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Abstracts

Background: The objective of this simulation study is to compare the accuracy and efficiency of
population-averaged (i.e. generalized estimating equations (GEE)) and cluster-specific (i.e. random-effects logistic
regression (RELR)) models for analyzing data from cluster randomized trials (CRTs) with missing binary responses.

Methods: In this simulation study, clustered responses were generated from a beta-binomial distribution. The
number of clusters per trial arm, the number of subjects per cluster, intra-cluster correlation coefficient, and the
percentage of missing data were allowed to vary. Under the assumption of covariate dependent missingness,
missing outcomes were handled by complete case analysis, standard multiple imputation (MI) and within-cluster MI
strategies. Data were analyzed using GEE and RELR. Performance of the methods was assessed using standardized
bias, empirical standard error, root mean squared error (RMSE), and coverage probability.

Results: GEE performs well on all four measures — provided the downward bias of the standard error (when the
number of clusters per arm is small) is adjusted appropriately — under the following scenarios: complete case
analysis for CRTs with a small amount of missing data; standard MI for CRTs with variance inflation factor (VIF) <3;
within-cluster MI for CRTs with VIF≥3 and cluster size>50. RELR performs well only when a small amount of data
was missing, and complete case analysis was applied.

Conclusion: GEE performs well as long as appropriate missing data strategies are adopted based on the design of
CRTs and the percentage of missing data. In contrast, RELR does not perform well when either standard or
within-cluster MI strategy is applied prior to the analysis.

Keywords: Marginal model, Population-averaged model, Cluster-specific model, Multiple imputation, Cluster
randomized trial, Covariate dependent missingness, Generalized estimating equations, Random-effects logistic
regression
Background
Cluster randomized trials (CRTs) are randomized con-
trolled trials in which clusters of subjects rather than inde-
pendent subjects are randomly allocated to trial arms and
outcomes are measured for individual subjects or clusters.
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CRTs increasingly are being used in health services re-
search and primary care. Reasons for adopting cluster
randomization as a more appropriate design include: 1)
administrative convenience; 2) ethical considerations; 3)
intervention is naturally applied at the cluster level; 4) to
enhance the subject compliance; and 5) to minimize the
potential treatment “contamination” between the inter-
vention and control subjects [1]. In CRTs, outcomes from
subjects within the same cluster may exhibit a greater cor-
relation than do outcomes from subjects in different clus-
ters. The correlation within clusters, which is quantified
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by the intracluster correlation coefficient (ICC) ρ, may re-
sult in substantially reduced statistical efficiency relative to
trials that randomize the same number of individuals. The
overall outcome variance σ2 in a CRT can be expressed as
the sum of between-cluster variance σB

2 and within-cluster
variance σW

2 . Correspondingly, the ICC is defined as ρ = σB
2/

(σB
2 + σW

2 ), which is interpreted as the amount of variation
that can be explained by variation between clusters. The re-
duction in efficiency is a function of the variance inflation
due to clustering, also known as the design effect or vari-
ance inflation factor (VIF), given by VIF ¼ 1þ �m� 1ð Þρ ,
where �m denotes the average cluster size.
Missing data may be a serious problem in some CRTs

due to the lack of direct contact with individual subjects
and lengthy follow-up [2]. The impact of missing data on
estimation of the treatment effect and its confidence inter-
val depends on the mechanism which caused the data to be
missing, the strategy used to handle missing data, and the
model used for statistical analysis. Missing data mechan-
isms are generally categorized into missing completely at
random, missing at random, and missing not at random
[3]. An observation is missing completely at random if the
probability of missingness is independent of any observed
or unobserved measurements. An observation is missing at
random if the probability of missingness depends on the
observed data. Missing not at random is the situation where
the probability of missingness is related to the unobserved
measurement. Covariate dependent missingness (CDM) is
a simple case of missing at random, where the probability
of missingness depends only on the observed covariates,
but not on the observed outcomes. In this study, we focus
on missing outcome data since the chance of having miss-
ing data on baseline characteristics or covariates, which are
typically collected prior to the randomization, is relatively
low. A variety of methods can be used to handle missing
data: 1) listwise deletion (or complete case analysis) which
excludes subjects with missing data from the analysis;
2) single imputation procedures, such as mean imputation;
3) likelihood-based methods, which usually involve a
maximization of the likelihood function derived from the
underlying model and estimate parameters by accounting
for the missingness; and 4) multiple imputation (MI), which
replaces each missing value with a set of plausible values
that represent the uncertainty about the right value to im-
pute. MI has become widely-used methods for handling
missing data in recent years since it offers distinct advan-
tages over other methods. Single imputation methods do
not account for the uncertainty about the predictions of the
unknown missing values and may lead to underestimation
of the variance of effect estimates. Likelihood-based meth-
ods may be difficult to implement when no algorithm or
procedure is available to maximize the likelihood. Listwise
deletion weakens the statistical power of the test conducted
and may lead to biased results when data are missing not at
random. In addition, this analysis does not adopt an
intention-to-treat principle — because it excludes some
randomized participants (i.e. those with missing data). In
general, compared to complete case analysis and single im-
putation strategies, MI has the advantage of reducing the
bias and improving the efficiency of effect estimates, even
when only outcome data are missing [4,5]. Moreover, for
cluster randomized trials, there is a higher risk that the vari-
ance of effect estimate will be underestimated with single
imputation methods. MI would be, therefore, the most ap-
propriate choice to handle missing outcome data to
minimize the likelihood of underestimating the variance.
Our previous study showed that MI, if used appropriately,
is a valid strategy to handle missing binary outcomes in
CRTs [6].
A key property of CRTs is that inferences or analyses are

frequently done to apply at the individual level while
randomization is at the cluster level, thus the unit of
randomization may be different from the unit of inference
or analysis. In this case, the lack of independence among
individuals in the same cluster, i.e. the between-cluster vari-
ation, presents special methodological challenges that affect
both the design and analysis of CRTs. Consequently, stand-
ard approaches for statistical analysis do not apply because
they may result in severely underpowered studies and spuri-
ously elevated Type I error rates [1]. Different statistical
methods that account for the clustering effect have been
proposed in the literature, and they are categorized into
individual-level and cluster-level data analysis methods.
Individual-level analysis models, such as population-
averaged (PA) models (also called marginal models) and
cluster-specific (CS) models (also called conditional mod-
els), have been advocated for the analysis of CRTs with bin-
ary outcomes since they allow for the possible imbalance of
both cluster-level and individual-level characteristics to be
incorporated into the analysis. The ability to adjust for
imbalanced characteristics between trial arms is very im-
portant when the number of clusters is not large enough to
keep the cluster- or individual-level characteristics balanced
between the trial arms. The generalized estimating equa-
tions (GEE) approach [7] and the random-effects logistic re-
gression (RELR) are two commonly used individual-level
analysis methods for estimating the PA and CS intervention
effect for CRTs with binary outcomes, respectively.
Some attention has been paid in the literature to the

performance of GEE approach and RELR in the analysis
of binary outcomes in CRTs. Austin [8] compared their
statistical powers through a simulation study in which
the minimum number of clusters examined was 26
(13 clusters per trial arm). The results showed that the
differences between the two methods were negligible in
most settings. Bellamy et al. [9] also conducted a series
of simulation studies comparing their statistical power.
They examined settings in which the total number of
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clusters was 10, 20, 30 or 50, the mean number of subjects
per cluster was either 10 or 100, the ICC was 0.1, the re-
sponse proportion in the control arm was 0.23 and the re-
sponse proportions in the intervention arm were: 0.09,
0.13, 0.18, 0.23 or 0.28. The study showed that the differ-
ence between the two models diminished as the number
of clusters increased. In particular, the difference was neg-
ligible if the total number of clusters was at least 30. How-
ever, if the total number of clusters was 10 or 20, RELR
would have moderately lower power than GEE method.
Ukoumunne et al. [10] compared the accuracy of esti-
mated treatment effect and confidence interval coverage
of several methods for analyzing binary outcomes in CRTs
through a simulation study. They showed that the GEE
method had acceptable properties as long as the bias of
the standard error was corrected when the number of
clusters was small. The RELR was not assessed in their
simulation study. Ma et al. [11] compared different strat-
egies to handle missing binary outcomes in CRTs when
GEE method and RELR were used as methods of analysis.
Findings from this paper implied that both models could
be used to analyze data from CRTs after multiple imput-
ation was applied to handle missing outcome data. How-
ever, the generalizability of their findings was limited in
that their simulation was based on a real dataset. This
study is an extension of this work to assess the accuracy
and efficiency of PA and CS models, in particular, the GEE
method and the RELR respectively, when multiple imput-
ation techniques are applied to handle missing binary out-
comes in CRTs using simulated data. The performance of
the methods is compared in terms of standardized bias,
empirical standard error, root mean squared error
(RMSE), and coverage probability. The simulation is
designed under the assumptions of CDM and CRTs with a
balanced completely randomized design.

Methods
The rest of this section is organized as follows: First, the
statistical analysis methods (i.e. GEE and RELR) used to
analyze binary outcomes in CRTs are described. Second,
the missing data strategies used in this study for handling
missing binary outcomes are briefly introduced. Third, the
method for combining the results across multiply imputed
datasets is described.

Statistical analysis methods
Generalized estimating equations
The GEE approach for fitting the logistic regression devel-
oped by Liang and Zeger [12] can be formulated as

logit Pr yijl ¼ 1
� �� � ¼ Xijlβmarginal; ð1Þ

where yijl denotes the binary outcome of patient l in cluster
j in the intervention group i, Pr(yijl = 1) denotes the
corresponding probability of success, Xijl denotes the corre-
sponding vector of individual-level or cluster level covari-
ates. βm arg inal denotes the marginal regression coefficients,

and logit Pr yijl ¼ 1
� �� � ¼ log

Pr yijl¼1ð Þ
1�Pr yijl¼1ð Þ

� �
.

To analyze the data from CRTs, an exchangeable
correlation matrix is usually specified to account for poten-
tial within-cluster homogeneity in outcomes, and the robust
standard error method is used to obtain the improved stan-
dard error for estimation of βmarginal. In this paper, we only
include one covariate, treatment group, in the model fitting.
It has been recommended that at least 40 clusters need

to be included in a study to ensure the GEE method pro-
duces reliable standard errors [13]. This is because, firstly,
the method tends to underestimate the covariance of
observations leading to downward biased estimate of
standard error and, secondly, the estimate of standard
error is highly variable when the number of clusters is too
small [14]. A number of methods have been proposed for
dealing with the shortcomings of the robust standard error
estimator [13]. In this paper, the downward bias of the
sandwich standard error estimator is adjusted by multiply-

ing it by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J= J � 1ð Þp

, where J is the number of clusters in
each arm.

Random-effects logistic regression
RELR incorporates cluster-specific random effects into the
logistic regression and assumes that the random effects fol-
low a normal distribution. The model can be formulated as

logit Pr yijl ¼ 1
� �� � ¼ Xijlβconditional þ Uij; ð2Þ

where Uij~N(0, σB
2) represent the random effects, which

vary independently from one cluster to another according
to a common Normal distribution with a mean of zero and
variance of σB

2 , which represents the between-cluster vari-
ance. βconditional denotes the conditional regression coeffi-
cients. Model parameters can be estimated using maximum
likelihood [15].
Both GEE and RELR are commonly used statistical ana-

lysis methods for analyzing binary outcomes in CRTs [1];
however, the two methods do not estimate the same par-
ameter. As described above, the GEE method allows one to
estimate the marginal or PA intervention effect, whereas
RELR allows one to estimate the conditional or CS inter-
vention effect [9,16,17]. Neuhaus has suggested that
marginal models are preferable for testing the effects of
cluster-level covariates [17]. In cluster randomization trials,
the intervention is a cluster-level exposure variable and,
thus, GEE approach may be preferable to RELR. Neverthe-
less, RELR may remain relevant for the analysis of CRTs
since Neuhaus has demonstrated that for a binary out-
come, marginal treatment effect tends to be smaller than



Ma et al. BMC Medical Research Methodology 2013, 13:9 Page 4 of 16
http://www.biomedcentral.com/1471-2288/13/9
conditional treatment effect: βm arg inal = βconditinal(1 − ρ),
where ρ is the intracluster correlation coefficient. In
addition, different assumptions are required for the two
models regarding missing data. The marginal model using
GEE method requires data to be missing completely at
random, whereas the cluster-specific model using RELR
requires data to be missing at random. Both GEE and
RELR are valid for analyzing binary outcomes in CRTs
under the assumption of CDM.

Missing data strategies
In this paper, we consider three strategies to handle miss-
ing binary outcomes in CRTs: 1) complete case analysis; 2)
standard MI using logistic regression; and 3) within-
cluster MI using logistic regression. The performance of
GEE method and RELR is compared after missing data are
handled by the above strategies.
Complete case analysis has been an attractive method to

handle the missing data due to its simplicity. In adopting
this strategy, only subjects with complete data are included
for analysis, while subjects with missing data are excluded.
MI is widely applied to missing data problems. Rubin

[18] described MI as a three-step process: 1) replace each
missing value with a set of plausible values that represent
the uncertainty about the right value to impute; 2) analyze
the multiple imputed datasets independently using
complete-data methods; and 3) combine the results from
the multiple analyses, which allows the uncertainty regard-
ing the imputation to be taken into account.
The standard MI using logistic regression method is

now described in detail. The Within-cluster MI strategy
is consists of applying the standard MI method to im-
pute missing data for each cluster independently.
Standard multiple imputation using logistic regression

is implemented through the following steps:
First, fit a logistic regression using the observed out-

come and covariates to obtain the posterior predictive
distribution of the parameters:

logit Pr yobs ¼ 1ð Þð Þ ¼ β0 þ β1x1 þ⋯þ βkxk ;

where yobs is the observed binary outcome of a subject, xi, i
= 1, . . ., k, denotes the ith individual or cluster-level covari-
ate of the corresponding subject (two covariates are
included in this study: treatment group and the variable
associated with the missingness), β = (β0, β1, . . ., βk) denotes
the regression coefficients. The regression parameter esti-

mates β̂ ¼ β̂0; β̂1; . . . ; β̂k

� �
and the associated covariance

matrix V are obtained to construct the posterior distribu-
tion of the parameters.

Second, draw new parameters β̃ ¼ β̃0; β̃1; . . . ; β̃k

� �
from the posterior distribution, where β̃ ¼ β̂ þ V 0

hZ;V
0
h is

the upper triangular matrix in the Cholesky decomposition,
V =Vh
0Vh, and Z is a vector of k+1 independent random

Normal variates.
Third, for each subject with a missing outcome

ymis and observed covariates x1, . . ., xk, compute p ¼
exp β̃0þ β̃1x1⋯þ β̃kxkð Þ

1þ exp β̃0þ β̃1x1⋯þ β̃kxkð Þ as the expected probability of

ymis = 1.
Fourth, draw a random Uniform variate u, 0 ≤ u ≤ 1. If

u < p, then impute ymis = 1, otherwise, impute ymis = 0.
The above steps imply two assumptions: first, sub-

jects are independent, which essentially ignores the
similarity of subjects from the same cluster and; sec-
ond, the missing data are imputed based on the PA
treatment effect.

Combination of results from different imputed data sets
Suppose M sets of imputed values are generated. M esti-
mates of the treatment effects β(1), β(2), . . ., andβ(M) with
corresponding variance estimates V(1),V(2), . . ., and V(M)

are obtained after GEE or RELR are applied to the
multiple imputed datasets. The pooled treatment effect

estimate from MI is calculated as �β ¼ 1
M

XM

m¼1
β mð Þ . Its

variance estimate is calculated as V ¼ W þ 1þ 1
M

� �
B ,

where W ¼ 1
M

XM

m¼1
V mð Þ is the average within-impu-

tation variance, and B ¼ 1
M�1

XM

m¼1
β mð Þ � �β

� �2
is the

between-imputation variance. As recommended by Bar-
nard and Rubin [3,19], the adjusted degree of freedom is

calculated for CRTs as vadj ¼ 1
vM

þ V
W

vcomþ3
vcomþ1

1
vcom

� ��1
, where

vM ¼ M � 1ð Þ 1þ M
Mþ1

W
B

� �2
is the degree of freedom

when subjects are assumed to be independent, and vcom is
the degree of freedom for the complete data test; for ex-
ample, if there are k (k>2) clusters in each of the two study
groups, vcom = 2(k − 1).

Simulation study
The schematic overview of the simulation study is il-
lustrated in Figure 1. This simulation study is imple-
mented in SAS 9.2 (Cary, NC). The mi procedure is
used to implement the MI, genmod and nlmixed pro-
cedures are used to estimate the intervention effect
and its standard error from GEE approach and RELR
respectively, and the mianalyze procedure is used to
obtain the pooled estimate and its standard error across
multiple imputed datasets. For nlmixed procedure, max-
imum likelihood estimation via adaptive Gaussian quadra-
ture and a dual quasi-Newton optimization algorithm are
used.
According to the review of CRTs in primary care by

Eldrige et al. [20], CRTs can be categorized into two types:
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Figure 1 Schematic overview of the simulation study. Abbreviations: MI, multiple imputation; GEE, generalized estimating equations;
RELR, random-effects logistic regression; SB, standardized bias; ESE, empirical standard error; RMSE, root mean square error; obs.,
observations.
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S-design and L-design, which refer to the design settings
of CRTs with a small and a large number of clusters per
arm, respectively. Design parameters for CRTs in this
simulation study are guided by the empirical findings that
larger values of intracluster correlation coefficient tend to
be associated with studies having a small number of parti-
cipants within each cluster [21]. The choices of these para-
meters are:

(1) For CRTs with 5 clusters per arm (S-design) and
500 subjects per cluster, ICC was set to be 0.001,
0.01 or 0.05.

(2) For CRTs with 20 clusters per arm (L-design) and
50 subjects per cluster, ICC was set to be 0.01, 0.05,
or 0.1.

(3) For CRTs with 30 clusters per arm (L-design) and
30 subjects per cluster, ICC was set to be 0.05, 0.1,
or 0.2.

Only two-arm, balanced, and completely randomized
CRTs are considered in this study. The clustered bi-
nomial responses are generated using a beta-binomial
distribution [22]. The prevalence of outcome for
intervention and control arms is assumed to be 30% and
40% respectively. In addition, another binary covariate is
generated, which has an equal chance of taking the value of
0 or 1 and is independent of the intervention and the out-
come. For any percentage of missing data, we consider that
subjects with value of 1 for this binary covariate are 1.3
times more likely to have missing outcome than subjects
with a value of 0 for this covariate. For each combination of
design parameters, we generate 1000 replications to achieve
enough precision for estimating treatment effect [23].
Choices of the percentage of missing binary outcome are
0% (complete data), 15%, and 30%. We generate 5 replace-
ments for each of the missing data.
Four quantities are chosen to evaluate the performance

of GEE method and RELR: 1) standardized bias calculated

as Average of estimates�parameter
standard deviation of estimates

			 			 ; 2) root mean squared error

(RMSE) defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eβ β̂ � β

� �2

 �s

, where β̂ and β are

the estimated treatment effect and its true value respect-
ively; 3) coverage probability, which is the proportion of
times that the nominal 95% confidence interval contains
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the true treatment effect across all simulation replications;
and 4) empirical standard error of the treatment effect cal-
culated as the average of standard errors of the estimated
treatment effects across all simulation replications.

Results
Empirical standard error
The empirical standard errors from GEE method and
RELR for different design scenarios are presented in
Table 1 Comparison of empirical standard error

Design of CRTs VIF 4 % of
missing
data

Complet

m 1 n 2 ρ 3 GEE7

5 9 (S-Design) 500 0.001 1.499 0% 0.0

15% 0.0

30% 0.0

0.01 5.99 0% 0.1

15% 0.1

30% 0.1

0.05 25.95 0% 0.3

15% 0.3

30% 0.3

20 (L-Design) 50 0.01 1.49 0% 0.1

15% 0.1

30% 0.1

0.05 3.45 0% 0.1

15% 0.1

30% 0.1

0.1 5.90 0% 0.2

15% 0.2

30% 0.2

30 (L-Design) 30 0.05 2.45 0% 0.1

15% 0.1

30% 0.1

0.1 3.90 0% 0.1

15% 0.2

30% 0.2

0.2 6.80 0% 0.2

15% 0.2

30% 0.2

Empirical standard error is defined as the average of standard errors of the estimat
errors obtained when 0% data are missing are considered as references for compar
Note:
1. m: Number of clusters per trial arm.
2. n: Number of subjects per cluster.
3. ρ: intracluster correlation coefficient; 4. VIF: Variance inflation factor, i.e. 1+(m-1)ρ
method.
6. Within-cluster MI: Within-cluster multiple imputation using logistic regression me
trials.
7. GEE: Generalized estimating equations.
8. RELR: Random-effects logistic regression.
9. For CRTs with 5 clusters per arm, modified standard errors are provided.
Table 1 and Figure 2. When complete case analysis was
used to handle missing data, empirical standard errors
from GEE and RELR for all designs of CRTs increased
with the increasing percentage of missing data. The
magnitude of increase for the GEE method depended on
the VIF of CRTs: the larger the VIF, the smaller amount
of increase. In contrast, the magnitude of increase for
the RELR depended on the cluster size: the smaller the
cluster size, the larger amount of increase.
e case analysis Standard MI5 Within-cluster MI6

RELR8 GEE RELR GEE RELR

7 0.10

8 0.11 0.08 0.07 0.08 0.08

8 0.12 0.08 0.08 0.10 0.09

5 0.12

5 0.13 0.13 0.12 0.16 0.14

5 0.15 0.12 0.11 0.16 0.15

0 0.15

0 0.16 0.26 0.24 0.30 0.28

0 0.16 0.22 0.20 0.30 0.29

1 0.17

1 0.17 0.12 0.12 0.13 0.13

2 0.19 0.12 0.13 0.15 0.16

7 0.31

7 0.34 0.16 0.16 0.18 0.19

8 0.39 0.15 0.16 0.20 0.21

2 0.18

3 0.21 0.20 0.22 0.23 0.26

3 0.22 0.18 0.19 NA NA

5 0.28

6 0.33 0.15 0.15 0.17 0.18

7 0.37 0.15 0.15 NA NA

9 0.33

0 0.38 0.18 0.19 NA NA

0 0.42 0.17 0.18 NA NA

6 0.38

6 0.40 0.23 0.27 NA NA

6 0.44 0.21 0.23 NA NA

ed treatment effects across all simulation replications. The empirical standard
ing with those obtained when 15% or 30% data are missing.

; 5. Standard MI: Standard multiple imputation using logistic regression

thod, which is not applicable (NA) for some L-design of cluster randomized
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When standard MI was used to impute missing data,
empirical standard errors from the GEE method were
acceptable for CRTs with VIF<3 in terms of yielding
similar or slightly larger empirical standard errors com-
pared to those obtained from analyzing the complete
data. However, they were underestimated for CRTs with
VIF≥3. This is because standard MI strategy assumes
data are independent, and cluster effect may be safely
ignored for CRTs with VIF<3 when imputing missing
data. In contrast, empirical standard errors from RELR
were not similar as those obtained from analyzing
complete data. This is because that the imputed datasets
were obtained based on the estimated PA treatment
Figure 2 Comparison of empirical standard error.
effect and corresponding underestimated standard error,
which led to a difference between the standard error
estimated from RELR based on the imputed datasets and
that based on the complete data.
Within-cluster MI was not applicable for L-design of

CRTs, which usually had a small cluster size, since all out-
comes in a cluster were missing or all observed outcomes
had identical values, which caused the imputation proced-
ure to fail. In the cases when within-cluster MI was applic-
able and used to impute the missing data, empirical
standard errors from GEE method were acceptable for
CRTs with VIF≥3; however, for CRTs with VIF<3,
empirical standard errors were inflated. This is because
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when within-cluster MI was used to impute the missing
data, the clustering effects were accounted for by imputing
missing data based on the observed information within
the same cluster as the missing data, therefore, the
empirical standard errors for GEE were acceptable for
CRTs with VIF≥3. The empirical standard errors from
RELR were acceptable only when the cluster size is large
(>50) and the ICC is small (≤0.01).
Table 2 Comparison of standardized bias

Design of CRTs VIF 4 % of
missing
data

Complet

m 1 n 2 ρ 3 GEE7

5 9 (S-Design) 500 0.001 1.499 0% 0.0

15% 0.0

30% 0.0

0.01 5.99 0% 0.0

15% 0.0

30% 0.0

0.05 25.95 0% 0.0

15% 0.0

30% 0.0

20 (L-Design) 50 0.01 1.49 0% 0.0

15% 0.0

30% 0.0

0.05 3.45 0% 0.0

15% 0.0

30% 0.0

0.1 5.90 0% 0.0

15% 0.0

30% 0.0

30 (L-Design) 30 0.05 2.45 0% 0.0

15% 0.0

30% 0.0

0.1 3.90 0% 0.0

15% 0.0

30% 0.0

0.2 6.80 0% 0.0

15% 0.0

30% 0.0

Standardized bias is defined as the difference between the expectation of the estim
Standardized biases obtained when 0% data are missing are considered as referenc
Note:
1. m: Number of clusters per trial arm.
2. n: Number of subjects per cluster.
3. ρ: Intracluster correlation coefficient; 4. VIF: Variance inflation factor, i.e. 1+(m-1)ρ
method.
6. Within-cluster MI: Within-cluster multiple imputation using logistic regression me
trials.
7. GEE: Generalized estimating equations.
8. RELR: Random-effects logistic regression.
9. For CRTs with 5 clusters per arm, modified standard errors are provided.
Standardized bias
The standardized biases from GEE method and RELR for
different design scenarios are presented in Table 2 and
Figure 3. Standardized biases from GEE method were
close to zero for any design settings and percentage of
missing data, no matter which missing data strategy was
used. In contrast, standardized biases for RELR were rela-
tively larger. When complete case analysis was used to
e case analysis Standard MI5 Within-cluster MI6

RELR8 GEE RELR GEE RELR

2 0.73

3 0.71 0.02 0.17 0.03 0.15

1 0.63 0.00 0.18 0.00 0.08

1 0.34

0 0.33 0.00 0.02 0.00 0.03

0 0.32 0.00 0.01 0.00 0.03

2 0.15

2 0.15 0.02 0.08 0.03 0.10

2 0.14 0.01 0.05 0.02 0.09

4 0.38

4 0.37 0.03 0.04 0.06 0.01

4 0.36 0.03 0.05 0.08 0.01

1 0.26

0 0.24 0.00 0.09 0.03 0.11

2 0.13 0.01 0.06 0.03 0.12

2 0.20

1 0.19 0.01 0.15 0.05 0.16

1 0.19 0.01 0.10 NA NA

2 0.33

2 0.32 0.02 0.12 0.02 0.15

1 0.14 0.00 0.06 NA NA

1 0.23

1 0.23 0.01 0.18 NA NA

2 0.23 0.02 0.13 NA NA

1 0.16

0 0.15 0.00 0.14 NA NA

1 0.15 0.00 0.16 NA NA

ator and the parameter, divided by the standard deviation of the estimator.
es for comparing with those obtained when 15% or 30% data are missing.

; 5. Standard MI: Standard multiple imputation using logistic regression

thod, which is not applicable (NA) for some L-design of cluster randomized
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handle missing data, standardized biases for RELR did
not change substantially with increasing percentage of
missing data for S-design with a large design effect
(VIF>3) and L-design with a large ICC (ICC≥0.1);
however, standardized biases changed largely with an
increasing percentage of missing data for other
scenarios. When missing data were imputed by
standard MI or within-cluster MI prior to statistical
analysis, standardized biases for RELR were much
smaller than those obtained by analyzing complete
data (i.e. 0% missing data) using the same statistical
method.
Figure 3 Comparison of standardized bias.
The magnitude of standardized bias was dependent
on the original data structure, i.e. how the data were
generated, how the missing data were handled, and
which statistical model was used for analysis. As
described in the previous section, the clustered binary
data were generated using a beta-binomial distribution,
which assumed a PA treatment effect. Since complete
case analysis did not change the original data structure
under the assumption of CDM, the PA and CS treat-
ment effects estimated from the GEE and RELR were
quite consistent with those estimated based on
complete data (i.e. datasets without missing values).
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The relationship between the PA and the CS treatment
effects estimated from GEE method and RELR respect-
ively still held; however, when either standard MI or
within-cluster MI was used, the imputed values were
obtained based on the estimated PA treatment effect
and corresponding underestimated standard error,
which largely distorted the CS treatment effects esti-
mated from RELR compared with those estimated
based on complete data.
Table 3 Comparison of root mean squared error

Design of CRTs VIF 4 % of
missing
data

Complet

m 1 n 2 ρ 3 GEE7

5 9 (S-Design) 500 0.001 1.499 0% 0.0

15% 0.0

30% 0.0

0.01 5.99 0% 0.1

15% 0.1

30% 0.1

0.05 25.95 0% 0.3

15% 0.3

30% 0.3

20 (L-Design) 50 0.01 1.49 0% 0.1

15% 0.1

30% 0.1

0.05 3.45 0% 0.1

15% 0.1

30% 0.1

0.1 5.90 0% 0.2

15% 0.2

30% 0.2

30 (L-Design) 30 0.05 2.45 0% 0.1

15% 0.1

30% 0.1

0.1 3.90 0% 0.2

15% 0.2

30% 0.2

0.2 6.80 0% 0.2

15% 0.2

30% 0.2

Root mean squared error is defined as the square root of the mean squared error, w
effect and the true parameter. The root mean squared errors obtained when 0% da
when 15% or 30% data are missing.
Note:
1. m: Number of clusters per trial arm.
2. n: Number of subjects per cluster.
3. ρ: Intracluster correlation coefficient; 4. VIF: Variance inflation factor, i.e. 1+(m-1)ρ
method.
6. Within-cluster MI: Within-cluster multiple imputation using logistic regression me
trials.
7. GEE: Generalized estimating equations.
8. RELR: Random-effects logistic regression.
9. For CRTs with 5 clusters per arm, modified standard errors are provided.
Root mean squared error
The RMSE incorporates both the variance of the esti-
mator and its bias, and measures the overall accuracy of
the point estimator. RMSEs from GEE method and
RELR for different design scenarios are presented in
Table 3 and Figure 4. When complete case analysis was
used to handle missing data, RMSEs from GEE method
were very similar to those obtained based on complete
data for all designs of CRTs with no larger than 15%
e case analysis Standard MI5 Within-cluster MI6

RELR8 GEE RELR GEE RELR

7 0.10

8 0.10 0.08 0.06 0.08 0.06

8 0.11 0.08 0.07 0.09 0.08

4 0.17

4 0.17 0.15 0.15 0.15 0.15

5 0.17 0.15 0.15 0.15 0.15

1 0.34

1 0.34 0.31 0.32 0.31 0.33

1 0.34 0.31 0.32 0.31 0.33

1 0.13

1 0.13 0.12 0.12 0.12 0.12

2 0.14 0.14 0.12 0.13 0.13

8 0.20

8 0.21 0.18 0.19 0.18 0.19

9 0.20 0.19 0.20 0.19 0.20

4 0.26

4 0.27 0.24 0.26 0.24 0.27

5 0.27 0.25 0.26 NA NA

5 0.17

6 0.18 0.16 0.16 0.15 0.17

6 0.17 0.16 0.17 NA NA

0 0.21

0 0.22 0.20 0.22 NA NA

0 0.23 0.21 0.22 NA NA

7 0.30

7 0.30 0.28 0.33 NA NA

8 0.30 0.28 0.31 NA NA

hich is the average squared difference between the estimated treatment
ta are missing are considered as references for comparing with those obtained

; 5. Standard MI: Standard multiple imputation using logistic regression

thod, which is not applicable (NA) for some L-design of cluster randomized
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missing data. With 30% missing values, the RMSEs
from GEE were larger than those obtained based on
analyzing complete data for the design of CRTs with a
small design effect (VIF<3). Similarly, RMSEs from
RELR were very similar to those obtained based on
complete data for all designs of CRTs with no larger
than 15% missing data; however, with 30% missing
values, RMSEs from RELR were much larger than
those obtained based on complete data for the design
of CRTs with a small design effect (VIF<3) and a small
cluster size (<50).
Figure 4 Comparison of root mean squared error.
When standard MI was used to impute missing data,
RMSEs from GEE method increased with the percent-
age of missing data. With no larger than 15% missing
data, the increase of RMSEs from GEE compared to
those obtained based on complete data was not substan-
tial. When the amount of missing values increased to
30%, RMSEs from the GEE method increased substan-
tially for CRTs with a small design effect (VIF<3). In
contrast, RMSEs from RELR method were much smaller
than those obtained from analyzing complete data for
most of the design scenarios. We should note that the



Ma et al. BMC Medical Research Methodology 2013, 13:9 Page 12 of 16
http://www.biomedcentral.com/1471-2288/13/9
small RMSE for RELR here was not an indication of
more accurate or precise estimate for the treatment ef-
fect, but rather a result of biased CS treatment effects
and the corresponding underestimated standard error.
When within-cluster MI was used to impute missing

data, the same pattern for RMSEs from both GEE and
RELR was observed as when standard MI was used to
impute missing data.
Table 4 Comparison of coverage probability

Design of CRTs VIF 4 % of
missing
data

Complet

m 1 n 2 ρ 3 GEE7

5 9 (S-Design) 500 0.001 1.499 0% 0.9

15% 0.9

30% 0.9

0.01 5.99 0% 0.9

15% 0.9

30% 0.9

0.05 25.95 0% 0.9

15% 0.9

30% 0.9

20 (L-Design) 50 0.01 1.49 0% 0.9

15% 0.9

30% 0.9

0.05 3.45 0% 0.9

15% 0.9

30% 0.9

0.1 5.90 0% 0.9

15% 0.9

30% 0.9

30 (L-Design) 30 0.05 2.45 0% 0.9

15% 0.9

30% 0.9

0.1 3.90 0% 0.9

15% 0.9

30% 0.9

0.2 6.80 0% 0.9

15% 0.9

30% 0.9

Coverage probability is defined as the proportion of times that the nominal 95% co
replications. Coverage probabilities obtained when 0% data are missing are conside
are missing.
Note:
1. m: Number of clusters per trial arm.
2. n: Number of subjects per cluster.
3. ρ: Intra-cluster correlation coefficient; 4. VIF: Variance inflation factor, i.e. 1+(m-1)ρ
method.
6. Within-cluster MI: Within-cluster multiple imputation using logistic regression me
trials.
7. GEE: Generalized estimating equations.
8. RELR: Random-effects logistic regression.
9. For CRTs with 5 clusters per arm, modified standard errors are provided.
Coverage probability
Table 4 and Figure 5 show the coverage probabilities
from GEE method and RELR for different designs of
CRTs. When complete case analysis was used to handle
missing data, the coverage probabilities from GEE
method were at least 0.90 for all the scenarios consid-
ered in this paper. The coverage probabilities from RELR
were at least 0.95 for design of CRTs with a small design
e case analysis Standard MI5 Within-cluster MI6

RELR8 GEE RELR GEE RELR

1 0.96

2 0.97 0.93 0.97 1.00 0.99

3 0.97 0.95 0.98 1.00 0.99

2 0.79

2 0.81 0.90 0.87 0.95 0.91

4 0.84 0.88 0.84 0.98 0.93

1 0.49

1 0.52 0.89 0.83 0.93 0.89

3 0.52 0.83 0.77 0.96 0.90

4 0.98

4 0.98 0.93 0.95 0.96 0.97

4 0.98 0.92 0.96 0.98 0.98

3 0.91

3 0.92 0.90 0.89 0.94 0.94

3 0.93 0.87 0.88 0.95 0.96

3 0.78

3 0.82 0.89 0.88 0.93 0.93

2 0.83 0.85 0.85 NA NA

5 0.95

6 0.96 0.93 0.93 0.97 0.96

5 0.96 0.91 0.92 NA NA

5 0.91

5 0.93 0.92 0.92 NA NA

5 0.94 0.89 0.90 NA NA

4 0.79

4 0.81 0.90 0.89 NA NA

4 0.85 0.85 0.85 NA NA

nfidence interval contains the true treatment effect across all simulation
red as references for comparing with those obtained when 15% or 30% data

; 5. Standard MI: Standard multiple imputation using logistic regression

thod, which is not applicable (NA) for some L-design of cluster randomized
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effect (VIF<3) but were very low for CRTs with a large
design effect (VIF≥3).
When standard MI was used to impute missing data,

coverage probabilities from GEE method increased for
CRTs with a small design effect but decreased for CRTs
with a large design effect. Coverage probabilities from
RELR increased for almost all designs of CRTs compared to
those obtained by analyzing complete data using the same
statistical analysis method. When within-cluster MI was
used to impute missing data, the same pattern for the
coverage probabilities from both GEE and RELR was
Figure 5 Comparison of coverage probability.
observed as when standard MI was used to impute missing
data. It should be noted that the higher coverage from
RELR when either standard or within-cluster MI strategy
was applied prior to the analysis was not an indication of
high efficiency, but rather a result of biased CS treatment
effects and the corresponding underestimated standard
effort.
We noticed that the coverage probabilities from GEE

were larger than the nominal level when within-cluster
MI is applied prior to the analysis for CRTs with a small
design effect and a large percentage of missing data. This
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is because within-cluster MI tends to provide larger
standard errors of the estimated treatment effects
(i.e. wider 95% confidence interval).

Convergence problems
For the GEE method, at most 1 out of 1000 simulated
datasets with S-design could not converge to a solution
because they either encountered a non-positive definite
matrix in the iterations or because there was no vari-
ation between the clusters in each arm. No convergence
problems occurred for the simulated datasets based on
the L-design. Lack of convergence was encountered
more often for RELR than GEE. About 10 out of 1000
simulated datasets for some designs of CRTs could not
converge for RELR due to negative estimates of
between-cluster variance component during iteration.

Discussion
In this paper, we compared the accuracy and efficiency
of PA and CS models through a simulation study, in par-
ticular, the GEE method and the RELR respectively, for
analyzing binary outcomes in CRTs with missing data.
Results from the present simulation study show that
under the assumption of CDM, the GEE method per-
forms well as long as an appropriate strategy is applied
to handle missing data based on the percentage of miss-
ing data and the design of CRTs. The appropriate strat-
egy in this instance is using complete case analysis for
any CRTs with a small percentage of missing outcomes
(<15%), using standard MI to impute missing outcomes
for CRTs with a small design effect (VIF<3), or within-
cluster MI to impute missing outcomes for CRTs with a
large design effect (VIF≥3) and cluster size (>50). In con-
trast, the RELR performs poorly when either standard or
within-cluster MI strategy is used to impute missing
data prior to the analysis.
Results from the present comprehensive simulation

study also imply that MI using random-effects logistic
regression may not appropriate for imputing binary out-
comes in CRTs. This is because that if the underlying
data structure assumes a PA treatment effect, the MI
using random-effects logistic regression, which impute
missing data based on the CS treatment effect, may dis-
tort the original data structure and lead to invalid infer-
ence. Moreover, the convergence problems will greatly
hinder the application of this method for imputing miss-
ing binary data. This implication seems to be in contra-
diction with current literature: for example, Taljaard
et al. [24] proposed mixed-effects regression imputation
strategies to handle missing continuous outcomes in
CRTs. Results from that study showed that the mixed-
effects regression imputation strategy takes into account
the between-cluster variance and therefore provides
valid inferences for the treatment effect. In a previous
study [11], we proposed MI using random-effects logistic
regression to impute missing binary outcomes in CRTs
and found that this strategy may be valid for imputing
binary outcomes in CRTs. These two studies reached a
different conclusion from the present simulation study
since the mixed-effects regression imputation strategy by
Taljaard et al. is used to handle the missing continuous
outcome, and the MI using random-effects logistic
regression by Ma et al. is based on a real dataset which
has relatively large ICC, number of clusters per arm, and
number of subjects per cluster, which limited the
generalizability of their conclusions to more general
settings.
MI has been accepted as a solution for missing data

problems in many settings. Both GEE and RELR are
commonly used for analyzing binary data in CRTs [1].
Results from this paper also imply that the choice of
statistical analysis method and imputation method
should reflect the same data structure as the inherent
structure of the original data; otherwise, valid or
improved inferences will not be achieved. For research-
ers with thorough understandings of the GEE method,
RELR, CRTs, and the MI, results from this present study
may not entirely surprising; however, the application of
imputation and analysis methods in practice for CRTs
does not reflect this finding. Some CRTs used mixed
effects models for statistical analysis, but fixed-effects
for clusters in imputation [25-28]. In some other CRTs
[29-31], no details were provided on which imputation
procedure was applied. Findings from this simulation
study urge caution on the use of RELR in the analysis of
data from CRTs when missing binary outcomes are
imputed by either standard or within-cluster MI strat-
egy, thus improve the statistical practice in epidemio-
logical research.
There are certain limitations to the current study.

First, performance of the marginal model and cluster-
specific model was assessed only for CRTs with a com-
pletely randomized design. Other designs such as the
matched pairs design and stratified randomized design
are also used for CRTs but were not considered in this
study. Second, only CRTs with balanced design were
considered; however, settings found more often in em-
pirical situations, such as unequal numbers of subjects
per cluster, or unequal number of clusters in each trial
arm, were not considered in this study. These design
restrictions were made to understand the performance
of the methods in simple scenarios. Further research is
required to assess whether our findings are relevant to
more general settings. Third, there are two main
approaches in handling missing data: likelihood based
analyses and imputation [3]. In this paper, only complete
case analysis, standard and within-cluster MI using lo-
gistic regression method to handle the missing data were
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considered; therefore, the conclusion from this paper
regarding to the performance of RELR may not be ap-
plicable when missing data are handled using likelihood
based analyses or other imputation methods. Further re-
search may investigate the scenarios when missing data
are handled by likelihood based analysis. Fourth, MI
strategies investigated in this project were implemented
using SAS. Other software packages, such as STATA
and MLwiN, also provide MI procedures or macros. We
think that similar results may be expected if the proced-
ure in STATA is used since it generates imputed values
from a prediction model using logistic regression —
which is similar to the MI procedure for imputing miss-
ing binary data in SAS; while different results may be
expected if the macros in MLwiN is used — because it
generates imputed values using the random-effects logis-
tic regression model. Finally, results from GEE and
RELR are different since the two models estimate differ-
ent parameters as outlined in the previous section. The
intervention effect in the simulation has a population-
average interpretation since the beta-binomial model is
used to specify an overall unconditional probability
within each trial arm, which gives preference to the GEE
model.

Conclusions
Under the assumption of CDM, GEE method performs
well as long as an appropriate missing data strategy is
adopted based on the design of CRTs and the percentage
of missing data. In contrast, RELR dose not perform well
when either standard or within-cluster MI strategy is ap-
plied to impute missing data prior to the analysis.

Abbreviation
CRTs: Cluster randomized trials; ICC: Intracluster correlation coefficient;
VIF: Variance inflation factor; PA: Population-averaged; CS: Cluster-specific;
GEE: Generalized estimating equations; RELR: Random-effects logistic
regression; RMSE: Root mean squared error; CDM: Covariate dependent
missingness.
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