0.271 3.6 90.9 5.5

0.631 3.4 93.3 3.3

0.904 4.0 93.6 2.4

1 0.224 0.8 96.7 2.5

0.531 1.8 97.1 1.1

0.821 3.2 95.9 0.9

Standard error of coverage probability×100≈0.0003×100.

the target coverage is not reached occur with large popu-
lation sphericity and low power. Under these conditions,
the Box conservative test would not be used in practice.
Table 2 also contains coverage results for the Geisser-

Greenhouse and the rank-adjusted Huynh-Feldt tests. The
target 95% estimated coverage is consistently reached for

http://www.health-outcomes-policy.ufl.edu/muller/
http://www.health-outcomes-policy.ufl.edu/muller/


Gribbin et al. BMCMedical ResearchMethodology 2013, 13:57 Page 7 of 13
http://www.biomedcentral.com/1471-2288/13/57

extreme sphericity values for both tests. For midrange
sphericity values, the coverage fell below the target cov-
erage from 0.8% to 7.3% for the Geisser-Greenhouse, and
1.4% to 12.1% for the rank-adjusted Huynh-Feldt. Cover-
age accuracy improved as the estimated power increased.
In practice, lower power values are of little concern. For
target power of 0.80 for the Geisser-Greenhouse test, the
largest deviation from the target 95% estimated coverage
was 2.6% for the Geisser-Greenhouse test and 4.1% for
the rank-adjusted Huynh-Feldt test. Both occurred for the
population sphericity value of 0.505.
Only a spherical case is appropriate to consider for

the uncorrected test because otherwise the test will have
inflated test size. Simulation results in Table 3 show that
the approximation for the uncorrected test (with spheric-
ity) always reached the target estimated coverage for the
uncorrected test. The conservative bias could be elim-
inated by using optimal maximum likelihood estimates
for the common variance and covariance (Morrison [21]),
rather than the unstructured covariance estimate. Addi-
tional small changes are needed, associated with degrees
of freedom, and corresponding to making all choices of e1
through e5 equal to 1.
Although not presented here, in general, the accuracy

of the coverage improved directly with increasing sam-
ple size, for all tests and conditions. The accuracy of the
approximate confidence bounds for all four UNIREP tests
also improved as the population sphericity increased.

Simulation 2 with rank(X) > 1
All of the simulations in the second example consid-
ered the condition of rank of X greater than 1. The
cases used p = 5 repeated measures, N ∈ {16, 32, 48},
and q = rank (X) ∈ {2, 4, 8, 16}, corresponding to a
three-, five-, nine-, and seventeen-group comparison,
respectively. Appropriate fixed matrices of regression
coefficients, B, contrast matrices, C and U , and �0

Table 3 Target 95% CI (Two-sided) estimated coverage
(×100) of simulated population power for the uncorrected
test (ε = 1.00)
N Population power Lower tail Coverage Upper tail

10 0.238 0.5 97.5 2.0

0.551 1.5 97.6 0.9

0.835 3.2 96.1 0.7

20 0.215 0.8 97.3 1.9

0.520 1.6 97.6 0.8

0.814 3.1 96.2 0.7

40 0.207 0.9 97.2 1.9

0.509 1.5 97.7 0.8

0.806 3.0 96.3 0.7

Standard error of coverage probability×100≈0.0003×100.

were chosen to test a within-subject interaction for a
test size, α, of 0.05. The matrices were also chosen to
ensure approximate target predicted power values for the
rank-adjusted Huynh-Feldt test of 0.20, 0.50, and 0.80.
Specific design matrices, X, were defined. Population
covariance matrices were chosen to provide specific pop-
ulation sphericity values, ε ∈ {0.282, 0.505, 0.720, 1.00}.
Observed mean power values were simulated and tab-
ulated in a similar manner to that described in section
‘Simulation 1 with rank (X) = 1 (one-group repeated
measures ANOVA)’.
Pseudo-random realizations of the error matrix were

generated using an estimating study with sample size,
Nest, of 16 and rank of X, rank(Xest), of 4 with 500,000
replications per condition for all four UNIREP tests.
Corresponding estimated covariance matrices were cal-
culated, as well as lower and upper bounds for power
using the methods presented in section ‘Approximate
UNIREP power confidence intervals’. Approximate con-
fidence interval coverage was defined as the propor-
tion of the 500,000 simulated bound realizations that
successfully covered the observed mean power values
for each condition described above. Only coverage of
observedmean power values, and not predicted, were tab-
ulated. The accuracy of the predicted power values, with
respect to the observed, made it essentially redundant
to consider both. Both one- and two-sided confidence
intervals were evaluated with target coverages of 90%
and 95%.
In practical biomedical research, low power values

are of little concern. Rarely will one have a power tar-
geted below 0.70. Therefore, only the results for target
power values of 0.80 will be presented and discussed.
Power confidence interval coverage converged to the tar-
get coverage as sample size increased. Only the worst
case results for two-sided 95% confidence intervals are
presented here. The worst cases occurred with the small-
est sample size for the target study, for a variety of
population sphericity values and estimated population
powers.
In Table 4, the observed mean population powers are

presented for the four UNIREP tests for the popula-
tion sphericity values and ranks of X considered for
target rank-adjusted Huynh-Feldt power of 0.80 and
sample size of 16 or 48. In general, as the popula-
tion sphericity increased and rank of X increased, the
observed mean power values for the Box conservative,
the Geisser-Greenhouse, and the rank-adjusted Huynh-
Feldt tests decreased. Only the Box conservative had
severely biased power values as the population sphericity
increased.
In Table 5, the proportion of simulations in which the

estimated confidence interval successfully covered the
observed mean population power values for each test is
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Table 4 Simulated population power for target power = 0.80,N = 16 and rank (X) = q
N Simulated population power

ε = 0.282 ε = 0.505
q Box GG HF Box GG HF

16 2 0.779 0.811 0.817 0.561 0.778 0.809

4 0.763 0.797 0.805 0.510 0.762 0.802

8 0.753 0.787 0.799 0.455 0.736 0.796

ε = 0.720 ε = 1.000
q Box GG HF Box GG HF UN

16 2 0.457 0.760 0.805 0.399 0.748 0.790 0.799

4 0.355 0.740 0.801 0.255 0.724 0.787 0.801

8 0.267 0.695 0.795 0.138 0.655 0.775 0.800

ε = 0.282 ε = 0.505
q Box GG HF Box GG HF

48 2 0.803 0.843 0.845 0.586 0.802 0.813

4 0.773 0.812 0.815 0.552 0.794 0.805

8 0.766 0.800 0.803 0.544 0.787 0.799

16 0.762 0.796 0.799 0.522 0.780 0.795

ε = 0.720 ε = 1.000
q Box GG HF Box GG HF UN

48 2 0.500 0.792 0.806 0.455 0.785 0.797 0.800

4 0.427 0.787 0.802 0.346 0.781 0.796 0.800

8 0.402 0.781 0.799 0.280 0.778 0.797 0.801

16 0.359 0.775 0.799 0.221 0.770 0.795 0.801

Standard error of estimated power ≈0.0006.

shown. The results are based on using an estimating study
with sample size, Nest, of 16 and rank of X, rank(Xest), of
4. In general, the approximate power confidence intervals
nearly always reached the target 95% coverage for the Box
conservative test. The coverage became more conserva-
tive as rank ofX decreased. Similarly, the coverage became
more conservative for the Geisser-Greenhouse and rank-
adjusted Huynh-Feldt tests as rank of X decreased. The

Geisser-Greenhouse and rank-adjusted Huynh-Feldt tests
performed adequately in all cases except for the midrange
population sphericity value, ε = 0.505. The largest devi-
ation from the target 95% estimated coverage was 13.6%
and 16.0% for the Geisser-Greenhouse and rank-adjusted
Huynh-Feldt tests, respectively, which occurred for ε =
0.505 and rank of X equal to 8. The approximate power
confidence intervals for the uncorrected test reached the

Table 5 Target 95% CI (two-sided) estimated coverage (×100) of simulated population power for target power = 0.80,
N = 16, rank (X) = q, Nest = 16, and rank (Xest) = 4

ε = 0.282 ε = 0.505

q Box GG HF Box GG HF

2 97.8 97.2 97.0 97.5 93.4 92.3

4 93.7 92.0 91.6 95.6 86.8 85.0

8 90.9 87.9 87.2 94.8 81.4 79.0

ε = 0.720 ε = 1.000
Box GG HF Box GG HF UN

2 97.6 95.4 94.9 97.4 95.3 95.5 95.8

4 97.5 93.6 92.9 97.6 96.8 97.0 97.4

8 96.9 90.6 89.8 97.0 96.1 96.9 97.4

Standard error of coverage probability × 100 ≈ 0.0003 × 100.
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target coverage value for every case considered in which
the uncorrected test would be used.
Although not presented here, in general, as sample size

increased the conservative coverage values observed for
the Box conservative and the uncorrected tests slowly
converged to the target coverage value. This trend was
observed for the conservative coverage values with the
extreme population sphericity values for the Geisser-
Greenhouse and the rank-adjusted Huynh-Feldt tests as
well. The same is true of the liberal coverage values
observed for the midrange population sphericity val-
ues for the Geisser-Greenhouse and the rank-adjusted
Huynh-Feldt tests. Similar results were obtained for the
target 90% two-sided confidence interval coverage as well
as the 95% and 90% one-sided confidence intervals cover-
age.
The estimated coverages of these tabulated observed

mean power values for each test were simulated for pop-
ulation sphericity values of 0.282, 0.505, 0.720, and 1.00.
In Table 6, the worst case results from these simula-
tions, which occurred for population sphericity 0.505,
are presented. Approximate confidence intervals were
simulated for 500, 000 replications per condition (stan-
dard error of estimated coverage probability less than
or equal to 0.0003 for 1 − α = 0.95, and 0.0004 for
1 − α = 0.90). The estimating studies use sample
sizes, Nest, of 16, 32, and 48, and ranks of Xest of 2, 4,
and 8.
In general, for population sphericity values of 0.282 and

0.505, the approximate power confidence interval cover-
age for the Box conservative test converged to the target
coverage value as rank of Xest increased, and thus νest

decreased. Coverage decreased as rank of X from the tar-
get study increased. For larger rank of X, the approximate
power confidence interval coverage fell short of the target
coverage in several instances. No clear trend was apparent
as Nest increased. The Box conservative test would not be
used for larger population sphericity values. However, the
realization that the target coverage was reached in nearly
every case considered for the larger population sphericity
values is worth mentioning.
The approximate power confidence interval cover-

ages for both the Geisser-Greenhouse and rank-adjusted
Huynh-Feldt tests seem to have converged to the target
coverage value as rank of Xest increased, and thus νest
decreased, except in cases of sphericity. Such cases have
little practical importance since exact results are avail-
able if sphericity is valid. Coverage decreased as rank
of X from the target study increased. As observed in
previous simulations, the approximate power confidence
interval coverages for both the Geisser-Greenhouse and
rank-adjusted Huynh-Feldt tests fell short of the target
coverage to varying degrees in nearly every case con-
sidered for midrange population sphericity values. This
outcome was also observed for larger rank of X from
the target study for population sphericity of 0.282. The
approximate power confidence interval coverage for the
uncorrected tests reached the target coverage value in
every case except for large νest and small rank of X from
the target study. The approximate power confidence inter-
val coverage increased as the ranks ofX for both the target
and estimating studies increased and as Nest decreased.
The slow convergence of the approximate power con-

fidence interval coverage to the target coverage may be

Table 6 Target 95% CI (two-sided) estimated coverage (×100) of simulated population power for ε = 0.505, target
power = 0.80,N = 48 and rank (X) = q

Box coverage GG coverage HF coverage

rank(Xest) rank(Xest) rank(Xest)

Nest q 2 4 8 2 4 8 2 4 8

16 2 97.5 97.2 97.4 94.1 94.3 94.9 92.2 92.1 93.6

4 94.8 94.8 95.3 87.3 87.5 88.9 85.9 86.2 87.4

8 92.6 92.7 93.4 83.2 83.4 86.0 81.4 82.0 84.3

16 92.0 92.3 93.7 82.3 82.5 85.9 80.5 80.7 83.2

32 2 97.3 97.3 97.3 93.3 93.3 93.4 92.4 92.5 92.6

4 93.8 94.1 94.3 85.7 85.2 85.8 85.0 84.8 84.5

8 91.6 91.8 91.4 81.3 81.5 82.4 79.5 80.0 80.6

16 91.5 91.7 91.7 79.4 78.9 80.0 79.2 79.1 79.5

64 2 97.2 97.2 97.4 93.6 93.7 93.5 92.6 92.5 92.8

4 94.4 94.6 94.8 84.5 85.0 84.7 84.4 85.0 85.2

8 91.7 91.5 91.8 79.6 80.1 80.4 78.9 79.2 79.6

16 90.9 90.9 91.0 78.5 78.4 78.7 78.9 78.4 78.7

Estimation Study:Nest ∈ (16, 32, 48) and rank (Xest ∈) (2,4,8). Standard error of coverage probability× 100 ≈ 0.0003 × 100.
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due, in part, to use of ε̃n and ε̃r in the approximate
power confidence interval equation. These estimators of
the sphericity parameter are ratios of unbiased estimators
for the non-null and null cases, respectively. The variances
of these estimators are much larger than the variances
for ε̂n and ε̂d. The larger variances may account for the
slow convergence to the population power as the target
and estimating study sample sizes and degrees of freedom
increase. Further simulations may be needed to confirm
this reasoning.

Alternate approximations
In attempts to develop even better confidence bound
estimates, additional approximations were developed and
evaluated. One approach approximated the distribution
of λ̃∗1 with an F. Using the methods presented in Kim
et al. [22], the numerator of λ̃∗1 was approximated with
a weighted noncentral chi-square, while the denomi-
nator was approximated with a weighted central chi-
square. Two concerns arose. First, the denominator is
not necessarily a central quadratic. The 2tr (�/a) com-
ponent makes the denominator more of a shifted central
quadratic. Second, the Kim et al. [22] result requires that
the components of the numerator and denominator be
mutually independent, which does not hold. Simulations
demonstrated that the approximation was inaccurate in
small samples.
Alternative approximations were developed and eval-

uated. The alternatives matched only the numerator to
a weighted noncentral chi-square or to a weighted cen-
tral chi-square with the denominator a constant equal
to E[ tr(�̂∗) + 2tr(�/a)]. All were less accurate than the
approximation presented here.

Discussion
Even for small sample sizes, the proposed power
confidence intervals attain very accurate coverage prob-
abilities for the Box conservative test in all cases and
for the uncorrected test with ε = 1 (the only case
for which it should be used). The result is also true
for the extreme population sphericity values for the
Geisser-Greenhouse and rank-adjusted Huynh-Feldt
tests. For midrange population sphericity values, the
coverage probabilities of the approximate power confi-
dence intervals for the latter two tests often fell somewhat
short of the various target coverage values considered.
Coverage probabilities improve as sample size increases.
Accuracy is better for higher target power values than for
lower, which makes the results useful in practice. One-
sided confidence intervals are recommended for lower
bounds on power.
The techniques also allow plotting power confidence

regions around an estimated power curve (Figure 1). The
resulting plots have been well received by researchers.

Conclusions
Good statistical practice requires associating a credi-
ble measure of uncertainty with any parameter estimate.
We described and evaluated new methods to meet the
need for UNIREP power estimates based on an esti-
mated covariance with fixed means. Across a large range
of conditions, the methods provide reasonably accurate
coverage for all four UNIREP tests.

Appendix
Appendix A: Additional notation
The additional notation comes fromMuller et al. [5], who
showed that if St1 = ∑b

k=1 λk , St2 = ∑b
k=1 λ2k , St3 =∑b

k=1 λkωk and St4 =∑b
k=1 λ2kωk , then

λ∗1 = (aSt2 + 2St4)
(aSt1 + 2St3)

(A.1)

ν∗1 = aSt1/λ∗1 (A.2)

ω∗ = St3/λ∗1 (A.3)

λ∗2 = St2/St1 (A.4)

ν∗2 = νeS2t1/St2 = νebε. (A.5)

They used the parameters (assumed known) to approx-
imate the UNIREP test statistic with a noncentral F distri-
bution, as presented in equation 6.

Appendix B: Supporting lemmas and proofs
Lemma B.1. A.1-A.5 imply {St1,St2, St3, St4} = {tr(�∗),
tr(�2∗), tr(�), tr(�∗�)

}
.

Proof of lemma B.1.

St1 =
b∑

k=1
λk =

b∑
k=1

tr
(
λkυ

′
kυk
) =

b∑
k=1

tr
(
λkυkυ

′
k
)

= tr

⎡⎣ b∑
k=1

(
λkυkυ

′
k
)⎤⎦ = tr (�∗)

St2 =
b∑

k=1
λ2k =

b∑
k=1

tr
(
λ2kυ

′
kυk
) =

b∑
k=1

tr
(
λ2kυkυ

′
k
)

= tr

⎡⎣ b∑
k=1

(
λ2kυkυ

′
k
)⎤⎦ = tr

(
�2∗
)
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St3 =
b∑

k=1
tr
(

λk
v′
k�υk

λk

)
=

b∑
k=1

tr
(
�υkυ

′
k
)

= tr

⎡⎣�

b∑
k=1

(
υkυ

′
k
)⎤⎦ = tr

(
�ϒϒ ′) = tr (�)

St4 =
b∑

k=1
tr
(

λ2k
v′
k�vk
λk

)
=

b∑
k=1

tr
(
�λkvkv′

k
)

= tr

⎡⎣�

b∑
k=1

(
λkvkv′

k
)⎤⎦ = tr (��∗) .

LemmaB.2. The first moments of tr(�̂∗), tr(�̂
2
∗), tr2(�̂∗),

and tr(��̂∗) are known.

Proof of lemma B.2. Following Wishart [23], S = νe�̂∗ ∼
Wb (νe,�∗), such that νe = N − rank (X). For Wishart
〈�〉jj = σ 2

j while here 〈�〉jj = σjj and ρjk =
σjk/
(
σjjσkk

)1/2. Wishart [23] said, with emphasis not in
the original, “. . .moment coefficients are in all cases except
the first calculated about the mean of the sample. . .”. Here
μ(n) indicates the expression in equation n at the end of
Wishart [23], E [tr (S)] = E(

∑
j=1b sjj) = ∑b

j=1 E
(
sjj
) =∑b

j=1 μ(1)j =∑b
j=1 νeσjj . Thus

E[ tr(�̂∗)]= (1/νe)E [tr (S)] = (1/νe)
b∑

j=1
νeσjj = tr (�∗) .

(B.1)

With S2 = (νe�̂∗)2, E
[
tr(S2)

] = E
[(∑b

j=1
∑b

k=1 s2jk
)]

=∑b
j=1
∑b

k=1 E
(
s2jk
)
. In turn E

(
s2jk
)

= E
{[[

sjk − E
(
sjk
)]+

E
(
sjk
)]2} = E

{[
sjk − E

(
sjk
)]2 + 2E

(
sjk
) [
sjk − E

(
sjk
)]

+ [E (sjk)]2} = E
{[
sjk − E

(
sjk
)]2}+2E

(
sjk
)
E
[
sjk − E

(
sjk
)]+[

E
(
sjk
)]2 = E

{[
sjk − E

(
sjk
)]2}+ [E (sjk)]2. Also:

Hence

E[ tr(�̂2
∗)]=

(
1/ν2e
) [

νe (νe + 1) tr(�2∗) + νetr2 (�∗)
]
.

(B.2)

Here E
[
tr2 (S)

] = E [tr (S) tr (S)] = E
[(∑b

j=1 sjj
)

(∑b
k=1 skk

)]
= E

(∑b
j=1
∑b

k=1 sjjskk
)

= ∑b
j=1
∑b

k=1

E
(
sjjskk
)
, with E

[
sjjskk
] = μ(4)jk = 2νeσ 2

jk + ν2e σjjσkk .
Thus,

E
[
tr2(�̂∗)

] = (1/ν2e )E [tr2 (S)
]

= (1/ν2e ) b∑
j=1

b∑
k=1

(
2νeσ 2

jk + ν2e σjjσkk
)

= (1/ν2e ) [ 2νetr(�̂2
∗) + ν2e tr2 (�∗) ] . (B.3)

Finally, S = νe�̂∗ ∼ Wb (νe,�∗) has E(S) =
νe�∗ (Muller and Stewart [6], Theorem 10.10). Hence
E[tr(�S)] = tr [E(�S)] = tr [�E(S)] = tr [�(νe�∗)] =
νetr(��∗) and

E
[
tr(��̂∗)

] = tr(��∗). (B.4)

Proof of lemma 1. Substituting equivalent terms from
equations A.1-A.5 into (λ∗2abν∗2) / (λ∗1ν∗1bνe) allows
combining like terms and simplifying to give

λ∗2
λ∗1

ab
ν∗1

ν∗2
bνe

= St2/St1
λ∗1

ab
aSt1/λ∗1

νeS2t1/St2
bνe

= 1.

If Tu =[ tr(�̂)
/
a] /[ tr(�̂∗)], then tr(�̂) ≈ λ∗1y∗1

and νetr(�̂∗) ≈ λ∗2y∗2 with y∗1 ∼ χ2 (ν∗1,ω∗) and
y∗2 ∼ χ2 (ν∗2) as described in Muller et al. [5].
In turn, Pr {Tu ≤ t} = Pr

{
[ tr(�̂)

/
a] /tr(�̂∗) ≤ t

} ≈
Pr
{[

λ∗1y∗1/(ab)
]
/
[
λ∗2y∗2/ (bνe)

] ≤ t
} = Pr

{
(y∗1/ν∗1) /

(y∗2/ν∗2) ≤ tλ∗2abν∗2/ (λ∗1ν∗1bνe)
} = FF (t; ν∗1, ν∗2,ω∗).

Proof of lemma 2. Using Lemma B.2, unbiased esti-
mators for tr2(�∗) and tr(�2∗) are τ̂1 = [ tr2(�̂∗) −
2 (νe + 1)−1 tr(�̂2

∗)] {1 − 2 [νe (νe + 1)]−1}−1 and τ̂2 =
[ ν2e tr(�̂

2
∗) − νetr2(�̂∗)] [νe (νe + 1) − 2]−1, as introduced

in Gribbin [18] and Chi et al. [19]. As shown in
Lemma B.2, tr(�̂∗) and tr(�̂∗�) are unbiased estimators
for tr(�̂∗) and tr(�̂∗�), respectively. Thus,

E
(
s2jk
)

=

⎧⎪⎨⎪⎩
[
s2jj −
[
E
(
sjj
)]2]+ [E (sjj)]2 = μ(3)j +

[
μ (1)j

]2 = νeσ
2
jj (2 + νe) if j = k[

s2jk − [E (sjk)]2]+ [E (sjk)]2 = μ(5)jk + [μ(2)jk
]2 = νe

(
σjjσkk + σ 2

jk

)
if j 
= k.
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ε̃n = τ̂1 + 2tr(�̂∗)tr (�/a)
b
[̂
τ2 + 2tr(�̂∗�/a)

] = νe (νe + 1) tr2(�̂∗) − 2νetr(�̂
2
∗) + 2 [νe (νe + 1) − 2] tr(�̂∗)tr (�/a)

b
{
ν2e tr(�̂

2
∗) − νetr2(�̂∗) + 2 [νe (νe + 1) − 2] tr(�̂∗�/a)

} .

In the null case � = 0 and ε̃n reduces to the
rank-adjusted sphericity estimator, ε̃r = [(νe+1) b̂ε − 2] /
[b (νe − b̂ε)] = ε̃n|� = 0.

Appendix C: Simulation details
Covariance conditions
Covariance conditions 5-8 from Table III of Coffey and
Muller [24] were used for each example described below:
�∗ = Dg

(
λj
)
for j ∈ {1, 2, 3, 4}, with

λ′
1 =[ 0.47960 0.01000 0.01000 0.01000] ,

λ′
2 =[ 0.34555 0.06123 0.05561 0.04721] ,

λ′
3 =[ 0.23555 0.17123 0.05561 0.04721] ,

λ′
4 =[ 0.12740 0.12740 0.12740 0.12740] .

Thus, ε ∈ {0.28, 0.51, 0.72, 1.00}. Given �∗ = Dg
(
λj
)
, it

follows that � = U�∗U ′.

CLAHEmammography example
Computer scientists developed the Contrast Limited
Adaptive Histogram Equalization (CLAHE) algorithm
to improve contrast in medical images. Independent
observers considered 3 × 3 = 9 Clip×Region combi-
nations. Region denotes the size of the image (pixels2)
at which contrasts are controlled and Clip level limits
the maximum contrast adjustment. In the multivariate
model X = 1N , while within-person factors Clip and
Region gave Y , (N × 9). Also B, (1 × 9), contained mean
log10 (contrast) for the unprocessed condition minus the
mean for each of the nine combinations of Clip and Region
(βcr = μunprocessed − μcr). If Tc contains orthonormal lin-
ear and quadratic trends for log2 (Clip) ∈ {1, 2, 4}, and Tr
does the same for log2

(
Region

) ∈ {1, 3, 5}, then the 9×4
within-persons contrast matrix, Ucr is

Ucr = Tc⊗Tr =
⎡⎣−4/

√
42 2/

√
14

−1/
√
42 −3/

√
14

5/
√
42 1/

√
14

⎤⎦⊗
⎡⎣−1/

√
2 1/

√
6

0 −2/
√
6

1/
√
2 1/

√
6

⎤⎦ .

With L the linear and Q the quadratic trends
for interaction components being tested, Ucr =[
uLL uLQ uQL uQQ

]
.

All four covariance patterns were factorially combined
with N ∈ {10, 20, 40}. The multivariate test considered
�cr = βP · [0.5 1.0 −1.0 0.5

]
with α = 0.05, and

βP the scaling factor for B corresponding to approxi-
mate target power P ∈ {0.20, 0.50, 0.80} for the Geisser-
Greenhouse approximation using methods in Muller et al.
[5]. The conditions in the example were used in section
‘Simulation 1 with rank (X) = 1 (one-group repeated
measures ANOVA)’. More details of the example are in
Muller et al. [5].

Test of interaction with rank(X) > 1 Example
All cases used 5 repeated measures, N ∈ {16, 32, 48}, and
rank(X) ∈ {2, 4, 8, 16}. For obvious reasons, a rank of
X equal to 16 was not considered for the smallest sam-
ple size. All four covariance patterns were factorially
combined with the sample sizes and ranks X. In the mul-
tivariate model, X = Iq ⊗ 1repn, such that repn = N/q,
and ⊗ is a Kronecker product. If

D16 =
⎡⎢⎣ Da

q×5
Db
q×11

Dc
(16−q)×5

Dd
(16−q)×11

⎤⎥⎦ ,

then B = βP · Da, such that βP was the scaling factor giv-
ing approximate target power P ∈ {0.20, 0.50, 0.80}, for the
rank-adjusted Huynh-Feldt power approximation. The
within-subject contrast, U , (5 × 4), contained orthonor-
mal linear, quadratic, cubic and quartic trends:

U =

⎡⎢⎢⎢⎢⎣
−2/

√
10 2/

√
14 −1/

√
10 1/

√
70

−1/
√
10 −1/

√
14 2/

√
10 −4/

√
70

0/
√
10 −2/

√
14 0/

√
10 6/

√
70

1/
√
10 −1/

√
14 −2/

√
10 −4/

√
70

2/
√
10 2/

√
14 1/

√
10 1/

√
70

⎤⎥⎥⎥⎥⎦ .

Each row of the between-subject contrast, C, a
(q − 1 × q) orthonormal matrix, contained one of the
(q − 1) trends. The contrasts define a test of interaction of
between- and within-subject trends. Without loss of gen-
erality, we assumed �0 = 0. A test size, α, of 0.05 was
used.

Computational methods
All power computations were conducted in SAS/IML
(SAS 9.1, SAS Institute, 2003). Free software LINMOD 3.4
was used for all data analysis and includes new methods.
Free software POWERLIB 2.1 in Johnson et al. [25] was
used for all power analysis and includes the new meth-
ods. Both are available at http://health-outcomes-policy.
ufl.edu/faculty-directory/-muller-keith/list-of-software/ .
UNIREP power is also available in GLIMMPSE, a free
web-browser based program with a graphical user inter-
face aimed at health scientists (www.SampleSizeShop.org).
The next version of GLIMMPSE is expected to implement
the confidence interval methods.

http://health-outcomes-policy.ufl.edu/ faculty-directory/-muller-keith/list-of-software/
http://health-outcomes-policy.ufl.edu/ faculty-directory/-muller-keith/list-of-software/
www.SampleSizeShop.org
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