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Abstract

Background: IVF treatments for infertility involve the transfer of multiple embryos in any one treatment cycle.
When data is available on individual embryos the outcomes of each embryo are only partially observed, as
treatment outcome (live birth) is assessed at the patient level. Two-level Embryo-Uterus (EU) models have been
developed which assume a biologically plausible mechanism and assume that effects are mediated directly through
the embryo (E) and also through the uterine environment (U), represented by two sub-models. This approach
potentially allows inference as to the association of patient variables with outcome. However, when the variable is
measured at the patient level either additional decisions have to be made in the modelling process as to in which
sub-model the variable should be included or some model selection algorithm has to be invoked. These
uncertainties have limited the practical application of these models.

Methods: We have conducted simulation studies based around realistic parameter values of situations where a
putative patient-level variable is being considered for inclusion in an EU model and/or the mechanistic
interpretation from the sub-model assignment is of interest. Firstly we explore various strategies for inference for a
variable of interest where the sub-model is either pre-specified or considered unknown. Secondly we explore the
use of information criteria to select the appropriate sub-model and the strength of evidence for that assignment.
These are demonstrated in a reanalysis of a previously published dataset.

Results: In the absence of prior evidence for potential prognostic factors measured at the patient level, two single
degree-of-freedom likelihood ratio tests with a Bonferroni correction including the variable of interest in first the E
then the U sub-model performs well as a statistical test for association with outcome. For model building the
information criteria can be used, but large differences are required (26) to provide reasonable evidence of sub-
model assignment. Previous interpretations have been over-optimistic.

Conclusions: These results suggest simple strategies and should enable these models to be used more confidently
in practical applications.
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Background

In-vitro Fertilization (IVF) is a treatment for infertility in
which embryos are created outside of the prospective
mother and, after culture for 3—-6 days, one or more em-
bryos are transferred to her uterus. Analysis of data arising
from IVF treatment often includes prognostic factors ob-
served at an embryo level. However the outcome at this
embryo level is often only partially observed. This partial
observability arises due to the fact that individual embryos
cannot be tracked after transfer and, unless all or none of
the transferred embryos develop, it is not possible to de-
termine which embryo(s) implanted. Analysis has to either
be conducted at the patient level using aggregated embryo
data or non-standard methodology is required.

IVF treatments have a hierarchical structure with ef-
fects on the embryo from both mother and father and
can also have a complex nested structure [1] if effects
across multiple treatment cycles are included and donor
eggs or sperm are utilised. Considering just the embryo
transfer process in these treatments, Spiers et al. [2] sug-
gested a model based on a plausible biological mechan-
ism. These models are named “embryo-uterus” (EU)
models and are based on the idea that the successful de-
velopment of an embryo depends independently on two
binary factors, the embryos own inherent viability (E)
and the receptivity of the uterus (U). For an embryo to
develop it must both be viable (E = 1) and placed in a re-
ceptive uterus (U = 1). Spiers et al. [2] assumed E and U
had constant probabilities (e and u) over the whole
population. In later work, by Baeten et al. [3] an EUL
model was proposed, assuming the e probability was
constant over the whole population and modelling U
through logistic regression. A more general approach
was developed by Zhou and Weinberg [4] which re-
placed both E and U with logistic regression sub-models
allowing the inclusion of patient and embryo covariates.
Although the original derivation assumed a very specific
biological mechanism, the interpretation has evolved
somewhat, and in particular it is acknowledged that the
U component may be only partially related to uterine re-
ceptivity and can include contributions from a range of
factors related to treatment [5,6]. These approaches have
been utilised for predictive and inferential analyses in a
number of practical applications for the assessment of
prognostic factors [5-7] and developing predictive models
for assessing alternative treatment pathways [8].

The EU model has an explicit multi-level structure
with the transferred embryos nested within the uteri. A
prognostic factor measured at the patient level, can validly
be included in either the E or the U sub-models (or both)
and therefore assumed or inferred to be operating through
either the uterine receptivity of the patient or the viability
of the embryos. Whilst it may seem counter-intuitive to
model a U-level covariate at the E-level, the implied

Page 2 of 13

mechanism does suggest that this is what can be required,
for instance donor egg data [9] suggests strongly that em-
bryo viability declines with age whilst maternal receptivity
does not decline as strongly. As noted by Roberts et al.
[10] the level at which a covariate acts is identifiable
(albeit not strongly) through the twin rate if there are
multiple embryos transferred per cycle.

The potential to choose in which of the two sub-
models a covariate should be included adds an extra
level of complexity to the practical use of these models.
The natural biological interpretation means that this
choice is not merely a statistical convenience, but that
identification of the appropriate level may have a bio-
logical interpretation with clinical consequences. For ex-
ample, age has been shown to primarily affect the
embryo with a much weaker effect on the uterine com-
ponent and so the effects of ageing can be offset by the
use on egg donation or preservation. The presence of a
substantial uterine component means that the loss in
pregnancy rates associated with a move from double to
single embryo transfer is more modest than would
otherwise be expected [11]. In practical applications
some authors have avoided any statistically-based decision
and instead made the choice of sub-model arbitrarily
[7,10] or based on “previous knowledge” [5]. Roberts et al.
[5] used the Akaiki Information Criterion (AIC) criterion
comparing the model with the effect in the E and the
model with the effect in the U. In this work the authors
noted that while the AIC distinguished a “best” model, it
was difficult to provide any clear statement as to the
weight of evidence in favour of the particular chosen
model and its biological interpretation. Although sugges-
tions on the interpretation of BIC differences have been
made previously in different contexts [12,13], it is not clear
how or whether such suggestions have relevance here.
Others have chosen the patient covariates to be considered
for inclusion in the model by constructing two multivari-
ate logistic regression models, a pregnancy model and a
twin pregnancy model, using a backward stepwise elimi-
nation [7]. Subsequently a number of models were consid-
ered consisting of a number or all the covariates included
in the final logistic models in either the E and U with the
choice of the final model being made by the models pre-
dictive abilities for pregnancy and multiple pregnancy.

As these models are now being utilised for practical
applications, there is a need for guidance on how inference
and model selection should be performed. When using
these models to determine whether a variable is associated
with outcome (inference), unless the sub-model can be
pre-specified, there will be explicit or implicit multiple hy-
potheses tests associated with each variable. Thus it will be
generally anti-conservative to test the parameter only in
the sub-model selected (by whatever procedure), or to per-
form two tests at the nominal level. On the other hand the
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non-independence of the tests suggests it may be over-
conservative to test in both sub-models with a standard
Bonferroni correction. When developing prognostic or
predictive models an information criterion approach to
model selection is attractive, particularly as some of the
comparisons of interest are not naturally nested. However
there is a need for guidance on how to interpret the infor-
mation criteria in terms of the weight of evidence that an
effect can be properly ascribed to the E or U component.

Motivating example

This work arose out of issues encountered in the
towardSET project, which involved the use of EU
models on large datasets to predict outcomes for various
options for the implementation of a single embryo trans-
fer policy. Details of this dataset have been published
elsewhere [5,11]. The main aim of the towardSET pro-
ject was pragmatic, to develop a useable predictive
model to allow modelling of potential treatment policies.
However, given that the dataset was large and compre-
hensive, there was also interest in the prognostic model
itself: which factors were predictive of outcome and in
particular was their effect mediated through the embryo
or the recipient mother. This particular analysis is de-
scribed in [5]. The dataset comprised 12,487 fresh treat-
ments from 8775 couples across 5 UK centres and
included 16 categorical patient and treatment factors
along with two measures of embryo quality.

Outline of present work

This present work presents a series of simulation studies
which aims to clarify the issues underpinning the use of
EU models for practical applications. Firstly we assess
the performance of alternative strategies for the infer-
ence problem with some consideration as to power and
sample size issues. Secondly we evaluate the use of the
information criteria AIC and BIC to make a choice as to
which sub-model these effects should be included in and
more generally selecting between the 4 alternative cova-
riate inclusion models. Following this we present a
reworking of a previously analysed dataset to illustrate
the methodology and offer some guidance for the use of
these models in real applications.

Methods

The EU model

In this work we will use the EU model of Zhou and
Weinberg [4]. Following the notation of Roberts [14], an
EU model each cycle i has a u; uterine receptivity prob-
ability and each embryo j of cycle i has a survival probabil-
ity e;;. The u; and e;; are represented as logistic regression
submodels:
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logit(u;) = Bull;,

logit(e;) = BEEj, (1)

where U; and Ej; are the covariate design matrices of
uterus and embryo covariates respectively, and f; and

are their corresponding parameter vectors. So now the
probability of a k-fold pregnancy for cycle i with n;
embryos transferred becomes:

Pl(k) = (l—ul)5(k) + uipll‘(:Lm (eii>’ (2)

where 6(k) is 1 if k=0 and 0 otherwise and le’(:l,n,- (ei,') is
the sum over all subsets of size k of the product of ¢; in
the subset and the complement (1 -e;) of the e; not in
the subset. In terms of an indicator vector, s, the elements
s; of the vector take the values of 0 and 1 such that their
sum is equal to k. So we can write

1*5[
P, = X Ile}(1-ey
j=L.n; Pour z/( ll)

S ={(s1,..,84,)€(0,1):s5.8. Xs; = k}.

The assumptions of the EU model are that, conditional
on the covariates, embryo viabilities and uterine recep-
tivity are independent, and embryo viability is assumed
independent among the embryos produced in a single
IVF cycle. In this work we assume that the cycles are in-
dependent, but this assumption can be relaxed and ran-
dom effects included to allow, for example, for repeat
cycles from the same couples [15,16].

Fitting the model

The model can be readily fit to data using direct maxi-
misation of the likelihood and the details are available in
[14,15]. This has been implemented in S-plus [7,17], R
[14,18] and Stata [15,19]. The simulation work here used
the Stata implementation, whilst the worked example
was fitted using R.

Simulation design

Simulated datasets were created assuming an EU model.
The simulated datasets were designed to have similar out-
comes (both in terms of pregnancy rates and twin rates) to
that of the large multi-centre UK dataset from the
towardSET project which motivated this work (see above).
This simplified model only considers four covariates
representing, in each sub-model, a putative prognostic vari-
able which is to be tested in the analysis and fixed covari-
ates which are pre-specified as being included in the
analytical models:
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logit(w;) = ay + B, U + B,,P,

lOgit(eij) = e + ﬁepEP + ﬁeeEe +ﬁep2p' (3)

We include covariates in the embryo sub-model which
are measured at both the embryo and the patient level.
The U, E, and E, covariates are based on the distribu-
tions of the two linear predictors from a fitted EU model
in the motivating dataset:

U~N(-0.5,0.5%),
E,~N(-0.1,0.3%),
E.~N(3,0.6%)

and have, by definition, coefficients B, Bee, B, equal
to 1. The intercept terms have values determined by
the outcomes in the motivating dataset:

a, =0.1,a, = -3.66

P represents a new patient level covariate which is
being considered for inclusion and is arbitrarily assigned
a standard normal distribution P ~ N(0,1).

The final parameters S, and f3.,» represent the effects
of the putative patient variable under investigation (P)
and a range of values are considered:

B, =0.0.1.1
Bop = 0,0.1,..1

In the case where $,,, and 3, are zero this reproduces
an overall pregnancy rate of 19.7% and an overall twin
rate of 3.2% (4.6% in those cycles with two embryos
transferred) close to those observed in the towardSET
dataset. Over the range of parameters considered the
overall success rate varies from 19.7 to 24.8% and the
twin rate between 3.2 and 6.9%.

All combinations of the coefficients of the variables
being considered (5, and f.,,) were simulated, leading
to 121 different cases. Four explicit cases are of particu-
lar interest:

1. The prognostic variable under consideration did not
affect the treatment outcome (f3,, = 0 and S, = 0).

2. The prognostic covariate under consideration is
associated with the treatment outcome at an embryo
level (embryo sub-model, $,,, = 0 and f,,,=0.1,
0.2,...,1).

3. The prognostic covariate under consideration is
associated with the treatment outcome at a recipient
level (uterus sub-model, f,,, =0 and 5, = 0.1,
0.2,...,1).

4. The prognostic covariate under consideration is
associated with the treatment outcome at both levels
(Bup=0.1,02,..,1 and f3,,>=0.1, 0.2,...,1).
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Simulations were performed at 5 different sample sizes,
400, 800, 1600, 3200 and 6400 treatments all with 30% sin-
gle and 70% double embryo transfers, reflecting European
practice.

For each simulated cycle, values for U, E, and E, are
sampled from the covariate distributions. Using these
values equation (3) is used to determine the probabilities
u; and e;; and these probabilities realised by sampling from
a Bernoulli distribution to determine the cycle outcome.

6000 replications were performed giving estimates with
an estimated precision (half width of two-sided 95% CI)
on a 5% test size of +0.6% and +1.3% on a 50% misclassifi-
cation rate.

Inference: Is a variable associated with outcome?

The statistical significance of the new variable measured
at the patient level is tested using a likelihood ratio (Ir)
test comparing the full model with a reduced model
excluding the tested parameter. A Ir-test is used in pre-
ference to the Wald test as previous work has suggested
that for these models the Wald test performs less well
for small sample sizes [14]. Since the variable can be
included and tested in more than one sub-model the
following alternative strategies were employed and
compared:

1. “Found-in-Either” strategy: Two single degree of
freedom (df) Ir-tests are performed, one on the
model including the new variable in the uterus sub-
model and another on the model including the
variable in the embryo sub-model both against the
reduced model that does not include the new
variable. The new patient level variable is regarded
as significant in this strategy if either of the Ir-tests
exceeds the nominal significance level.

2. “Found-in-Both” strategy: The same single df lr-test
tests are performed as in Found-in-Either strategy,
but both tests need to reach the nominal
significance level to regard the variable as significant.

3. “Bonferroni” strategy: This strategy is the identical
as the Found-in-Either strategy, but a Bonferroni
correction is applied to the significance levels of the
two tests to adjust for multiple testing. This
strategy regards the new variable as significant at
the nominal «a significance level, if either of the two
tests is found to be significant at an o/2 significance
level.

4. “Global” strategy: A single two df Ir-test is
performed on the model including the new variable
in both sub-models against the model not
containing the variable in either sub-model. This
strategy regards the new variable as significant, if the
Ir-test is found significant at the nominal
significance level.
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All hypothesis tests used the conventional P < 0.05 sig-
nificance level. The test size and hence type I error rates
are estimated for each scenario and compared to the nom-
inal rates, and power estimated for the non-null cases.

For comparative purposes we also computed the esti-
mated power based on a naive approximation where the
individual sub-models were considered in isolation with
the same effect size as the full EU model, a sample size
based on the number of cycles and an event rate given
by the pregnancy rate. This reflects a conservative power
estimate (using the pregnancy rate rather than the E or
U probabilities) that is potentially available from stand-
ard software, although the estimates presented here were
computed using simulation.

Model selection

Model selection is performed using Information Criteria
(IC), the two IC considered here are the Akaike Infor-
mation Criterion (AIC) and the Bayesian Information
Criterion (BIC). The two IC are defined as

AIC = —2InL <ﬂ> +2p (4)

BIC = -21InL (ﬂ) + pln(n) (5)

where L ( ﬂA) is the maximum of the likelihood function,

p is the number of parameters in the model and n is the
sample size [20]. These are compared in terms of their
ability to correctly determine in which sub-model the
effect should be included. Note that these two IC are
equivalent when the models considered have the same
number of parameters (the non-nested case), as when
comparing the inclusion of a variable in either of the
two sub-models (embryo or uterus).

Since BIC is a sample size dependent statistic, as with
other multilevel modelling situations, the sample size can
be measured at any of the levels of the hierarchy [21]. In
EU models the number of cycles in the dataset and the
number of embryos in the dataset could both be regarded
as appropriate measures of sample size. As the outcome is
only observed at the patient level the BIC used here uses
the number of cycles as sample size. This issue is not a
concern when choosing to include a patient effect in ei-
ther the uterus or the embryo sub-model (but not in both)
since the BIC difference is independent of sample size.

Unlike the AIC where the difference between two
models has no direct interpretation, the BIC difference
can be considered as an approximation of the Bayes
factor [13]. Jeffreys [12] proposed a rule of thumb for
interpreting Bayes factors, and this was slightly modified
by Raftery [13]. This rule of thumb is shown in Table 1.
The interpretation of the BIC as a Bayes factor has
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Table 1 Grades of evidence of the BIC difference and the
posterior probability as proposed by Raftery [13]

BIC difference Proportion of correct classification Evidence
0-2 50-75 Weak
2-6 75-95 Positive
6-10 95-99 Strong
>10 >99 Very strong

proved controversial, and the Raftery ’s interpretation is
based on a very different scenario from the EU model.
The proportion of simulations in which the correct as-
signment is made is estimated in each scenario and
compared to the proportions suggested by Raftery.

In this work we pragmatically consider AIC and BIC as
commonly applied. However it should be noted that there
are subtle differences in the assumptions behind these two
criteria. The AIC is designed to obtain the optimal model
available assuming the true model is not one of the
models considered; whereas the BIC assumes that the true
model is one of the models considered [22].

Results and discussion
Hypothesis tests for association: type 1 error and power
Table 2 show the type 1 error for the strategies investi-
gated here. As Table 2 and Figure 1 show; the strategies
which had a type 1 error close to the design test size
(5%) were the Global strategy and the somewhat conser-
vative Bonferroni strategy. The Found-in-Either strategy
was found to be an overly liberal analysis with the type 1
error reaching up to 8.7%. Finally, the Found-in-Both
strategy was found to be a conservative analysis having
a type 1 error (2.3%-2.7%) approximately half of the
designed test size. As noted previously [14], the tests
were slightly more liberal for the smallest sample size.
Figure 1 shows the power to detect an effect as a func-
tion of effect size for the two strategies that have close
to the nominal type I error rate (Bonferroni and Global

Table 2 Type 1 error rates for the strategies at the
simulated sample sizes

Sample size

Strategy 400 800 1600 3200 6400
Tests with sub-model not pre-specified

Found-in-Either 8.7% 7.4% 7.8% 8.2% 7.5%
Found-in-Both 2.6% 2.3% 2.3% 2.7% 2.5%
Global 7.0% 5.2% 4.9% 5.6% 4.9%
Bonferroni 4.7% 3.5% 3.8% 4.5% 3.9%
Tests with sub-model pre-specified

Uterus sub-model 5.8% 4.9% 5.1% 53% 5.1%
Embryo sub-model 54% 4.7% 4.9% 5.7% 5.0%

Estimated simulation error (95% Cl width) is +0.55%.
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Figure 1 Statistical power as a function of effect size for tests of the effect of a variable without pre-specification of the sub-model for
various sample sizes. Data is simulated for a true effect in either the embryo sub-model (left hand panels) or the uterus sub-model (right hand
panels). For comparison a naive logistic power estimate is included (see text).
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strategies). The two cases where the true effect is in the
embryo sub-model (left hand panels) and uterus sub-
model (right) are shown. Also shown in Figure 1 are naive
logistic power estimates based on the component sub-
models, with a probability of success equal to the birth
rate. The Bonferroni strategy and the Global strategy were
almost identical in terms of power, with the Bonferroni
strategy being slightly more powerful for all but the
smallest effect sizes. Also it is clear that a naive power cal-
culation based on the component logistic models will se-
verely over-estimate the power.

The simulations also allow us to investigate the sce-
nario in which the sub-model is pre-specified. Table 2
shows that the type 1 error was close to the nominal

level (4.9%-5.8%) when a uterus-model effect was tested
in the uterus sub-model and similarly (4.7%-5.7%) when
an embryo-model effect was tested in the embryo sub-
model. Figures 2 and 3, show power curves when variables
are correctly and incorrectly specified as acting through the
embryo or uterus sub-models. The Bonferroni strategy with
no assumption about the correct sub-model is presented as
reference. As would be expected the power curves show
that when the correct sub-model was assumed correct the
power of these strategies was better than the Bonferroni
strategy but if the incorrect sub-model was assumed correct
then the test has less power than the Bonferroni strategy.
Thus if it is known which sub-model the effect is acting
in, testing in that pre-specified sub-model can be regarded
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Figure 2 Power curves for the scenario where the prognostic variable under consideration affects the treatment at an embryo level
and is tested in either the (correct) E or (incorrect) U sub-model. The power for a Bonferroni test with no sub-model assumption is included
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as an optimal strategy having a type 1 error close to the
designed test size and also a higher power than it would if
no such assumptions were made. However if the model
specification is incorrect there is a not insignificant loss of
power incurred by mis-specification and a conservative
Bonferroni approach would be preferable. Since in prac-
tice even when biological evidence suggests inclusion of a
patient prognostic variable in one sub-model, if the data is
observational it can often be argued that the same prog-
nostic variable may affect the other sub-model due to pa-
tient selection effects. If this may be so then the strategy
of testing the variable only in the pre-specified sub-model
might be advised against. For example, male infertility
naturally would be included in the embryo sub-model
since there is no plausible mechanism for the male to di-
rectly affect the uterine or maternal component. However

as these models are usually applied to a population of in-
fertile couples, only one of which is expected to be neces-
sarily infertile, the fact that there is a known male cause
will probably itself lead to the female partners of infertile
males having greater fertility than those with fertile males.

Sub-model selection

Firstly we consider the simple case where a variable of
interest has been pre-specified and one wants to know in
which of the sub-models it should be included, possibly in
order to investigate mechanistic hypotheses. Tables 3 and 4
show the proportion of the correct classifications by the
AIC/BIC criteria (the information criteria AIC and BIC are
equivalent in this case) when selecting a single sub-model
for a prognostic variable when the true effect is in just the
embryo or uterus sub-model respectively. As would be
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Figure 3 Power curves for the scenario where the prognostic variable under consideration affects the treatment at a uterus level and
is tested in either the (incorrect) E or (correct) U sub-model. The power for a Bonferroni test with no sub-model assumption is included
for comparison.
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Table 3 AIC/BIC performance when the true model effect
is in the embryo sub-model
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Table 5 Assignment to E or U sub-model in the
simulation study

Sample size AIC/BIC Expected Sample size
Effect size (Bep2) 400 800 1600 3200 eagp  difference  (Raftery's) .50 g0 1600 3200 6400
0 50.0% 50.1% 50.0% 51.1% 51.1% 0-2 50-75% 593% 604% 61.1%  62.9% 64.9%
0.1 53.2% 56.1% 60.4% 68.4% 76.5% 2-6 75-95% 82.3% 854% 864%  86.5% 87.1%
0.2 61.1% 68.0% 76.9% 85.5% 93.3% 6-10 95-99% 96.2% 973% 978%  97.5% 97.9%
0.3 68.7% 77.9% 86.4% 94.3% 98.5% >10 >99% 994%  99.8% 99.2%  100.0%  100.0%
04 76.0% 85.6% 93.0% 98.1% 99.9% Proportion of correct classifications using the AIC/BIC in terms of the observed
BIC difference between models. The proportions shown are averaged over all
0.5 81.3% 90.2% 96.9% 99.4% 100.0% the scenarios considered in Tables 3 and 4. The expected proportions of
0.6 85.9% 04.2% 68.5% 09.9% 100.0% Raftery are also listed for these differences as a reference.
0.7 89.1% 96.3% 99.4% 100.0% 100.0% . o .
proportion of true classifications using the ranges from
0.8 92.1% 67.7% 99.8% 100.0% 100.0% . .
Raftery [13] are shown for comparison. Despite the very
0.9 O41%  989%  999%  1000%  1000%  different application here from the original work, the
1 95.8% 99.5% 100.0% 100.0% 100.0%

Proportion of the simulation samples in which use of the AIC/BIC criteria
would select the correct model when the true model effect is in the
embryo sub-model.

expected, the proportion of correct classifications increases
from 50% (when there is no true effect) as the effect of the
parameter and/or the sample size increases. Rather large
sample sizes compared to typical current datasets or effect
sizes are required to reliably determine the correct assign-
ment of effect to sub-model. There is no detectable bias to-
ward selecting either of the sub-models when there is no
true effect in either model; over the range of simulation
scenarios considered, the selection rates are equal at 50%
to within the simulation error.

Table 5 shows the proportion of correct classifications
when choosing between the sub-models according to the
difference in the BIC (or equivalently AIC in this con-
text) between the two models. The ranges and expected

Table 4 AIC/BIC performance when the correct model
when the true model effect is in the uterus sub-model

Sample size
Effect size (Byp) 400 800 1600 3200 6400

0 50.0% 49.9% 50.0% 48.9% 48.9%
0.1 52.0% 55.5% 59.9% 66.3% 74.4%
0.2 58.0% 65.3% 73.7% 83.1% 91.3%
0.3 64.7% 734% 83.5% 91.2% 97.6%
0.4 70.9% 80.7% 89.8% 96.2% 99.3%
0.5 74.8% 85.2% 94.1% 98.4% 99.9%
0.6 78.5% 89.0% 96.4% 99.4% 100.0%
0.7 81.4% 91.5% 97.6% 99.7% 100.0%
0.8 83.9% 93.5% 98.5% 99.9% 100.0%
0.9 86.1% 94.8% 99.2% 100.0% 100.0%

1 88.1% 95.9% 99.4% 100.0% 100.0%

Proportion of the simulation samples in which use of the AIC/BIC criteria
would select the correct model when the true model effect is in the
uterus sub-model.

proportions of correct model choices are in good agree-
ment with Raftery, and differences in BIC between
models of >6 are required to provide strong evidence
(>95% probability of correct assignment) in favour of
one or the other sub-model. The previously suggested
criterion of an AIC difference of >2 [5] corresponds to
what Raftery termed “positive evidence” and a probabil-
ity of >75% that the assignment is correct. From the
table we also observe that the BIC differences propor-
tions of correct classifications increases slightly as the
sample size increases, this may be due to the fact that
BIC is a large sample Bayes factor approximation and as
the sample size increases the estimate becomes closer to
the true Bayes factor estimate [13].

A more realistic case is that where a variable is being
considered for inclusion in a model, maybe for prognos-
tic or predictive purposes, and there is no evidence as to
which sub-model, if any it should be included in. Thus
there are four possible models to be considered: omit
the variable, include it in E, include it in U or include it
in both sub-models. Figure 4 shows, for an illustrative
sample size of 800, the proportion of simulated datasets
which are assigned to the 4 potential models as a func-
tion of the effect sizes in each of the models using the
AIC (left hand panels) or BIC (right hand panels). As
with other applications [23,24], the AIC is more likely to
choose a larger model than the BIC but conversely is less
able to correctly identify a true effect. However, as can be
seen from the margins in the lower panels of Figure 4,
when the true effect is in only one of the sub-models the
AIC selects the model that includes the covariate in both
sub-models 11-15% of the times (with the larger misclassi-
fication rates observed on larger sample sizes), whereas the
BIC incorrectly selects the larger model <1% of the times.
Both AIC and BIC become more likely to select the correct
model as the sample size increases (data not shown).

Tables 3 and 4 and Figure 4 also indicate that, for the
same effect size, if the information criteria are used for
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Figure 4 The proportions of a patient variable assigned to each of the four alternative models using the AIC (left hand panels) or BIC
(right hand panels). Data shown is for a sample size of 800. The red point/lines/shading indicate the regions corresponding to the true model
and the gray lines/shading indicate the model is incorrect. The “true” models include the covariate in neither (model 0), the E (model E), U

(model U) or both (model EU) sub-models as indicated.

model selection then it is slightly more likely that a
prognostic variable will be correctly included if it truly
acts through the embryo sub-model than if it belongs in
the uterus sub-model. This reflects the greater amount
of information available at the embryo level compared to
that at the patient level.

Worked example

As the dataset was large, all the potential factors were
included in the model. To determine in which of the sub-
models (E, U or both) a factor would be included in a mix-
ture of pre-specification based on other work and selection
on the basis of AIC was used. A simple likelihood-ratio
test comparing the fitted model with a reduced model with
that parameter excluded was used to give an indicative P-
value for each factor, acknowledging that this test does not
allow for the model selection process. Although the AIC
allowed statements to be made as to the best fitting model
and therefore the best supported mechanism (E or U) for
the mediation of the effects, that work struggled to provide
any indication as to the strength of the evidence and noted
the need for further research.

Table 6 shows the AICs for the fitted model where
each factor in turn is permuted to be in E, U, both or
neither sub-model whilst the remaining variables are
specified as per the final selected model. Age was pre-
specified to act through both E and U as previous data
from donated eggs suggests that both maternal age and
egg age are prognostic, although the AIC would suggest
that it should only be included in the E sub-model.
Centre and year as proxies for treatment and population
changes were also included in both models. Several fac-
tors are included which would not be selected by AIC.

Whilst we would not necessarily advocate formal hy-
pothesis tests for prognostic factors in such a large
dataset, preferring to focus on effect sizes, nevertheless
such tests were offered in the original work. The pos-
sible tests comparing each factor in turn with a null
model for that factor, holding all other factors at their
selected locations and performing a 1 or 2df likelihood
ratio test are shown in Table 7. The highlighted values
indicate the P-values (conditional on model selection)
used in the original analysis,

The Bonferroni approach would give identical results
at a critical value of P <0.025 for the E and U tests, but
we note that the test used previously does over-state the
significance. For transfer day the P =0.024 would be

considered borderline significant with the recommended
method. We note also in this example with a large sample
size, that the 2df test of E + U gives overall similar conclu-
sions, but that the significance levels from the two 1df
Bonferroni test and the 2df global tests can diverge appre-
ciably (eg Attempt number). As always, there is no substi-
tute for carefully formed pre-specified hypotheses.

With regard to the interpretation of the assignment of
effects to the E or U sub-model, the previous work ten-
tatively used an arbitrary AIC difference of >2 to make
statements that there was reasonable evidence that one
mechanism should be preferred. The work here suggests
that this statement is perhaps too optimistic, with a mis-
classification rate of ~25% and to make strong state-
ments AIC differences of 26 are required. If this more
stringent level were used, only one of the five ascribed

Table 6 AIC (difference from null model) for the
motivating dataset

Variable AIC

null E V] E+U
Number of embryos transferred 0 -0.6 1.1 —-0.1
Age group 0 -178.2 1538 1751
Number of embryos created 0 -137 -19.3 -93
IVF Attempt number 0 —43 -8.1 -26
Icst’ 0 0.5 16 24
Pregnancy History” 0 26 -85 -31
Duration infertile 0 -1.7 -10.4 -30
Tubal diagnosis 0 -99 -14.2 -128
PCO? diagnosis 0 20 2.0 39
Endometriosis 0 0.1 -1.2 08
Idiopathic diagnosis 0 1.8 1.6 24
Male diagnosis 0 0.6 13 26
Donor sperm 0 2.0 0.8 1.1
Transfer day” 0 -3.5 -19 -16
Year 0 -8.0 =112 -13.0
Treatment Centre 0 -112 -9.2 -24.7

"Intercytoplasmic sperm injection, a variation on standard IVF.

2A composite variable indicating the number and type of previous pregnancies.
3Polycystic Ovary Syndrome.

“Embryos were cultured for 2 or 3 days before transfer to the potential mother.
AIC (difference from null model) for models for the motivating dataset in
which each included variable is assigned to either none (null), the embryo (E),
uterus (U) or both (E + U) sub-models. The highlighted entries indicate the
assignment in the final selected model, usually (but not in all cases - see text)
that with the lowest AIC.
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Table 7 Significance tests for the motivating dataset

P-values
Variable E U E+U
Number of embryos transferred 0.10 0.24 0.088
Age group <0.001 <0.001 <0.001
Number of embryos created <0.001 <0.001 0.001
IVF Attempt number 0.016 0.003 0.024
ICSI 0.22 0.53 045
Pregnancy History 0.035 0.002 0.019
Duration infertile 0.033 0.001 0.008
Tubal diagnosis 0.001 <0.001 <0.001
PCO diagnosis 1.00 1.00 0.95
Endometriosis 0.17 0.074 0.20
Idiopathic diagnosis 0.66 0.53 045
Male diagnosis 0.24 040 0.50
Donor sperm 1.000 027 0.24
Transfer day 0.024 0.052 0.048
Treatment Year 0.003 0.001 <0.001
Treatment Centre 0.001 0.002 <0.001

P-values from formal hypothesis tests for adding each variable to the model in
either the E, U or both (E + U) sub-models. Tests are 1 or 2 degree of freedom

likelihood ratio tests. Highlighted values indicate the selected final model. See
Table 6 for more information on the variables.

assignments would be considered to have strong sup-
port. This underlines the fact that there is very limited
statistical power to determine these assignments.

Finally we note that the earlier work observed that the
year and centre effects, presumed surrogates for vari-
ation in clinical practice and population not captured by
the available covariates, were difficult to interpret. If, rather
than AIC, the BIC criteria were used and the model se-
lected accordingly, then these effects would not be included.
This suggests that these complex effects could be consid-
ered as resulting from over fitting in the large dataset.

Guidance for practice
EU models due to their biological derivation can in
principle separate the effect of the embryo’s viability and
the receptivity of the uterus, and yield statistical models
with a causal interpretation. Even if the mechanistic basis
is over-simplified or the data subject to confounding, the
models have proved rich enough to be of practical utility
whilst solving the statistical issues of partial-observability.
When attempting to determine whether a variable is
associated with outcome, there will often be no prior
evidence from which one can pre-specify in which sub-
model a variable of interest should be included. The sim-
ulations indicate that for practical purposes a reasonable
strategy would be to perform two single df likelihood ratio
tests; one for the model including the variable in the
uterus sub-model and one for the model which includes
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the variable in the embryo sub-model. The variable is then
considered to be statistically significant if either of the Ir-
tests is found to be significant at half the nominal level.
The commonly used strategy of testing the effect in both
sub-models without the Bonferroni correction leads to an
over-liberal test. Over the range of parameters and models
simulated the concern that this approach may be over-
conservative due to the tests being non-independent is
not borne out.

If prior knowledge reliably allows the pre-specification
of the sub-model, then a single test at the nominal level
should be preferred. However if this model is incorrectly
specified then this test has less power than the Bonferroni
approach with no assumptions as to the sub-model: in-
deed the loss from miss-specification exceeds the gain
from correct specification. The strong patient selection
effects in most observational IVF datasets mean that a
priori assumptions based on biological and clinical argu-
ments can be misleading. Thus unless the evidence for an
appropriate sub-model is strong a conservative approach
of testing in both models with a Bonferroni correction
would be advised.

The second major application of these models has
been in the development of prognostic models of patient
outcomes. When a patient-level variable is to be in-
cluded, the AIC and BIC can be used to make the dis-
tinction in which sub-model to include that variable.
The criteria suggested by Raftery [13] and summarised
in Table 1 provide a good basis for assessing the weight
of evidence for the resultant assignment. When consid-
ering including a patient level prognostic variable in an
EU model there is a need to select between the 4 pos-
sible alternative models; BIC seems to perform well with
the number of patients being used as the sample size
parameter. However large sample sizes are required to
determine the assignments with any degree of reliability
and so to draw causal inferences from the assignment.

To date EU models have only been used to analyze
observational datasets (not clinical trials) and there is little
guidance as how such studies can be adequately powered,
with most studies relying on heuristic or feasibility argu-
ments. The power curves and the percentages of correct
classifications presented here can be used to aid in the
design of future studies.

Extensions to the EU model

In this paper we investigated, using simulation, the per-
formance of various strategies for model selection and
significance testing for a patient prognostic variable in an
EU model. Whilst these simulations inevitably cover only
a small subset of the parameter space, they do, we believe,
provide insight as to the performance of the EU model
and guidance as to its use for practical data analysis.
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The work here has focussed on the case where there is
only a single treatment for each couple and has not con-
sidered the potentially complex hierarchical structure
that can be introduced in real data with repeat treat-
ments. The EU model can in principal be extended to
include such correlations, and the nested cases with ran-
dom intercepts in the E and U submodels have been
considered elsewhere [15,16]. Simulation studies with
these extended models are not yet computationally fea-
sible. The work so far suggests that in practical applica-
tions including random effects has a negligible impact
on the fixed effect estimates and inference: although the
variance estimates are useful in themselves, model selec-
tion and inference for fixed effect parameters may be ad-
equately performed whilst ignoring the higher level
structure.

The major caveat is the underlying assumption in the
simulation work that the EU model does reflect the true
behaviour and further work is required to relax this as-
sumption. Earlier work [14] included some additional
sources of variability and in that case no qualitatively
different behaviour was observed. A collaborative model
has been proposed [25], but to date does not consider
covariates and its properties are not yet well understood.
Although the simplistic mechanistic basis of the EU
model can be contested and practical interpretations have
gone beyond the putative mechanism, the multi-level
structure does reflect the structure of the data and account
for the major statistical issue of the partial observability of
the outcome. The strong assumptions of conditional inde-
pendence between embryos and between the embryo and
uterus effects do need to be acknowledged and further
work is required to determine the extent to which the
model estimates and their interpretation depend on these
assumptions. For datasets with one cycle per patient, ad-
ditional correlations will be indistinguishable from those
induced by additional covariates and as noted above ap-
proaching these questions using simulation is as yet infea-
sible. Real datasets with multiple cycles per patient are
subject to strong selection biases as a complex interaction
between health care provider policy, patient choice and re-
source availability will determine of the number of cycles
as well as the outcomes of previous cycles. Given that the
EU model (particularly if patient random effects are in-
cluded) has a rich structure which can accommodate a
range of potential correlations, and that real datasets have
only limited numbers of repeat cycles, it is unlikely that
any realistic dataset will have sufficient power to identify
departures from the EU model.

Conclusion

We believe that the EU model approach, despite its limi-
tations, is currently the only practical approach that can
properly account for the data structure encountered in
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the analysis of IVF data with multiple embryo transfer.
There is now a sufficient body of methodological and
practical work to support its more widespread use in
real applications.
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