
Meier-Hirmer and Schumacher BMCMedical ResearchMethodology 2013, 13:80
http://www.biomedcentral.com/1471-2288/13/80

RESEARCH ARTICLE Open Access

Multi-state model for studying an intermediate
event using time-dependent covariates:
application to breast cancer
Carolina Meier-Hirmer1* and Martin Schumacher2

Abstract

Background: The aim of this article is to propose several methods that allow to investigate how and whether the
shape of the hazard ratio after an intermediate event depends on the waiting time to occurrence of this event and/or
the sojourn time in this state.

Methods: A simple multi-state model, the illness-death model, is used as a framework to investigate the occurrence
of this intermediate event. Several approaches are shown and their advantages and disadvantages are discussed. All
these approaches are based on Cox regression. As different time-scales are used, these models go beyond Markov
models. Different estimation methods for the transition hazards are presented. Additionally, time-varying covariates
are included into the model using an approach based on fractional polynomials. The different methods of this article
are then applied to a dataset consisting of four studies conducted by the German Breast Cancer Study Group (GBSG).
The occurrence of the first isolated locoregional recurrence (ILRR) is studied. The results contribute to the debate on
the role of the ILRR with respect to the course of the breast cancer disease and the resulting prognosis.

Results: We have investigated different modelling strategies for the transition hazard after ILRR or in general after an
intermediate event. Including time-dependent structures altered the resulting hazard functions considerably and it
was shown that this time-dependent structure has to be taken into account in the case of our breast cancer dataset.
The results indicate that an early recurrence increases the risk of death. A late ILRR increases the hazard function much
less and after the successful removal of the second tumour the risk of death is almost the same as before the
recurrence. With respect to distant disease, the appearance of the ILRR only slightly increases the risk of death if the
recurrence was treated successfully.

Conclusions: It is important to realize that there are several modelling strategies for the intermediate event and that
each of these strategies has restrictions and may lead to different results. Especially in the medical literature
considering breast cancer development, the time-dependency is often neglected in the statistical analyses. We show
that the time-varying variables cannot be neglected in the case of ILRR and that fractional polynomials are a useful
tool for finding the functional form of these time-varying variables.

Background
In this article the disease course of primary, non-
metastatic breast cancer patients is analysed taking first
isolated locoregional recurrence (ILRR) of the tumour
into account as an intermediate event. In this context, usu-
ally separate analyses are carried out for each endpoint
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and also for the intermediate events. As pointed out by
[1] “these separate analyses are not completely satisfying,
since they fail to reveal the relations between different
types of events”. In this article the illness-death model is
used. This is a type of multi-state model nowadays widely
used in medical research [2] for describing chronic dis-
eases and intermediate events, particularly in oncology
[1,3,4].
The presented approach focuses on the analysis of

the hazard rate after the first recurrence (intermediate
event) in order to understand the influence of the time of
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occurrence of this event on the further disease develop-
ment. As endpoints we consider either “distant metastases
or death” or “death”. Different methods for modelling and
for estimating the hazard function after recurrence are
provided. These methods are very general and can be
applied to other problems if the course of the disease to
be modelled includes an intermediate event. The methods
are applied to a dataset containing data from four stud-
ies conducted by the German Breast Cancer Study Group
(GBSG) see e.g. [5].
In the medical literature, the role of the ILRR with

respect to the course of the breast cancer disease and
the resulting prognosis is not clearly established. Different
hypotheses are under debate: On the one hand, the ILRR
could be seen as an independent event, which does not
alter prognosis after successful removal, or, on the other
hand, the ILRR could be a first sign of disease progression
[6-8] and even the cause of distant metastases [9]. The
impact of time to recurrence on the death hazard after an
ILRR was demonstrated in [10].
The models proposed in this article are more general

than Markov models for the following reasons:

• The transition hazards between different disease
states are allowed to depend on previous state
occupation times. This is necessary for the analysis of
the impact of the time to recurrence on the future
disease course.

• After the occurrence of an intermediate event, there
are two different time scales. The first one is the time
since entry into the study or since the diagnosis of the
primary tumour, which is usually the time axis used
before the intermediate event. The second possible
time scale is the time since the occurrence of the
intermediate event, which can also play an important
role. When constructing the statistical model for a
particular disease, it has to be be taken care of which
time scale and which previous state occupation times
are important for the further development of the
disease.

• As pointed out by [11], it is important to use the
information contained in covariates changing over

time. This information is a potential predictor that
should not be neglected or substituted by
time-constant covariates.

Concerning the isolated local recurrence of breast can-
cer, the dependence of the hazard function after the ILRR
on the sojourn time is analysed. This means that the effect
of the time since occurrence of the ILRR on the further
disease development is examined. As stated above, the
models proposed in this article are constructed in order
to allow time dependence. In medical literature, this time-
depending structure of the ILRR is often neglected. In
some models the ILRR is even analysed as a “standard”
prognostic factor, i.e. like a covariate measured at the time
of diagnosis of the primary tumour.
In the next section of this article, the illness-deathmodel

is described in detail. Based on a Cox regression model,
it is shown how different approaches determine the shape
of the transition hazard function. A method based on
fractional polynomials is proposed for the analysis of the
functional form of the time-varying covariates. In Section
Application, the presented methods are used to anal-
yse data from the German Breast Cancer Study Group
(GBSG). Additionally to the time-varying covariates, also
the effects of “standard” prognostic factors are considered.
The results are then analysed and discussed.

Methods
The illness-death or disability model is a very useful tool
for describing the course of breast cancer. Figure 1 shows
this model in the case of “overall survival”. For the anal-
ysis of “distant disease free” survival, the state “death” is
replaced by “distant metastases or death”. The variable t
denotes the time since first diagnosis, d denotes the time
of ILRR.
When using common regression models for censored

data, there are three possible approaches for the esti-
mation of the transition hazards: separate models for
every transition (approach S), time-dependent covariates
(approach J) [12], and the stratified model [13]. There
are also mixture models, e.g. one proposed in [2]. In
the following paragraphs, we explain how these methods

Figure 1 Illness-death model for overall survival (distant disease free survival).
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estimate the transition hazards and which assumptions
are (indirectly) made.
The Cox regression model [14] is used throughout the

article. The definitions are as follows: λ0(t) denotes the
baseline hazard, λ12(t), λ13(t) and λ23(t, d) are the hazard
functions for the three possible transitions. The parame-
ter vector for the time-dependent covariates is β , for the
time-invariant covariates γ is used. The time-invariant
covariates are denoted by z. Time-dependent covariates
can either depend on t, the time since the first diagnosis,
or d, the time of the intermediate event. We define two
time-varying covariates as follows:

1I{t≥d} · d
1I{t≥d} · (t − d)

which we denote only by d and t − d in the following. We
are now interested in the functional formwith which these
variables enter the hazard function. We therefore trans-
form (t−d) and d by a function f : f (d, t−d). At this stage,
the shape of the function f is not yet determined. In para-
graph Shape of the time-varying covariate some possible
choices are proposed for doing this.
Problems can arise when sojourn times and in gen-

eral random time-dependent covariates are included into
multi-state models. For example, cumulative incidence
functions cannot longer be estimated in a straightforward
way. Such situations were studied by [15] and [11]. The
latter paper points out that “studying [...] sojourn times
as time-dependent covariates may be useful for testing
model assumptions and for investigating their effect on
the survival” and treats this kind of problem in section
4.1 [11]. The model mentioned by these authors is equiv-
alent to our straight line model of Section Shape of the
time-varying covariate.
The following two paragraphs discuss the joint tran-

sition hazards approach J and the separate transition
hazards approach S.

Joint approach
Approach J models transitions 1→3 and 2→3 jointly. A
time-varying covariate indicates whether the patient is in
state 1 or 2 and therefore if the first or the second hazard
function is “active”. The model is:

λ (t) = λ0(t) exp (βT 1I{t≥d}f (d, t − d) + γ T z),

where 1I{t≥d} is the time-varying indicator variable and
β the corresponding parameter. The transition 1→2 is
modelled apart from the other transitions. Therefore the
resulting hazard functions are:

λ12(t) = λ0,12(t) exp (γ T
12 z)

λ13(t) = λ0(t) exp (γ T z)

λ23(t, d) = λ0(t) exp (βT f (d, t − d) + γ T z).

(1)

If this approach is used, the time-invariant covariates z
are assumed to have the same effect on both transitions to
the absorbing state (common parameter γ ). For transition
1→2 the effects of the covariates are modelled separately
(γ12 independent of γ ). The relation between the hazards
λ13 and λ23 is defined as c(d, t−d) := exp (βT f (d, t−d)).
If only the time-varying indicator is used, i.e. f (d, t−d) ≡
1, the relation c = exp (β) is constant and the transition
hazards 1→3 and 2→3 are assumed to be proportional.
If c = 1, the hazard function is not changed by the
intermediate event. If assumption of proportionality is not
realistic, time-dependent structures can be added to the
function c as shown in Table 1.
Models J.III (1 and 2) and model J.IV violate the

Markov assumption. The estimated parameters of the
time-varying covariates allow for testing directly the dif-
ference between the hazards before and after the inter-
mediate event. The models are nested and it is therefore
possible to use directly a criterion (AIC for example) to
assess the goodness of fit. This constitutes an advantage of
this approach.

Separate approach
Approach S models all transition hazards separately. The
transition λ12 is modelled like in approach J (eq.(1)).
Therefore we obtain :

λ12(t) = λ0,12(t) exp (γ T
12 z)

λ13(t) = λ0,13(t) exp (γ T
13 z)

λ23(t, d) = λ0,23(t) exp (βT f (d, t − d) + γ T
23 z).

(2)

The time-invariant covariates are allowed to have dif-
ferent effects on all hazards. The time-dependency of the
hazard 2→3 on the time of recurrence d and the time
since recurrence t − d is modelled via the function f.
Approach J is a special case of model S.
Using this approach, one has to chose the time-scale for

the function λ0,23 what is not self-evident. In equation (2)
the time since the first diagnosis t is chosen. This
approach is often called “clock forward” approach.
Figure 2 shows that there is a second possibility: the time

Table 1 Possible relations between transitions 1→3 and
2→3 if approach J is used

J.I λ23(t, d) = λ13(t) The hazard rate remains the same

J.II λ23(t, d) = c · λ13(t) The hazard rate changes by
the factor c (constant)

J.III.1 λ23(t, d) = c(d) · λ13(t) c depends on d, the
time of ILRR

J.III.2 λ23(t, d) = c(t − d) · λ13(t) c depends on t − d, the
time since ILRR

J.IV λ23(t, d) = c(d, t − d) · λ13(t) c depends on d as well as
on t − d the time since ILRR
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since recurrence t − d can also be used (called the “clock
reset” approach). If the time-scale t is chosen, only indi-
viduals who have already changed to state 2 can be used
for the estimation of λ0,23. It is therefore necessary to
account for left-truncation. The implementation of the
time-scale t − d is easier. However, when using time since
recurrence, the comparison of the hazard rates before and
after recurrence is no longer straightforward.
Approach S is a special case of the stratified model [13].

The stratified model assumes different baseline hazards
for all transitions. The covariates can be chosen to have
identical effects for all transitions or can be stratified by
transition whereas the baseline hazards remain different
for all three transitions. As the main interest of this article
is the modelling of the time-dependent covariates and not
the effect of the “standard” covariates, we use approach S
as described above.

Shape of the time-varying covariate
Fractional polynomials (FP) are used for the modelling of
the function f. Fractional polynomials were introduced in
[16] and are explained in detail in [17]. In order to carry
out model selection using FPs, a sequential selection pro-
cedure was proposed in [18]. Our approach is similar to
the approach of [19], where time - covariate interaction
was investigated using FPs; for a comprehensive overview
see [20].
By contrast, in the situation investigated here, fractional

polynomials are directly applied on the time-varying
covariates d and t − d. The resulting FP gives the func-
tion f which describes the shape of the impact of the
time-dependent covariates on the hazard function λ23.
Using approach J, it also determines the relation between
function λ13 and λ23 as c(d, t − d) = exp (βT f (d, t − d)).
The procedure is the following: Suppose that X is a

time-dependent covariate. We are interested in finding
the function f (.) that describes the impact of the time-
dependent covariate on the hazard function. The starting
point is a straight line model f (X) = β1X. In some cases,
this is already an adequate description of the relationship,
but other models are analysed in order to improve the
fit. The extension of the straight line model are power
functions β1Xp. The values of p are chosen from the set
S = {−2,−1,−0.5, 0, 0.5, 1, 2, 3} where X0 denotes log(X).

Figure 2 After the recurrence, two time scales are possible: time
since first diagnosis t or time since recurrence t − d.

The resulting functions are called one-term fractional
polynomials or FP1 functions. The variable that counts
the number of FP-terms m is set to 1. In this article also
FP2 functions are used: f (X) = β1Xp1 + β2Xp2 , with
p1, p2 ∈ S. In this case the number of FP-terms increases
m = 2. If p1 = p2, the function β1Xp1 + β2Xp1 log(X) is
used.
In order to find the best model, the 8 different FP1 func-

tions and the 36 different FP2 functions are fitted and
compared using the AIC criterion [21].
If there are several time-dependent covariates, linear

combinations of the FP of every covariate are used. A
model selection procedure treating several covariates is
described in [18].

Application
In this section, the methods described above are applied
to a real dataset. In the first paragraph, a description of the
dataset is given. Then it is shown how the analysis of the
data was carried out.

Data
Between 1983 and 1989, four studies including patients
with primary, histologically proven, non-metastatic breast
cancer were carried out by the German Breast Cancer
Study Group (GBSG). 2746 patients from 118 clinical
institutions entered the studies. The treatment design
of the studies is shown in [5], Table 1. The follow-
ing covariates were registered at primary diagnosis:
patient’s age, menopausal status, number of positive axil-
lary lymph nodes, tumour location, tumour size, histo-
logic tumour grade, oestrogen, and progesterone recep-
tor status. Patients were examined at regularly scheduled
follow-up visits. The study was carried out with a very
small-meshed follow-up scheme in particular in the first
years after primary surgery in order to detect any kind of
recurrence at the earliest time possible [10]. In the first
two years, for example, the examinations took place every
3 month. More details are available in [10]. Follow-up was
continued until death. Censoring took place at the end of
the study or if follow-up was not possible.
We reduced the data to 2390 patients in order to avoid

a missing value problem. This number does not match
the number of patients used in [10] as we also excluded
patients with survival time equal to zero (N = 15). These
patients are all censored individuals, lost to follow-up after
primary surgery. If ILRR was detected at death we defined
the recurrence to have taken place one month earlier. If
ILRR and distant metastases were detected at the same
time, the time of recurrence was distributed uniformly
on an interval of three month before manifestation of the
distant disease.
Figure 3 shows how many recurrences, distant dis-

eases and deaths were observed in the four studies. 1419
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Figure 3 Observed recurrences and deaths in the four studies. DD stands for distant disease. ‘No event’ means that these patients are censored
without having any of the other events.

patients had no event. They were still alive without recur-
rence when the study was terminated. 302 patients expe-
rienced an ILRR. After having experienced the ILRR,
148 patients had distant metastases and 19 died without
metastases. Among the patients without recurrent event
(2088 patients), 602 experienced distant metastases and
67 died.
In order to simplify the application of the proposed

methods, the time-invariant covariates were categorized,
using pre-defined cutpoints. Only patient’s age, number
of positive lymph nodes, tumour size, tumour grade and
progesterone receptor status were considered. The other
covariates were eliminated within the first model selection
using backward elimination at a level α = 0.01.

Implementation
Two illness-death models are analysed. In the fist one,
the overall survival is estimated, the absorbing state is
therefore “death”. Patients with distant disease but without
ILRR are censored. In the second model, the endpoint is
“distant metastases or death”.
We start with approach J which forces the hazard ratio

λ23/λ13 to have the shape of function c. Thereafter, it
is investigated if this assumption has to be relaxed by
calculating model S with t as underlying time scale.
Then, the time of recurrence d is included into the anal-

ysis. Using step-functions to model this time-dependence,

it was already shown by [10] that d has a linear impact
on the overall survival after recurrence. This is why d will
be included in the model without transformation. It is not
known if the effect of time d is also linear with respect to
distant disease free survival but we will assume this first.
Concerning the time after ILRR, there is a hypothesis

that the risk of death is very high just after the recur-
rence and diminishes with time. But the ILRR could also
be an indicator of an accelerated disease development and
therefore increase the hazard rate enduringly.
Based on empirical knowledge, a possible shape of the

time after recurrence could be exp (−(t − d)). The more
the corresponding parameter estimate is positive, the
more serious is the occurrence of an ILRR but the faster is
the reduction of the risk to a normal level. In this case, the
ILRR could be considered as a new and independent dis-
ease that does not alter the hazard rate on the long term. If
the parameter estimate is negative, the risk increases up to
a saturation level. This corresponds to the hypothesis that
the ILRR is a sign of a deterioration of the patient’s health.
The impact of the time after recurrence of the ILRR

is first assumed to have the functional form mentioned
above, i.e. exp (−(t − d)). However, this assumption has
to be checked. In order to confirm this, fractional poly-
nomials are used for the time-varying covariate t − d.
Using approach J, it is shown how the shape of the haz-
ard curve changes when time-dependent covariates are
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ignored. Table 1 gives four possible ways for modelling c
the relation between hazard 1→3 and 2→3. Resuming the
assumptions of the previous paragraphs, one obtains:

c(d, t − d) = exp (β0 + β1d + β2 exp (−(t − d))), (3)

which is a special case of relation J.IV. By omitting succes-
sively β2, β1 and β0, the model is reduced to relation J.III
(1 or 2), J.II and J.I, respectively. These models are then
compared using the AIC criterion.
In a further step the intuitive choice of the function

exp (−(t − d)) is justified by comparing the resulting haz-
ard function to the hazard function of a time-dependent
FP.
The analysis is carried out a second time for the distant

disease free survival.
The resulting hazard ratios for approach J and S are

plotted and compared graphically.
The analysis was done in R[22]. The Coxmodel was esti-

mated using the procedure cph of the rms package written
by Frank Harrell [23] and on the coxph procedure of the
survival package written by Terry Therneau [24]. It is
necessary to use the counting-process notation for sur-
vival data in order to account for time-dependent covari-
ates and left-truncation. The modification of the data and
the implementation of the programs are described in [13]
and [25]. Cumulative baseline hazards were smoothed and
first derivatives were calculated by the smoothing func-
tion smooth.spline of R. Other methods for deriving
the baseline hazard functions like kernel estimators were
also applied, but are not shown here. The FP fit was
done manually. At present, only software for fitting time-
invariant FPs [26] or time - covariate interaction FPs
[19,20] exists.

Results
The following two paragraphs contain the results of the
analysis respectively for overall and distant disease free
survival.

Results for overall survival
The four possible relations between hazard 1→3 and 2→3
for approach J (cf. Table 1), were analysed using equation
(3) and “death” as outcome variable. If none of the param-
eters β in equation (3) is included, the resulting model
reduces to relation J.I; this model ignores the intermediate
event and assumes that the transition hazard 1→3 is the
same as the hazard 2→3, i.e. that the recurrence does not
change the hazards. The AIC of this model is 8366.40. If
β0 is included (relation J.II), the hazards are allowed to dif-
fer by a constant c. In this model, c neither depends on d
(time of recurrence) nor on t − d (time since recurrence).
The AIC of this model is 8272.64. The AIC can be further

improved by allowing c to depend on d, i.e. by includ-
ing additionally β1. This is a special case of relation J.III.1
(Table 1). The AIC can thus be reduced and is 8262.45
for this model. Figure 4 shows the plots of log (c(t, t − d))

for different relations. In comparison to relation J.II (not
shown), where log (c(t, t − d)) is a horizontal plane, the
plane tilts forward using relation J.III.1, indicating that a
late recurrence reduces the risk of death. The fourth rela-
tion (model J.IV) allows c to depend on d and on t − d
via exp (−(t − d)). All parameters contained in equation
(3) are estimated. The resulting plot changes from a plane
into a curved surface. The parameter estimates of the four
models and the corresponding AIC’s are given in Figure 4.
The AIC is decreasing between the four models, indicat-
ing that model four is the best one of the models proposed
(AIC of 8259.16).
In order to know if the function exp (−(t − d)), based

only on expert knowledge and describing the dependence
of the hazard function on the time since recurrence (t−d),
accords with reality, FPs were applied on this time-varying
covariate. All FP1 and FP2 models were tested and com-
pared using the AIC. The FP1 model (p1 = −1) is the best
one and is denoted by J.FP. As can be seen in Figure 4,
the J.FP model has a slightly lower AIC but the shape of
log (c(t, t − d)) remains nearly the same.
In the next step, approach S is applied to the data. Also

in this case, the model using the expression exp (−(t−d))

for the influence of the time-dependent covariate t − d
has almost the same quality as the FP model. The first one
has an AIC of 1216.56. The FP model uses the transfor-
mation p1 = −0.5 for the time-dependent covariate t − d
and has an AIC of 1214.50. In order to analyse whether
and how the intermediate event changes the hazard func-
tions, the ratio λ23(t, d)/λ13(t) for approach J and S are
compared graphically. Figure 5 shows the hazard ratios
for overall survival. The results for approach J are derived
from the results of model J.IV in Figure 4. The surface
is transformed by an exponential function and then cut
along the t − d axis in order to obtain the plot on the left-
hand side of Figure 5. The two charts differ importantly
from each other. When drawing the hazard ratio λ23/λ13
for approach S, the complete hazard functions are used
including the two baseline hazards λ0,23 and λ0,13. For
the plot of approach J, only the proportional hazard term
c(t, t−d) is concerned. If the relation between the hazards
λ23 and λ13 is not proportional or not following the func-
tion chosen for c(t, t − d), possible variations are forced
into the baseline hazard. This is the case in the example
shown.

Results for distant disease free survival
The same analysis was done for the outcome variable “dis-
tant metastases or death”. The parameter estimate of the
time to recurrence d was not significantly different from
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Figure 4 Outcome variable “death”, approach J: Plot of log (c(d, t − d)) for two of the four models given in Table 1 and the FP approach
(J.FP). The estimates for all models in Table 1 are given. The Akaike information criterion (AIC) of the best J.FP model is 8257.48 and of the model J.I,
ignoring the intermediate event, 8366.40. The best FP is (t − d)−1. All coefficients are significantly (α-level 0.05) different from zero. With respect to
the AIC, the J.FP model is the best one but model J.IV is almost equivalent in terms of the AIC and in terms of the shape of log (c(d, t − d)).

Figure 5Outcome variable “death”: Plot of the ratios between the hazard functions before and after the intermediate event for approach
J and S.
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Figure 6 Outcome variable “distant metastases or death”, approach J: Plot of log (c(t − d)) for model J.II, J.III.2 (cf. Table 1) and the FP
approach (J.FP). The estimates for model J.II and J.III.2 are given. The AIC of the J.FP model is 11757.02 and 11915.52 for model J.I. The coefficient of
exp (−(t − d)), i.e. β̂2, is not significantly (α-level 0.05) different from zero in model J.III.2. With respect to the AIC, J.FP is the best model.

zero in all approaches (α = 0.05). This covariate is there-
fore omitted. Then the functional form of the covariate
t − d is analysed using model J.III.2.
Figure 6 shows log (c(t−d)) for model J.II, J.III.2 and the

FPmodel (J.FP).With regard to the AIC, model J.II is even
better thanmodel J.III.2. The best fitting FP ism = 2, p1 =
log, p2 = log2. In contrast to overall survival, the intuitive
functional form exp (−(t − d)) is not a good choice. J.FP
has an AIC of 11757.02 and is therefore better than model
J.III.2 which has an AIC of 11778.75. The model J.FP will
be retained.
In the next step, approach S is applied to the data.
Figure 7 shows the hazard ratios for the distant disease

free survival time. There is only one curve for approach J
as the relation c(d, t − d) between the hazards does not
depend on d (the covariate d was not significant in the
analysis). For approach S, the hazard ratio depends indi-
rectly on d via the baseline hazards: The baseline hazards
themselves do not directly depend on d but if the ratio is

plotted versus t− d, the resulting hazards are different for
each level of d.
The functional form of t − d was determined by the FP-

approach and the FP m = 2, p1 = log, p2 = log2 was
the best model for both approaches, J and S. The shapes
of the hazard ratios are similar for both approaches. The
resulting curve of approach J corresponds approximately
to the curve with d = 2.5 years of approach S, indicating
that approach J takes into account a mean value of time
of recurrence d as this covariate was omitted from the
model. Approach S shows this dependence on d via the
baseline hazards.

Discussion
The often referenced Stanford heart transplant data pro-
vided a starting point in illustrating the problem of the
comparison of survival curves before and after an inter-
mediate event [27]. Since, disease courses which should be
modelled including intermediate events were identified in

Figure 7 Outcome variable “distant metastases or death”: Plot of the ratios between the hazard functions before and after the
intermediate event for approach J and S.
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many medical fields. The course of bone marrow trans-
plantation [28] or the benefit of lung transplantation
[29,30] are examples for this development. In the lat-
ter two publications, approach J was applied including
time-varying effects.
In this article, a multi-state model is used for the anal-

ysis of breast cancer data including an intermediate event
(the ILRR). The study presented here is exactly in the
scope of the articles [31] and [32]. These articles deal
with illness-death models, where the intermediate event
is interval-censored and where there are patients with
unknown status at the time of death or follow-up. In our
case, ILRR and metastases events are interval-censored
as the follow-up took place periodically. The four stud-
ies had a median follow-up time between 7 and 9 years,
going up to 10 years for the overall survival [10]. The
patients are examined at intervals, the ILRR event is the
time of the first follow up by which ILRR has occurred.
The sojourn time without recurrent event could in this
way be overestimated and therefore the lifetime after the
recurrent event underestimated. But the follow-up peri-
ods are very short in comparison to the study period (cf.
Section Data).We therefore chose to not take into account
the interval-censoring. The bias related to an analysis
without interval-censoring should in that case be compar-
atively small. There was a high number of patients dying
from other causes than breast-cancer (67 patients) and
autopsy was not compulsory. This could suggest that ILRR
or distant disease were present at death but the status
was unknown by the study organisers. It has to be taken
into account, however, that one third of the patients were
older than 60 years at the beginning of the study. So there
was a high probability for these patients to die from other
causes. An “unknown status” was therefore not incorpo-
rated into the analysis that again should not be associated
with a large bias.
This article demonstrates that the shape of the hazard

ratio in the “illness-death”model depends on the inclusion
or exclusion of time depending covariates. Comparisons
between model J.I up to model J.IV with “death” as out-
come variable confirm that the ILRR should be modelled
as a time-dependent intermediate event. The results allow
the determination of the impact of the ILRR on the course
of the disease. Comparing the results of model J.I and
J.II it is obvious that the ILRR is a time-dependent phe-
nomenon and affects the hazard rate. Entering the study,
the patients are under risk of ILRR or death. After hav-
ing experienced an ILRR they are only at risk of death.
Therefore a model has to be chosen where the assign-
ment of the observations to different risks is not fixed in
advance but dynamic in time. This is ignored inmany pub-
lications when the patients are grouped retrospectively
by recurrence as in [9]. Models that ignore this time-
dependency cannot reflect reality and are prone to the

so-called time-dependent bias, see e.g. [4]. The real effect
of the intermediate event cannot be assessed in this way
and may be underestimated.
The comparison of model J.II and J.III.1 indicates that

the time of recurrence affects overall survival. The later
the recurrence appears, the lower is the risk of death. The
comparison between model J.III.1 and J.IV implies that
the hazard function depends also on time since ILRR.
With respect to overall survival (cf. Figure 5), approach J
restricts too much the shape of the hazard ratio. The rela-
tion between the hazards in approach J does not model
the difference between the hazard rates satisfyingly and is
therefore not the appropriate model. Approach S shows
that an early ILRR leads to a sudden increase of the risk
of death which decreases relatively fast after the recur-
rence, but that a late ILRR (after 2 years) only increases
the hazard by a factor of about 2.5 which does not longer
depend on time since recurrence t − d. From a medical
point of view, it is interesting to know whether the appear-
ance of an ILRR is due to the first disease and expresses
the declining health of the patient, or if the ILRR is inde-
pendent from the first disease. The results show that the
ILRR is not completely independent from the first disease.
Indeed, the risk of death remains on a higher level after an
ILRR (ratio > 1). But there is also an independent part:
approach S indicates that an early recurrence leads to an
additional risk, but this risk diminishes after successful
removal of the second tumour.
With respect to distant disease free survival, approach

J models the shape of the ratio correctly, but the depen-
dency on time of recurrence d could not be analysed.
In fact, in all J models this variable was not significant.
The model S however shows this dependency on d via
the baseline hazard. This proves that the proportional-
ity assumption between the hazard functions λ13 and λ23
in model J does not match the data. Whenever the ILRR
appears, the risk of distant disease has a peak thereafter.
This peak is more pronounced if the ILRR occurs early
(Figure 7). After two years, the risk has diminished. In this
case, the ILRR can be seen as an independent event. If
the recurrence is treated with success, the risk of a distant
disease decreases and attains the previous level.
The results also show that fractional polynomials are

useful to determinate the functional form of time-varying
covariates. Even if the results of the J.IVmodel using a pre-
defined exponential function are almost equivalent in the
case of overall survival, the results show that the use of FPs
is the best choice for distant disease free survival.

Conclusions
Summing up, we have investigated different modelling
strategies for the transition hazard after ILRR or in general
after an intermediate event. An example is given in which
including time-dependent structures alters the resulting
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hazard function considerably. It is important to realize
that there are several modelling strategies and that each
of these strategies has certain restrictions and may lead to
different results.
It was also shown that fractional polynomials are a use-

ful tool for finding the functional form of the time-varying
variables.
Diagnostic methods have changed over the last 20 years.

The aim of the paper was to show that the time-varying
effect of the ILRR has not to be neglected. The methods
developed for doing this are still valid nowadays. The aim
of this article was not to reanalyse the four studies of the
German Breast-Cancer Study Group.

Competing interests
We declare that we have no competing interests.

Authors’ contributions
MS conceived the research topic. CMH explored that idea, performed the
statistical analysis and drafted the manuscript. Both authors read and
approved the final manuscript.

Acknowledgements
We like to thank Claudia Schmoor for her help to use the dataset.

Author details
1Infrapôle Paris Saint-Lazare, SNCF, 66, rue Franklin prolongée, Courbevoie
92400, France. 2Institute of Medical Biometry and Medical Informatics,
University Medical Center Freiburg, Stefan-Meier-Straße 26, Freiburg 79104,
Germany.

Received: 6 January 2013 Accepted: 8 June 2013
Published: 20 June 2013

References
1. Putter H, van der Hage, J, de Bock GH, Elgalta R, van de Velde, C J H:

Estimation and predicition in a multi-state model for breast cancer.
Biom J 2006, 48:366–380.

2. Andersen PK, Keiding N:Multi-state models for event history analysis.
Stat Methods Med Res 2002, 11:91–115.

3. Broët P, de la, Rochefordière A, Scholl SM, Fourquet A, De Rycke Y, Pouillart
P, Mosseri V, Asselain B: Analyzing prognostic factors in breast cancer
using a multistate model. Breast Cancer Res Treat 1999, 54:83–89.

4. Beyersmann J, Wolkewitz M, Allignol A, Grambauer N, Schumacher M:
Application of multistate models in hospital epidemiology:
Advances and challenges. Biom J 2011, 53:332–350.

5. Schmoor C, Olschewski M, Sauerbrei W, Schumacher M: Long-term
follow-up of patients in four prospective studies of the german
breast cancer study group (GBSG): a summary of key results.
Onkologie 2002, 25:143–150.

6. Fisher B, Anderson S, Fisher ER, Redmond CK, Wickerham DL, Wolmak N,
Mamounas EP, Deutsch M, Margolese RG: Significance of ipsilateral
breast tumor recurrence after lumpectomy. The Lancet 1991,
338:327–331.

7. Veronesi U, Marubini E, Del Vecchio M, Manzari A, Andreola S, Greco M,
Luini A, Merson M, Saccozzi R, Rilke F, Salvadori B: Local recurrences and
distant metastases after conservative breast cancer treatments:
partly independent events. J Natl Canc nst 1995, 87:19–27.

8. Arriagada R, Rutqvist LE, Mattsson A, Kramar A, Rotstein S: Adequate
locoregional treatment for early breast cancer may prevent
secondary dissemination. J Clin Oncol 1995, 13:2869–2878.

9. Dunst J, Steil B, Furch S, Fach A, Lautenschläger C, Diestelhorst A, Lampe
D, Kölbl H, Richter C: Prognostic significance of local recurrence in
breast cancer after postmastectomy radiotherapy. Strahlenther Onkol
2001, 10:504–510.

10. Schmoor C, Sauerbrei W, Bastert G, Schumacher M: Role of isolated
locoregional recurrence of breast cancer: Results of four
prospective studies. J Clin Oncol 2000, 18:1696–1708.

11. Cortese G, Andersen PK: Competing risks and time-dependent
covariates. Biom J 2009, 51:138–158.

12. Klein J P Keiding, N, Copelan E: Plotting summary predicitions in
multistate survival models: probabilities of relapse and death in
remission for bone marrow transplantation patients. Stat Med 1993,
12:2315–2332.

13. Therneau TM, Grambsch PM:Modelling Survival Data - Extending the Cox
Model. New York: Springer. 2000 Statistics for Biology and Health.

14. Cox DR: Regression models and life-tables (with discussion). J R Stat
Soc B 1972, 34:187–220.

15. Beyersmann J, Schumacher M: Time-dependent covariates in the
proportional subdistribution hazards model for competing risks.
Biostatistics 2008, 9:765–776.

16. Royston P, Altman DG: Regression using fractional polynomials of
continuous covariates: parsimonious parametric modelling (with
discussion). Appl Stat 1994, 43:429–467.

17. Royston P, Sauerbrei W:Multivariable Model-Building: A Pragmatic
Approach to Regression Analysis Based on Fractional Polynomials for
Modelling Continuous Variables. Chichester: Wiley. 2008 Wiley Series in
Probability and Statistics.

18. Sauerbrei W, Royston P: Building multivariable prognostic and
diagnostic models: transformations of the predictors by using
fractional polynomials. J R Stat Soc A 1999, 162:71–94. [Corrigendum
(2002) 165 399–400].

19. Berger U, Schäfer J, Ulm K: Dynamic Coxmodelling based on fractional
polynomials: time-variations in gastric cancer prognosis. Stat Med
2003, 22:1163–1180.

20. Buchholz A, Sauerbrei W: Comparison of procedures to assess
non-linear and time-varying effects in multivariable models for
survival data. Biom J 2011, 53:308–331.

21. Akaike H: A new look at the statistical model identification. IEEE Trans
Automatic Control 1974, 19:716–723.

22. R project: The R project for Statistical Computing. [http://www.r-
project.org]

23. Harrell FE: Package ’rms’. R-project 2013.. 2009. [http://www.r-project.
org]

24. Therneau TM: Package ‘survival’: Survival Analysis, Including Penalised
Likelihood. R-project 2011. [http://www.r-project.org]

25. Harrell FE: Regression Modeling Strategies. New York: Springer. 2001
Springer Series in Statistics.

26. Sauerbrei W, Meier-Hirmer C, Benner A, Royston P:Multivariable
regression model building by using fractional polynomials:
Description of SAS, STATA and R programs. Comput Stat Data Anal
2006, 50:3464–3485.

27. Kalbfleisch JD, Prentice RL: The Statistical Analysis of Failure Time Data.
New York: Wiley; 1980. Wiley Series in Probability and Mathematical
Statistics.

28. Klein JP, Shu Y:Multi-state models for bone marrow transplantation
studies. Stat Methods Med Res 2002, 11:117–139.

29. Charman SA, Sharples LD, McNeil KD, Wallwork J: Assessment of
survival benefit after lung transplantation by patient diagnosis.
J Heart Lung Transplant 2002, 21:226–232.

30. De Meester J, Smits JMA, Persijn GG, Haverich A: Listing for lung
transplantation: Life expectancy and transplant effect, stratified by
type of end-stage lung disease, the Eurotransplant experience.
J Heart Lung Transplant 2001, 20:518–524.

31. Frydman H, Szarek M: Nonparametric estimation in a Markov
‘illness-death’ process from interval censored observations with
missing intermediate transition status. Biometrics 2009, 65:143–151.

32. Frydman H, Szarek M: Estimation of overall survival in an
‘illness-death’ model with application to the vertical transmission of
HIV-1. Stat Med 2010, 29:2045–2054.

doi:10.1186/1471-2288-13-80
Cite this article as: Meier-Hirmer and Schumacher: Multi-state model for
studying an intermediate event using time-dependent covariates: applica-
tion to breast cancer. BMCMedical ResearchMethodology 2013 13:80.

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Joint approach
	Separate approach
	Shape of the time-varying covariate

	Application
	Data
	Implementation

	Results
	Results for overall survival
	Results for distant disease free survival

	Discussion
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

