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Abstract

Background: Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health
care and public health surveillance. SPC methods assume independent observations and process autocorrelation
has been associated with increase in false alarm frequency.

Methods: Monthly mean raw mortality (at hospital discharge) time series, 1995-2009, at the individual Intensive Care
unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database.
Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function
displays and classical series decomposition and (i) “in-control” status was sought using risk-adjusted (RA) exponentially
weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient
(intercept as ICU site and slope as APACHE Il score) logistic regression model, generating an expected mortality series.
Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology:
autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity)
models, the latter addressing volatility of the series variance.

Results: The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was
14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278
(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lags, and
35% had autocorrelation through to lags; and of 36 sites with continuous data for 2 72 months, all demonstrated
marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was
evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH
effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step
prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model.

Conclusions: The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation,

seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA
control limits. A time series approach using residual control charts resolved these issues.
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Background

Statistical process control (SPC), deriving from Shewart’s
work in 1920-30 and in the 1950’s with Deming’s refine-
ments [1], has been more recently applied in health care
and public health surveillance [2], generating consider-
able interest in the general [3-5] and specialist medical
literature [6-10]; and has been subject to a detailed ex-
position from a “quality-in-medicine” perspective [11].
Important statistical principles underlying SPC or
control-chart methodology are those of the monitored
process being “in control” and subject to the independ-
ence of observations [12]. The presence and impact
(possible increase in frequency of false alarms) of
process autocorrelation in industrial/engineering series
have long been documented [13-16]. Somewhat surpris-
ingly, little formal attention has been directed to this
problem in the bio-medical literature [17,18], one review
suggesting that there was “...limited advice on how to
manage [autocorrelation]...” [5].

We have previously drawn attention to the data-
generating mechanisms of overall monthly mortality
series, at the aggregate level, from a bi-national intensive-
care (ICU) database, where persistent autocorrelation
(to lag,4) was evident in a seasonal ARIMA (auto-
regressive integrated moving average) model of the
mortality series [19]. We now extend this study to
further characterise the data generating process of
mortality series at the individual ICU level and the
impact of autocorrelation upon (i) mortality monitor-
ing using EWMA (exponentially weighted moving
average) control charts and (ii) time-series modelling
of the data process using residual control charts.

Methods

As previously described [19,20], the ANZICS (Australian
and New Zealand Intensive Care Society) adult patient
database [21] was utilised to define an appropriate pa-
tient set, 1995-(end)2009. Physiological variables col-
lected in accordance with the requirements of the
APACHE III algorithm [22,23] were the worst in the
first 24 hours after ICU (intensive care unit) admis-
sion, and all first ICU admissions to a particular hos-
pital for the period 1995-2009 were selected. Records
were used only when all three components of the
Glasgow Coma Score (GCS) were provided; records
for which all physiologic variables were missing were
excluded, and for the remaining records, missing variables
were replaced with the normal range and weighted ac-
cordingly. The mortality endpoint was at hospital dis-
charge. Exclusions: unknown hospital outcome; patients
with an ICU length of stay < 4 hours, and patients
aged < 16 years of age. Access to the data was
granted by the ANZICS Database Management Com-
mittee in accordance with standing protocols; local hospital
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(The Queen Elizabeth Hospital) Ethics of Research Com-
mittee approval was waived.

Statistical analysis

(i) Monthly raw (risk-unadjusted) and risk-adjusted
(RA) mortality time series at the individual ICU
were generated. Risk adjustment was undertaken,
generating the “expected” series, using a random
coefficient logistic model (intercept as ICU site and
“slope” as (centred) APACHE III score;
unstructured covariance using adaptive quadrature,
estimated via the Stata™ module “xtmelogit” [24]),
as previously described in detail [20], and extended
to both ventilated and non-ventilated patients. No
formal adjustment for potential seasonality
(trigonometric seasonality using sine/cosine
functions or monthly dummy variables) was
undertaken. Individual ICUs were allocated an
identifier based upon a random number sequence.

(ii) Graphical inspection of the mortality series and
formal testing of normality to confirm that the
“...distributions of... (observed) and... (predicted)
[series] ... were sufficiently similar and are
robustly normal and symmetrical...” [25].
Classical seasonal decomposition [26] was
undertaken using the “decompose” module in R
statistical software (Version 15.2 [27]).
Autocorrelation plots (scatterplot grid of series
versus lagged values) were performed via the R
user-written module “lagl.plot” [28].

(iii) Generation of EWMA charts with confidence limits.
a. assuming iid (independent and identically

distributed) observations, the EWMA statistic (z;)
is defined as: Ax; + (1 - 1)z;_; and the variance
(0®) as 02 = 0,2 (1) [1-(1-)\)*], where 0 < A1 < 1
is a constant (smoothing parameter) [29].

b. For the variance of (non-stationary) auto-correlated
series, we followed Montgomery & Mastrangelo
[15]: division of the sum of squared (prediction)
errors for optimal A by #; leading to the plotting of
a moving centre-line EWMA control chart [12].

c. Default values (“optimal”) in Stata™ statistical
software for A were chosen to minimize the in-
sample sum-of-squares forecast errors [30], a
method also recommended by Montgomery and
Mastrangelo [15]; albeit small values of A may
inhibit the detection of large sudden process
shifts; the “inertia” phenomenon [31].

d. Average run length (ARL): that is, the average
number of “points”, when the data-generating
process is in fact in-control, plotted before out-
of-control is declared (ARL,). For instance, with
iid observations and a Shewhart control-chart
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with three sigma limits, ARLy= 1/p=1/0.0027=370
(where p is the probability that any point
exceeds the control limits [32,33], when the
data-generating process is in fact in-control).
Under the iid assumption, for various
mortality series and values of A, scenario based
increments of the (mean of the) underlying
series were computed using Statgraphics®
Centurion XVI statistical software [34].

e. Using conventional SPC methods, EWMA
control limits (at 3 sigma) were applied to the
raw mortality series using the expected series as
reference process; that is, RA control limits were
generated.

(iv) Establishment of time-series models at the individual

ICU level was based upon classic Box-Jenkins
methodology (autoregressive moving average
(ARMA) models) with investigation of (G)ARCH
((Generalised) Autoregressive Conditional
Heteroscedasticity) effects [35,36], as previously
described [19].

a. A stationary time series {x; t =0, £ 1, + 2, ...}
has an autoregressive moving average (ARMA
(p,q)) structure: x,= G1x; 1+ ... PpXe_p + Or +
Or1ws_1+ ... 040, _;, Where ¢y, ¢, ..., @, are the
“autoregressive” (AR) coefficients relating the
value of x at time ¢ to its past p values, and
01, 6, ..., 6, are the “moving average” (MA)
coefficients, relating the current “white-
noise”,w,, to its past ¢ values and thN(O,Gi).
If x, has a non-zero mean (), then a constant
a=pu(l - ¢ - ... - ¢,) is introduced into the
structure. An integrated series accumulates
(some) past effects and is therefore non-stationary.
A series is integrated, say, of order 1 (I(1)) if the
changes (or differences: Ax, =x, — x, 1) of the series
generate stationarity ((0)), leading to the
expanded ARIMA model (ARIMA(p,d,q)),
where d is the degree of differencing [37].
This being said, careful attention was directed
to the question of trend versus difference
stationarity [38], especially in medical series
where, as opposed to stochastic random walks,
“deterministic” trends may be present. [39,40].

b. Model diagnostics: the use of auto- (ACF) and
partial-autocorrelation (PACF) function
displays, testing for the presence of a unit-root
(ADF (augmented Dickey-Fuller) and DF-GLS
(modified Dickey—Fuller ¢ test) tests [30] and
variants), residual white-noise (Bartlett’s
periodogram-based- and Portmanteau (Q)-test)
and seasonality were undertaken after
Shumway & Stoffer [41] and as previously
described [19].
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c. Volatility of the (squared) residuals (e) of the
mean equation (conditional heteroscedasticity
[42]) was checked using the PAC of the squared
residuals and the user-written Stata™ “armadiag”
module [43]; that is, ARCH and GARCH effects
((Generalised) Autoregressive Conditional
Heteroscedasticity of the error variance process).
For an ARCH model, the mean equation is y, =
x,8 + & and the variance equation o7 =y, + 1,
€2, +Y,€-, + ..., where &~N(0,07), € are the
squared residuals (innovations) and y; are the
ARCH parameters; the conditional variance is thus
modelled as an AR process. A GARCH(#1,k) model
includes lagged values of the conditional variance
(0F = Yo + Y1801 +Yaktn + e+ YinEln
8167 | + 8202, + ... + 862 ), where §; are the
GARCH parameters (an ARMA process) [19,44].
Exploration of different error term distributions
(normal, ¢ and generalised error) was also
undertaken [30].

d. Under the conditions of an appropriately
specified time-series model, the behaviour of
the residuals was investigated, after Alwan and
Roberts [45], on the basis that a shift in the
mean of a time series is transmitted to the
residuals [46].

i. As residuals are assumed to be independent
(white-noise: a sequence of iid random
variables with finite mean and variance, all
ACFs being [close to] zero [47]), standard
control chart methods were used to generate
residual-EWMA charts [33]. Thus,
determination of the residual-EWMA
smoothing parameter (\) was based upon
methods for independent observations.

ii. Control limits were also determined using
standard errors (3x) of the one-step-ahead
forecasts [45].

e. Model selection was guided by penalized
information criteria (Akaike (AIC) and Bayesian
(BIC) information criteria) [48].

f. Formal exegesis proceeded using a single
exemplar complete ICU series (1995-(end)2009).

(v)Graphical displays: line-graphs of series were
produced for appropriate illustration of relevant
stages of analysis

a. Line graph(s) of the raw series were produced
with 3*SE control limits of the expected series.

b. EWMA control limits (including residual control
charts) were generated using default values of
“optimal exponential coefficient” in Stata™
statistical software [49].

c. Values of A for scenario based increments (say,
5% or 10%) of target mean were calculated using
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the SPC module of Statgraphics® statistical
software [34] and appropriate 3*SE control limits
of the expected series as in (a) above or EWMA
line graphs were produced as in (b) above.

Results

The overall data set, 1995-2009, consisted of 491324 re-
cords from 137 ICU sites; mean (hospital) mortality was
14.07%. The random coefficient logistic regression model
(Hosmer-Lemehsow statistic 62.97, ROC area under the
curve 0.89) generated an overall predicted mortality prob-
ability of 0.1407 (SD 0.0202, range 0.00004-0.993). Over
the 137 sites mean raw and expected (RA-) mortalities
ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457)
and 0.278(0.247) respectively.

Of the raw mortality series from the 137 ICUs, 71 had
continuous monthly data (excluding missing values or zero
monthly mortality) for assessment up to or beyond lagye.
For 25 of these series (35%), there was a significant Q test
(null hypothesis being that the series is white noise) and
autocorrelation through to lagy. Thirty six had continuous
monthly data (excluding missing values) for > 72 months;
all series demonstrated marked seasonality and 30 demon-
strated an obvious trend decline in mortality. Of the
expected mortality series, 72 had appropriately assessable
data to lagyo and in 46 (64%) there was a significant Q test
and autocorrelation through to lag,,. Similarly, in the same
36 series with continuous (raw) monthly data for >
72 months, all expected mortality series demonstrated

Page 4 of 12

marked seasonality and 30 demonstrated an obvious trend
decline in mortality.

Data from site “4” over 1995-2009 was used to gen-
erate an exemplar mortality time series. The mean
raw mortality was 0.139(0.047) with skewness 0.216
and kurtosis 2.53; and the expected mortality was
0.138(0.028) with skewness 0.361 and kurtosis 3.47.
The Shapiro-Wilk normality test was not rejected for
either series (P =0.23 for both series). Kernel density
estimates of raw and expected mortality are seen in
Figure 1 (upper panel), with obvious difference in the
degree of kurtosis between the two series. Time series
plots, 1995-2009, for raw and expected (RA-)mortality
are seen in the lower panel; a gradual time-decline in
mortality for both series is evident. Additive seasonal
decomposition of both series is seen in Figure 2, re-
vealing marked seasonality and a trend decline in
mortality. Autocorrelation plots are seen in Figure 3,
showing correlation (positive and negative) decreasing
variably with increase in lag in both series.

Figure 4 displays a plot of raw mortality series with
control limits as 3SE of expected mortality (upper
panel) and a scenario based mortality increment of 5%
(5% false positive rate and desired ARL= 6 months) with
control limits as 3SE of expected mortality. Frequent
signalling is seen in both panel-plots. Figure 5 shows a
plot of the raw mortality series with (fixed) EWMA 3 SE
control limits derived from a projected 5% (upper panel)
and 10% (lower panel) increment in expected mortality,
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Raw mortality
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Figure 2 Decomposition plot of raw (upper panel) and
expected (lower panel) mortality series.

assuming: an in-control ARL of 370, mean (expected)
mortality 0.1381(0.0276) and target mean (expected)
mortality of 0.145 (5% increment) and 0.152 (10% incre-
ment), for an EWMA X = 0.02 and 0.05, respectively
(calculations preformed in Stagraphics®). For both 5%
and 10% projected increments of expected mortality,
the raw mortality series signalled frequently, mainly in
the early periods. Figure 6 shows the same scenarios
with a time-varying variance EWMA control chart;
again, there was frequent signalling of the raw mortality
series.
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The autocorrelation evident in the raw and expected
mortality series suggested a formal time series approach
to SPC:

(i) Raw mortality: both the DF-GLS and ADF tests
(with trend) rejected the null-hypothesis of
presence of a unit-root and the series was de-
trended using linear regression (raw mortality
against time) and the residuals (also not
evidencing a unit-root) of the linear regression
model were used for subsequent formal analysis.
The de-trended series from the raw mortality
displayed seasonality but, not surprisingly, no
trend decline (graphics not shown). An initial
additive seasonal ARMA model satisfied
conventional diagnostic requirements, but
displayed ARCH effects. Of the (G)ARCH models
assessed, the most parsimonious was a simple
[ARCH-lag;, GARCH-lag;] model (Table 1).
Although the individual GARCH term was
nominally non-significant, there was a highly
significant (P=0.0001) test of joint significance
of the ARCH and GARCH parameters. There
was no advantage of either ¢ or general error
distribution in the development of the (G)ARCH
models.

(i) Expected mortality: trend stationarity was
demonstrated by rejection of the null-hypothesis of
existence of a unit-root by the DF-GLS and ADF
tests (with the trend option) and de-trending (linear
regression of expected mortality against time)
yielded residuals (also not evidencing a unit-root)
for subsequent formal analysis. A simple
(multiplicative) seasonal autoregressive model was
generated with no evidence of ARCH effects
(Table 1). Although an ARMA(1,1) model satisfied
model diagnostic tests, the multiplicative seasonal
AR model was favoured on clinical grounds.

Both the GARCH and ARMA models were considered
parsimonious and the de-trended signals for each model
were within 3SE limits of respective model predictions
(Figure 7). The residuals from both the formal GARCH
and ARMA models (mean: 0(0.0423) and 0(0.0257) re-
spectively) satisfied multiple criteria of Gaussian white-
noise and were within residual-EWMA control limits
(default values of “optimal exponential coefficient” in
Stata™ statistical software; 3SE control limits; A = 0.0001
for both series; Figure 8). To address any potential iner-
tial problems consequent upon the small A, control
limits were also established for projected 1 (A=0.16), 2
(A=0.42) and 3 (A\=0.71) SD increments of the mean of
the GARCH residuals; the latter were within these con-
trol limits (Figure 9).
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J
Discussion

The current analysis of monthly mortality series confirms
the existence of autocorrelation and seasonality in both the
raw and expected series at the individual ICU level,
avoiding any potential confounding at the aggregate level

due to Simpson’s paradox. We thus concur with the
findings of Alwan [13,50] and Bisgaard and Kulahci [51],
who documented the pervasiveness of autocorrelation in a
variety of series, industrial and non-industrial. We also
established that out-of-control signalling of the raw
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EWMA % = 0.02 for expected mortality (5% increase), time-varying control limits for raw mortality
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Figure 6 Raw mortality series with EWMA time-varying 3SE control limits: upper control limit (red line), lower control limit (green line),
signal (navy line); for anticipated 5% (upper panel) and 10% (lower panel) increments in expected mortality.

mortality series with respect to both 3 standard error risk-
adjusted and RA-EWMA control limits was not evident
with analysis of the residuals from the GARCH time series
model. Thus the identification of (G)ARCH processes is an
important issue for SPC [35].

As our focus was directed to an understanding of the
underlying data-generating process [45] and the perform-
ance of the RA-EWMA control limits under conditions of
autocorrelation, we deemed it appropriate to also subject
the expected series, from which the control limits for the
raw mortality series were established, to formal time-series
estimation. Not surprisingly, as the underlying mortality
estimates from a random coefficient model are obligatorily
“smoothed” (see also Figure 1), no ARCH effects,
representing “volatility”, were demonstrated and a relatively
simple seasonal autoregressive model was established
(Table 1). As the EWMA is based upon an ARIMA(0,1,1),
that is an integrated moving average process [45,52], it has
been applied to autocorrelated data [15], although the ma-
jority of studies have used relatively simple non-seasonal
autoregressive models (AR(1) or AR(2)) with fixed A
(usually 0.2, which is the default for the SPC model of
Statgraphics software). Residual-EWMA charts, in the
context of time series modelling, would appear to be more
robust than EWMA applied to the original (autocorrelated)
data [53,54]. Reynolds and Lu have recommended that
under autocorrelation “...traditional control chart method-
ology should not be applied without modification...” [55]

Table 1 Parameters for GARCH (estimated from raw
mortality series; de-trended linear model residuals) and
ARMA (estimated from the expected mortality series;
de-trended linear model residuals) models

Model Coefficient P UL_95% CI LL 95% ClI
Raw mortality

ARMA

Autoregressive parameters

L24 0.174 0.016 0.033 0316
Moving average parameters

L1 -0.148 0.021 -0.274 -0.022
L15 0.265 0.000 0.128 0402
L17 —0.203 0.003 —0.340 -0.067
ARCH

L1 0.014 0464 -0.024 0.052
GARCH

L1 0.996 0.000 0931 1.061
Expected mortality

ARMA

Autoregressive parameters

L1 0.145 0.045 0.003 0288
ARMA12

Autoregressive parameters

L1 0.132 0.075 —0.031 0277

L lag.
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Optimal EWMA fixed control limits for GARCH model residuals
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Figure 7 De-trended series (navy line) generating the GARCH (upper panel) and ARMA (lower panel) models with one-step-ahead
forecast control limits (3SE); upper control limit (red line), lower control limit (green line).

J

and Human et al. have recently sounded a cautionary note
about the robustness of the conventional EWMA [56].
For the classical SPC model, a process is in control if

is, for a normally distributed series, 99.7% of observa-
tions should lie within the limits [58] and there a prob-
ability of 0.0027 that any point exceeds the control limit

the mean and standard deviation estimate remain within

[32,59]. However this definition does not necessarily entail
prescribed control limits [57], usually three-sigma; that

the formal time-series notion of stationarity (strict or weak),

Detrended raw series vs GARCH predictions, 3SE CL
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Figure 8 “Optimal” residual-EWMA control chart (3 SE control limits): upper control limit (red line), lower control limit (green line),
residuals (navy line); for GARCH (upper panel) and ARMA (lower panel) model residuals, respectively.
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where the requirement for stationarity is that the first
two moments (mean and variance [45,50]) and the autocor-
relation function are time-invariant, albeit a stationary pro-
cesses may be auto-correlated [60]. In the industrial/
engineering sphere, practitioner response to process auto-
correlation [61] was to embrace a time-series paradigm and
apply SPC methods to the residuals of a formal time-series
model [45,62], albeit there were different tactical ap-
proaches [15,63]; or to develop modified control limit
schemes [64-66]. It is instructive to note that the non-
model based EWMAST chart (EWMA chart for stationary
processes [66]), recommended by Winkel and Zhang [11],
pre-supposes a stationary (not “in-control”) process. In a
systematic review of the application of statistical process
control in healthcare, Thor et al. [5] adduced only one lit-
erature reference [67] and a calendar year 2003 monograph
which discussed autocorrelation in medical series. As ar-
gued by Alwan and Roberts [45], systematic non-random
patterns in series make separation of the classic common
and special causes difficult, as departures from control,
nominally traceable to special causes, are confounded by

Page 10 of 12

autocorrelation and, in the current series, seasonality. Two
further concerns were raised by the authors; first, the un-
due emphasis placed upon normality and the (erroneous)
assumption that “approximate normality” implies a state
of statistical control; and second, in the presence of a well-
fitting time series model with residuals consistent with
white-noise (“randomness”), it is “..futile to search for
departures from statistical control and their corresponding
special causes...”. The latter caution resonates with the
current finding of frequent signalling of the raw mortality
series compared with in-control residuals from an appo-
site time series model; with respect to the error process,
such signalling represents false positivity [13].

Cook and co-workers, “...explicitly compare[d] EWMA
(observed) and EWMA (predicted) ...[with] thresholds
around the EMWA (predicted)...”, employing the EWMA
(A = 0.005-0.020) to “...effectively attenuate noise in the
data and smooth an erratic but unbiased risk model” [25],
although no criteria of “erratic” were provided. Smoothed
control limits for the expected series were also utilised
in a review paper by Cook et al. ([68]) and Pilcher et al.

EWMA }. = 0.16, putative 1SD mean increase in GARCH residuals
Raw mortality

~

EWMA . = 0.42, putative 2SD mean increase in GARCH residuals
Raw mortality

2 2 2 2 2
2% %%%%%%%

Calendar time: monthly

(red line), lower control limit (green line).
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Figure 9 Residual-EWMA control charts (3 SE control limits) for projected 1 (upper left panel), 2 (upper right pane) and 3 (lower left
panel) SD increase of residual mean of the GARCH model (for raw mortality series); model residuals (navy line), upper control limit
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([69], X = 0.005), albeit the data structure differed;
sequential plotting of each patient admission versus
monthly mortality rates in the current paper. Our focus
and methodology were different, in that we were
concerned to both understand and formally model the
“noise in the data”. This being said, in the current series,
the smoothed EWMA (A = 0.51) raw series (Figure 4) was
demonstrated to signal using 3 standard error expected
mortality control limits.

The sophistication of time-series modelling in stand-
ard statistical software packages makes the formal ana-
lyses of the current study feasible; in particular,
automated routines for application of time series models
[70]. However, for the application of appropriate SPC to
mortality series from multiple ICUs in a data-base, there
are unresolved statistical issues [71,72]. From the per-
spectives of this study, a multivariate approach may be
established using more conventional estimators (multi-
variate GARCH [73] and vector autoregression models
[74]) or by newly described hierarchical/functional time
series [75,76].

Conclusions

The underlying data generating process of monthly mor-
tality series at the ICU level displayed autocorrelation
and seasonality, with volatility evident in the raw mortal-
ity series. Failure to accommodate these characteristics
by SPC measures resulted in false-positive signalling. A
time series approach to SPC, using residual control charts,
would appear to resolve such issues.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

The study was conceived, designed, (data)-analysed, written and critically
revised jointly by both authors (JLM, PJS). Both authors read and approved
the final manuscript.

Acknowledgements

ANZICS Centre for Outcome and Resource Evaluation (CORE) of the Australian
and New Zealand Intensive Care Society (ANZICS):

Australian and New Zealand Intensive Care Society, Carlton, Victoria 3053, Australia.

Author details

'Department of Intensive Care Medicine, The Queen Elizabeth Hospital, 28
Woodville Road, Woodville, SA 5011, Australia. School of Mathematical
Sciences, University of Adelaide, Adelaide, SA 5000, Australia.

Received: 7 January 2013 Accepted: 17 May 2013
Published: 24 May 2013

References

1. Montgomery DC: Quality Improvement in the Modern Business Environment.
In Introduction ot Statistical Quality Control. 7th edition. Edited by Montgomery
DC. Hoboken, NJ: John Wiley & Sons, Inc; 2013:3-47.

2. Woodall WH: The Use of control charts in health-care and public-health
surveillance. J Qual Technol 2006, 38:89-104.

3. Benneyan JC, Lloyd RC, Plsek PE: Statistical process control as a tool for
research and healthcare improvement. Qual Saf Health Care 2003, 12:458-464.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Page 11 of 12

Mohammed MA, Worthington P, Woodall WH: Plotting basic control
charts: tutorial notes for healthcare practitioners. Qual Saf Health Care
2008, 17:137-145.

Thor J, Lundberg J, Ask J, Olsson J, Carli C, Haerenstam KP, Brommels M:
Application of statistical process control in healthcare improvement:
systematic review. Qual Saf Health Care 2007, 16:387-399.

Collins G, Jibawi A, McCulloch P: Control chart methods for monitoring
surgical performance: a case study from gastro-oesophageal surgery.
Ejso 2011, 37:473-480.

Cook DA, Steiner SH, Cook RJ, Farewell VT, Morton AP: Monitoring the
evolutionary process of quality: risk-adjusted charting to track outcomes
in intensive care. Crit Care Med 2003, 31:1676-1682.

Duclos A, Voirin N, Touzet S, Soardo P, Schott AM, Colin C, Peix JL, Lifante JC:
Crude versus case-mix-adjusted control charts for safety monitoring in
thyroid surgery. Qual Saf Health Care 2010, 19:1-4.

Kirkham JJ, Bouamra O: The use of statistical process control for
monitoring institutional performance in trauma care. J Trauma 2008,
65:1494-1501.

Rogers CA, Reeves BC, Caputo M, Ganesh JS, Bonser RS, Angelini GD:
Control chart methods for monitoring cardiac surgical performance and
their interpretation. J Thorac Cardiovasc Surg 2004, 128:811-819.

Winkel P, Zhang NF: Statistical development of Quality in Medicine. Chichester,
West Sussex: John Wiley & Sons Ltd; 2007.

Montgomery DC: Other univariate statistical process monitoring and
control techniques. In Introduction ot Statistical Quality Control. 7th edition.
Edited by Montgomery DC. Hoboken, NJ: Wiley; 2013:448-508.

Alwan LC: Effects of autocorrelation on control chart performance.
Commun Stat Theory Methods 1992, 21:1025-1049.

Berthouex PM, Hunter WG, Pallesen L: Monitoring sewage-treatment
plants - some quality-control aspects. J Qual Technol 1978, 10:139-149.
Montgomery DC, Mastrangelo CM: Some statistical process-control
methods for autocorrelated data. J Qual Technol 1991, 23:179-193.
Wardell DG, Moskowitz H, Plante RD: Control charts in the presence of
data correlation. Manag Sci 1992, 38:1084-1105.

Winkel P, Zhang NF: Serial correlation of quality control data - on the use
of proper control charts. Scand J Clin Lab Invest 2004, 64:195-203.

Winkel P, Zhang NF: Control charts for autocorrelated data. In Statistical
development of Quality in Medicine. Edited by Winkel P, Zhang NF.
Chichester, West Sussex: Wiley; 2007:92-110.

Moran JL, Solomon PJ, Adult Database Management Committee (ADMC) of
the Australian and New Zealand Intensive Care Society (ANZICS): Conventional
and advanced time series estimation: application to the Australian and New
Zealand Intensive Care Society (ANZICS) adult patient database, 1993-2006.
J Eval Clin Pract 2011, 17:45-60.

Moran J, Solomon P: Mortality and Intensive Care volume in ventilated
patients, 1995-2009, in the Australian and New Zealand bi-national adult
patient intensive care database. Crit Care Med 2012, 40:800-812.

Stow PJ, Hart GK, Higlett T, George C, Herkes R, McWilliam D, Bellomo R:
Development and implementation of a high-quality clinical database:
the Australian and New Zealand Intensive Care Society adult patient
database. J Crit Care 2006, 21:133-141.

ANZICS Centre for Outcome and Resource Evaluation (CORE) of the
Australian and New Zealand Intensive Care Society (ANZICS): APD Data
Dictionary: Version 3.2.1 Updated February 2012. [http://www.anzics.com.au/
core/data-collection-tools], Accessed June 30th 2012.

Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG,
Sirio CA, Murphy DJ, Lotring T, Damiano A: The APACHE Il prognostic
system. Risk prediction of hospital mortality for critically ill hospitalized
adults. Chest 1991, 100:1619-1636.

Rabe-Hesketh S, Skrondal A: Multilevel and Longitudinal Modeling Using
Stata. 2nd edition. College Station, TX: Stata Press; 2008.

Cook DA, Coory M, Webster RA: Exponentially weighted moving average
charts to compare observed and expected values for monitoring risk-
adjusted hospital indicators. BMJ Qual Saf 2011, 20:469-474.

Shiskin J: Decomposition of economic time series. Science 1958,
128:1539-1546.

R Development Core Team: R : A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012
[http://www.R-project.org].

Stoffer D: Applied Statistical Time Series Analysis (“astsa’): R package (V 1.1).
[http://www.stat.pitt.edu/stoffer/tsa3/], Accessed 12th August 2012.


http://www.anzics.com.au/core/data-collection-tools
http://www.anzics.com.au/core/data-collection-tools
http://www.r-project.org
http://www.stat.pitt.edu/stoffer/tsa3/

Moran and Solomon BMC Medical Research Methodology 2013, 13:66
http://www.biomedcentral.com/1471-2288/13/66

29.

30.
31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Montgomery DC: Cumulative sum and exponentially weighted moving
averaged control charts. In Introduction ot Statistical Quality Control. 7th
edition. Edited by Montgomery DC. Hoboken, NJ: Wiley; 2013:413-447.
StataCorp: Time Series Manual: Release 12. College Station, TX: StataCorp LP; 2011.
Reynolds MR, Stoumbos ZG: Comparisons of some exponentially
weighted moving average control charts for monitoring the process
mean and variance. Technometrics 2006, 48:550-567.

Montgomery DC: Methods and Philosophy of Statistical Process Control.
In Introduction ot Statistical Quality Control. 7th edition. Edited by
Montgomery DC. Hoboken, NJ: Wiley; 2013:187-233.

Zhang NF: Statistical control for autocorrelated data. Proc Soc Photo Opt
Instrum Eng 1999, 3742:65-70.

StatPoint Technologies Inc: STATGRAPHICS Centurion XVI.1. 2012, Warrenton,
Virginia USA.

Fang Y, Zhang J: Performance of control charts for autoregressive
conditional heteroscedastic processes. J Appl Stat 1999, 26:701-714.
Schipper S, Schmid W: Control charts for GARCH processes. Nonlinear
Anal-Theor 2001, 47:2049-2060.

Shumway RH, Stoffer DS: ARIMA models. In Time Series Analaysis and Its
Applications With R Examples. third edition. Edited by Shumway RH, Stoffer
DS. New York, NY: Springer Science+Business Media, LLC; 2011:83-172.
Wang S-H, Hafner C: Estimating autocorrelations in the presence of
deterministic trends. J Time Ser Econom 2011, 3. Article4; http://www.
degruyter.com/view/j/jtse.2011.3.2/jtse.2011.3.2.1022/jtse.2011.3.2.1022.xml.
Nelson CR, Plosser CR: Trends and random walks in macroeconmic time
series : some evidence and implications. J Monet Econ 1982, 10:139-162.
Pierce DA: Trend and autocorrelation. Commun Stat 1975, 4:163-175.
Shumway RH, Stoffer DS: Additional time domain topics. In Time Series
Analaysis and Its Applications With R Examples. third edition. Edited by
Shumway RH, Stoffer DS. New York, NY: Springer Science+Business Media,
LLG; 2011:267-318.

Tsay RS: Asset volatility and Volatility models. In An Introduction to Analysis of
Financial Data with R. Edited by Tsay RS. Hoboken, NJ: Wiley; 2013:176-241.
Karlsson S: ARMADIAG: Stata module to compute post-estimation residual
diagnostics for time series; 2009. [http://econpapers.repec.org/scripts/search.
asp?ft=armadiag], Accessed May 2009.

Engle R: GARCH 101: the use of ARCH/GARCH models in applied
econometrics. J Econ Perspect 2001, 15:157-168.

Alwan LC, Roberts HV: Time-series modeling for statistical process-control.
J Bus Econ Stat 1988, 6:87-95.

Koehler AB, Marks NB, O'Connell RT: EIWMA control charts for autoregressive
processes. J Oper Res Soc 2001, 52:699-707.

Tsay RS: An Introduction to Analysis of Financial Data with R. John Wiley &
Sons, Inc: Hoboken, NJ; 2013.

Kuha J: AIC and BIC: comparisons of assumptions and performance.
Sociol Method Res 2004, 33:188-229.

StataCorp: tssmooth exponential -Single-exponential smoothing. In Time
Series Manual: Release 12. College Station, TX; 2011:477-484.

Alwan LC, Roberts HV: The problem of misplaced control limits. App/ Stat-/
Roy St C 1995, 44:269-278.

Bisgaard S, Kulahci M: Quality quandaries: the effect of autocorrelation on
statistical process procedures. Qual Eng 2005, 17:481-489.

Box G, Narasimhan S: Rethinking statistics for quality control. Qual Eng
2010, 22:60-72.

Apley DW, Lee HC: Robustness comparison of exponentially weighted
moving-average charts on autocorrelated data and on residuals. J Qual
Technol 2008, 40:428-447.

Lu CW, Reynolds MR: EWMA control charts for monitoring the mean of
autocorrelated processes. J Qual Technol 1999, 31:166-188.

Reynolds MR, Lu CW: Control charts for monitoring processes with
autocorrelated data. Nonlinear Anal-Theor 1997, 30:4059-4067.

Human SW, Kritzinger P, Chakraborti S: Robustness of the EWMA control
chart for individual observations. J Appl Stat 2011, 38:2071-2087.
Vasilopoulis AV, Stamboulis AP: Modification of control chart limits in the
presence of data correlation. J Qual Technol 1978, 10:20-30.

Shahian DM, Williamson WA, Svensson LG, Restuccia JD, DAgostino RS:
Applications of statistical quality control to cardiac surgery. Ann Thorac
Surg 1996, 62:1351-1358.

Tennant R, Mohammed MA, Coleman JJ, Martin U: Monitoring patients
using control charts: a systematic review. Int J Qual Health Care 2007,
19:187-194.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

72.

73.

74.

75.

76.

Page 12 of 12

Kirchgassner G, Wolters J: Introduction to Modern Times Series Analysis. Berlin:
Springer; 2008.

Lwin T: Parameter estimation in first-order autoregressive model for
statistical process monitoring in the presence of data autocorrelation.

J Stat Plan Infer 2011, 141:2556-2575.

Roberts HV, Tsay RS: Making control charts more effective by time series
analysis: three illustrative applications. Commun Stat-Theory 1996,
25:2767-2796.

Runger GC: Assignable causes and auto correlation: control charts for
observations or residuals? J Qual Technol 2002, 34:165-170.

Apley DW: Time series control charts in the presence of model uncertainty.
J Manuf Sci E-T Asme 2002, 124:891-898.

Lee HC, Apley DW: Improved design of robust exponentially weighted
moving average control charts for autocorrelated processes. Qual Reliab
Engng Int 2011, 27:337-352.

Zhang NF: A statistical control chart for stationary process data.
Technometrics 1998, 40:24-38.

Solodky C, Chen HG, Jones PK, Katcher W, Neuhauser D: Patients as partners in
clinical research - a proposal for applying quality improvement methods to
patient care. Med Care 1998, 36:AS13-AS20.

Cook DA, Duke G, Hart GK, Pilcher D, Mullany D: Review of the application
of risk-adjusted charts to analyse mortality outcomes in critical care.
Crit Care Resusc 2008, 10:239-251.

Pilcher DV, Hoffman T, Thomas C, Ernest D, Hart GK: Risk-adjusted
continuous outcome monitoring with an EWMA chart: could it have
detected excess mortality among intensive care patients at Bundaberg
Base Hospital? Crit Care Resusc 2010, 12:36-41.

Hyndman RJ, Khandakar Y: Automatic time series forecasting: the forecast
package for R. J Stat Softw 2008, 27:1-22.

Bottle A, Aylin P: Predicting the false alarm rate in multi-institution mortality
monitoring. J Oper Res Soc 2011, 62:1711-1718.

Marshall T, Mohammed MA, Rouse A: A randomized controlled trial of
league tables and control charts as aids to health service decision-making.
Int J Qual Health Care 2004, 16:309-315.

Bauwens L, Laurent S, Rombouts JV: Multivariate GARCH models: a survey.
J Appl Econ 2006, 21:79-109.

Pan X, Jarrett JE: Why and how to use vector autoregressive models for
quality control: the guideline and procedures. Qual Quant 2012, 46:935-948.
de Silva A, Hyndman RJ, Snyder R: The vector innovations structural time
series framework: a simple approach to multivariate forecasting. Stat
Model 2010, 10:353-374.

Hyndman RJ, Ahmed RA, Athanasopoulos G, Shang HL: Optimal combination
forecasts for hierarchical time series. Comput Stat Data An 2011, 55:2579-2589.

doi:10.1186/1471-2288-13-66

Cite this article as: Moran and Solomon: Statistical process control of
mortality series in the Australian and New Zealand Intensive Care Society
(ANZICS) adult patient database: implications of the data generating
process. BMC Medical Research Methodology 2013 13:66.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J



http://www.degruyter.com/view/j/jtse.2011.3.2/jtse.2011.3.2.1022/jtse.2011.3.2.1022.xml
http://www.degruyter.com/view/j/jtse.2011.3.2/jtse.2011.3.2.1022/jtse.2011.3.2.1022.xml
http://econpapers.repec.org/scripts/search.asp?ft=armadiag
http://econpapers.repec.org/scripts/search.asp?ft=armadiag

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Statistical analysis

	Results
	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

