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Abstract

Background: The surge in biomarker development calls for research on statistical evaluation methodology to
rigorously assess emerging biomarkers and classification models. Recently, several authors reported the puzzling
observation that, in assessing the added value of new biomarkers to existing ones in a logistic regression model,
statistical significance of new predictor variables does not necessarily translate into a statistically significant increase in
the area under the ROC curve (AUQ). Vickers et al. concluded that this inconsistency is because AUC “has vastly inferior
statistical properties,” i.e., it is extremely conservative. This statement is based on simulations that misuse the DeLong

diagnostic accuracy (AUC) tests.

et al. method. Our purpose is to provide a fair comparison of the likelihood ratio (LR) test and the Wald test versus

Discussion: \We present a test to compare ideal AUCs of nested linear discriminant functions via an F test. We
compare it with the LR test and the Wald test for the logistic regression model. The null hypotheses of these three
tests are equivalent; however, the F test is an exact test whereas the LR test and the Wald test are asymptotic tests.
Our simulation shows that the F test has the nominal type I error even with a small sample size. Our results also
indicate that the LR test and the Wald test have inflated type | errors when the sample size is small, while the type |
error converges to the nominal value asymptotically with increasing sample size as expected. We further show that
the Delong et al. method tests a different hypothesis and has the nominal type | error when it is used within its
designed scope. Finally, we summarize the pros and cons of all four methods we consider in this paper.

Summary: We show that there is nothing inherently less powerful or disagreeable about ROC analysis for showing
the usefulness of new biomarkers or characterizing the performance of classification models. Each statistical method
for assessing biomarkers and classification models has its own strengths and weaknesses. Investigators need to
choose methods based on the assessment purpose, the biomarker development phase at which the assessment is
being performed, the available patient data, and the validity of assumptions behind the methodologies.

Keywords: Biomarkers, Classification, Area under the ROC curve

Background

Advances in genomics, proteomics, and high-throughput
biotechnologies have generated many biomarkers with
potential clinical value in diagnosis, assessment of prog-
nosis, prediction of risk and therapy response, and many
other applications. In a typical application, a classifi-
cation model is used to combine multiple biomarkers
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(predictors) to predict a binary outcome such as dis-
eased/nondiseased, responders/non-responders to ther-
apy, etc. A particular problem of interest is to determine
if a set of new biomarkers has added value. The added
value is determined by building two nested classification
models: 1) a partial model with the existing biomarkers,
and 2) a full model with the new biomarkers combined
with the existing biomarkers. One approach is to test the
statistical significance of the new biomarkers with the
binary outcome adjusted for the existing biomarkers in
the full model, e.g., likelihood ratio (LR) test or Wald test
in the logistic regression model. Another approach is to
compare the diagnostic performance of the two nested
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models in terms of a diagnostic accuracy metric, for exam-
ple, the widely used area under the receiver operating
characteristic (ROC) curve or AUC.

Recently, several authors [1,2] reported the puzzling
observation that the aforementioned two approaches are
not always consistent with each other, namely, statistical
significance of new predictor variables does not necessar-
ily translate into a statistically significant increase in AUC.
Vickers et al. [1] used simulation data to compare the LR
test, the Wald test, and the DeLong et al. method for the
comparison of AUC [3]. Their results showed that, under
the null hypothesis (i.e., the new biomarkers are useless),
the LR test and the Wald test both yield the nominal type
I error rate whereas the DeLong test of AUC yields type I
error that is far below the nominal level (i.e., it is extremely
conservative). They also showed that the DeLong test of
AUC is much less powerful than the other two tests under
the alternative hypothesis. Demler et al. [2] reported simi-
lar simulation findings and the authors suggested that the
DeLong approach should not be used for testing the null
hypothesis but can be used for estimating the confidence
interval of the difference of AUC values once the new
biomarkers are shown to be significantly associated with
the outcome.

We believe that the conclusions in Vickers et al. [1]
may be misleading for practitioners. For example, they
stated that “Although comparison of AUCs is a concep-
tually equivalent approach to the likelihood ratio and
Wald test, it has vastly inferior statistical properties.” This
conclusion statement is not substantiated because their
simulation data are about a particular statistical method
(namely the DeLong et al. method [3]) being used in a
particular way (actually a misuse as we will show in this
paper), but their conclusion is about the general AUC
metric. Their conclusion inappropriately puts a negative
aura on ROC analysis and paints AUC as ineffective. We
will show in this paper that, given an appropriate statis-
tic and distributional assumption, the hypothesis in the
test of AUC can be equivalent to that in the LR or Wald
tests and, for the particular statistic for the test of AUC
we consider, the test of AUC actually can perform bet-
ter than those statistical significance tests at small sample
sizes.

In addition, in both the Vickers et al. paper [1] and the
Demler et al. paper [2], the dataset that was used for train-
ing the model was also used as the test dataset, and the
resulting resubstitution AUC values without and with the
new biomarkers were compared using the DeLong et al.
method. This is clearly a misuse of the DeLong method
(as also pointed out in Demler et al. [2]) because the
DeLong et al. method is designed for comparing two fixed
models that are tested on a common dataset independent
of the training set. Changing the model is not expected
or accounted for in the DeLong et al. variance estimate.
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We will clarify the scope of the DeLong et al. method
and show that the method has nominal error rates when
used in its designed scope. We will also show that the
hypothesis in the DeLong et al. method is different from
those in the statistical significance tests of new predictor
variables and therefore it cannot be compared with those
tests.

Finally, we will summarize the pros and cons of the four
methods we consider in this paper.

Discussion
To facilitate our discussions, we begin with a brief review
of the basic elements for the assessment of statistical
learning models for pattern classification. We suppose
that the model is trained with a finite training dataset r
that has a size N = Ny + Nj, where Ny and Nj are the
number of observations sampled from the actually nega-
tive class and the actually positive class respectively. The
diagnostic accuracy (e.g., AUC) estimated on an indepen-
dent test set ¢ by the nonparametric unbiased estimator
is denoted as A,;. The AUC estimated by testing on the
training set r, known as the resubstitution estimator, is
denoted as Arr .

If we take the expectation of Ay over the population
of test sets conditional on a fixed and finite training set,

denoted A, = E; [A,ﬂtraining set r], we have the perfor-

mance of the fixed classification model. This conditional
performance A, is called the true performance by some
authors (e.g., Efron [4]) in the sense that it is the perfor-
mance that is truly expected for the population after the
model is trained and released in the field.

When the training set is treated as random, A, is a ran-
dom variable and has uncertainty due to the randomness
of the finite training set. The expectation of A, over the
population of training sets of the same size N = Ny + N
is denoted as A(No,Nl) = E, [A,]. Note that A is a func-
tion of the training sample size and can be depicted in a
“learning curve” The ideal or theoretically optimal perfor-
mance of the model is denoted as A = A(o0, 00), i.e., the
performance of the model when sizes of both the training
set and the test set are infinity.

Figure 1 shows a typical plot of the learning curves of a
logistic regression model, which we call the “antler” plot
for its typical shape. This plot was generated using sim-
ulated data. Fifteen simulated biomarkers are assumed to
follow a pair of normal distributions for the two classes
with user-designated parameters (the specific values are
those of the first 15 variables in Table 1). At each train-
ing sample size, the AUC performance of the trained
logistic regression model is estimated in one Monte
Carlo (MC) trial with three estimators: (#1) resubstitu-
tion, (#2) a small independent test set (60 observations
per class), and (#3) a large independent test set (10,000
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Figure 1 “Antler” plot for the logistic regression model. Fifteen
simulated biomarkers are assumed to follow a pair of normal
distributions for the two classes. At each training sample size, the AUC
performance is estimated in one Monte Carlo (MC) trial with (#1)
resubstitution, (#2) a small independent test set (60 observations per
class), and (#3) a large independent test set (10,000 observations per
class). The MC trial is repeated independently 1,000 times and the
sample mean and the sample standard deviation (SD) of the
estimated AUC values are calculated for each estimator. The figure
plots the theoretically ideal AUC and the sample mean AUC (1 SD)
at training sample sizes 60, 120, 240, 360, and 480 (note that the plot
is shifted a bit horizontally to avoid overlap between error bars).

observations per class). The MC trial is repeated inde-
pendently 1,000 times retraining the models and testing
them each time. The sample mean and the sample stan-
dard deviation (SD) of the estimated AUC values are
computed for each of the three estimators. The figure
plots the theoretically ideal AUC for the logistic regres-
sion model with the given distributions and parameters
(horizontal line) and the sample mean AUC (£+1 SD) of
the three estimators as a function of the training sample

size.
As illustrated in our simulation, with a finite training

sample for every MC trial, the resubstitution estimator
(#1) A,y yields an optimistically biased estimate of the
ideal performance of the model, and the independent
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validation estimators (#2, #3) A, yields a pessimistically
biased estimate of the ideal performance A. In general,
the variability of Ay arises from both the finite training
set and the finite test set (estimator (#2)), as shown in
Figure 1. For estimator (#3), the test set is so large that the
testing variability negligible. In this case, Ay is approx-
imately A, and the error bar represents the variability
primarily due to the randomness of the training set 7, i.e.,
(#3) in Figure 1 is basically a plot of A,.

Bearing these basic characteristics in mind, we will be
able to discuss different statistical tests and the corre-
sponding target performance (A or A,).

LR test, Wald test, and the F test of the ideal AUC for linear
models

In this section, we consider how to decide whether a
set of g new biomarkers have added value to p exist-
ing ones in two nested linear models. The ideal linear
models (i.e., the theoretically true classification func-
tions) can be written as: the partial model 4, = Elev,-x,'
and the full model 4, ,; = Elewix,' + Eﬁzlwpﬂxpﬂ.
Statistical significance tests such as the LR test and
the Wald test are readily available for the commonly
used logistic regression model. In these tests, the null
hypothesis is that the weight coefficients of the new
biomarkers (Wpy1,..,Wpyy) are all zeros. The likeli-
hood ratio expresses how many times more likely the
data are under the full model than the partial model.
Under the null hypothesis, the test statistic, which is
twice the logarithm of the likelihood ratio, asymptot-
ically follows a chi-square distribution with g degrees
of freedom. The univariate (g = 1) Wald test statis-
tic is the ratio of the maximum likelihood estimation
of the weight coefficient W,.; to an estimate of its
standard error. The test statistic asymptotically follows
a standard normal distribution under the hypothesis
wpr1 = 0. More generally, the multivariate Wald test
statistic can be defined analogously and it asymptoti-
cally follows a chi-square distribution with g degrees
of freedom under the null hypothesis (for details, see
Hosmer [5]).

Table 1 User-selected mean and covariance matrix parameters for the normal distributions in simulating the joint

distributions of 16 biomarkers

Null hypothesis

Alternative hypothesis

Negative class Mean [0,...,0lix16 [o,..., 0l1x16
Cov Identity hex16 Identity hex16
Positive class Mean [0.7,0.6,06,0.5,05,03,03,02,... [0.7,06,06,05,0.5,03,03,0.2,...
0.2,0.1,0.1,0.1,0,0,0,0] 0.2,0.1,0.1,0.1,0,0,0,0.6]
Cov Identity hex16 Identity hex16

Ideal AUCs for LDF

0.8413 (15 biomarkers) vs.
0.8413 (16 biomarkers)

0.8413 (15 biomarkers) vs.
0.8613 (16 biomarkers)
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Alternatively, one can test the null hypothesis that the
ideal AUC for the partial model is equal to that for the
full model, which we denote as Ho:A(p) =A(p + 9)-
Assuming that the two-class biomarker data follow a pair
of multivariate normal distributions, the optimal linear
model that maximizes the AUC is Fisher’s linear dis-
criminant function (LDF) [6]. Then hypothesis Ho is
equivalent to Hy : D(p) = D(p + q), where D(n) =
\/(ul — u2)TV—=1(u1 — ) is the Mahalanobis distance
between the normal distributions of the two classes for n
biomarkers with mean vectors w1, (o of length n respec-
tively and a common #n x n covariance matrix V. This
equivalence is because of a monotonic one-to-one map-
ping between the ideal AUC for LDF and the Mahalanobis
distance,

(D)
A(n)_CD(ﬁ), (1)

where ® is the cumulative distribution function of the
standard normal distribution.

Consequently the test of ideal AUC for two nested linear
discriminant functions (#o) can be achieved by the test of
the Mahalanobis distance (#;)). Under the null hypothesis

o» Rao [7] showed that the test statistic

No+Ni—p—q—1
q
— 2
1+ NoN1D(p +¢q) /(No+N1)(No+N1—-2) 1
——2
1+ NoN1D(p) /(No+N1)(No+N1 —2)

u

2)

follows the F distribution with g and (Ng+N; —p—g—1)

degrees of freedom, where DG?&])2 and D/(\p)2 are the
sample Mahalanobis distances computed from a training
sample consisting of Ny actually negative subjects and Ny
actually positive subjects.

As shown by Delmer et al. [8], under the multivari-
ate normality assumption, equality of two ideal AUCs for
two nested linear discriminant functions is equivalent to
discriminant coefficients equal to zero for variables not
shared by the two models. This means that the LR test,
the Wald test, and the F test actually test the same null
hypothesis with different test statistics. However, the F
test is an exact test, whereas the LR test and the Wald
test are asymptotic tests. The main difference we expect
is that the two types of methods may produce results of
observable difference with finite samples. We provide a
simulated example to compare the methods at various
sample sizes.

In our simulation, we intend to assess if one new
“biomarker” has added value to 15 existing ones. We
do both a null-hypothesis experiment (i.e., the new
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biomarker has no added value) and an alternative-
hypothesis experiment (i.e., the new biomarker has some
added value). We assumed the simulated 16 biomark-
ers to follow a pair of multivariate normal distributions
with parameters specified in Table 1 (the 16th is the
new biomarker). These parameters were chosen by taking
into account the following considerations (but otherwise
arbitrary): (1) to simulate a set of biomarkers that have a
variety of performance levels for a single biomarker and a
medium performance level for the model; (2) to allow for
useless existing biomarkers (false positives from previous
studies); and (3) to be simple. The simulation may be unre-
alistic but only serves to demonstrate the properties of the
significance testing methods.

Each experiment consisted of repeated independent
MC trials. In each MC trial, we drew a training sam-
ple of a specified size with all the 16 biomarkers from
the normal distributions with the designated parameters
described above. We then performed the LR test and
Wald test for the 167 biomarker in the logistic regres-
sion model and also the F test of the ideal AUC. We
called it a significant finding if the P value was less
than 0.05. We repeated the trials 20,000 times and cal-
culated the fraction of significant findings. The fraction
is the observed type I error rate in the null-hypothesis
experiment and the statistical power in the alternative-
hypothesis experiment. We varied the training sample
size to examine its effect on the performance of these
tests.

Table 2 summarizes the simulation results. Since the
multivariate normality assumption is satisfied, the F test
of the ideal AUC can be regarded as the gold standard
on theoretical grounds. The simulation results indeed
confirmed that the method has the expected type I
error rate of 0.05 at various sample sizes. The LR test
and the Wald test were found to have inflated type I
errors when the sample size was small, and the type I
error converged to the expected nominal value asymp-
totically with the increasing sample size. The statistical
power was found to be quite similar across all the three
tests.

The three statistical tests are comparable because the
null hypotheses in these tests are equivalent. In addition,
they all only involve the training data. The LR test and
the Wald test involve the statistics in training the logistic
regression model [5]. The F test of the ideal AUC involves
using the training data to compute the sample Maha-
lanobis distances and it is equivalent to training and test-
ing the linear discriminant function with the same dataset.
However, as we will show in the next section, the DeLong
et al. method [3] tests a different hypothesis involving
only the test data in computation and hence should not
be compared with the three statistical tests presented in
this section.
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Table 2 Comparison of different statistical tests in assessing whether a new biomarker has added value

Null hypothesis No = 60 No =120 No =120 Np = 240 No = 480
(Type I error) N, =30 N, =60 N, =120 N, =120 N, = 480

LR test 0.1033 0.0668 0.0585 0.0600 0.0546

Wald Test 0.0781 0.0608 0.0546 0.0571 0.0538

F test of ideal AUC 0.0495 0.0482 0.0481 0.0522 0.0515
Alt. Hypothesis No = 60 No =120 No =120 No = 240 No = 480
(Power) N1 =30 N1 =60 Ny =120 N1 =120 N7 =480

LR test 0.5956 0.8569 0.9539 0.9896 1.0000

Wald Test 0.5394 0.8453 0.9506 0.9889 1.0000

F test of ideal AUC 0.5196 0.8514 0.9538 0.9915 1.0000

Fraction of significant findings in 20,000 Monte Carlo trials at statistical significance cut-off of 0.05. On the top are the results for the null-hypothesis experiment where
the fraction of significant findings is the observed type | error rate. At the bottom are the results for the alternative-hypothesis experiment where the fraction of

significant findings is the statistical power.

The DeLong et al. method for AUC comparison: its scope
and appropriate use

The widely used DeLong et al. method [3] is designed to
nonparametrically compare two correlated ROC curves.
The decision scores underlying the two ROC curves,
which the authors called “diagnostic tests’, can be two
physical measurements or test scores of two classification
models that are measured or tested on a common sample
of patients. For assessing a model, the method assumes
that the model is trained and fixed, and a nonparametric
approach is used to estimate its diagnostic performance
on the whole intended population (A,) using the testing
scores of a sample of patients randomly and independently
drawn from that population. It makes no assumption on
the distributions of the biomarker data or how the model
is trained whatsoever except that the training data is inde-
pendent of the test data. The approach accounts for the
variability of the performance that arises when a different
random test sample is tested.

For comparing two models (including but not limited
to two nested models), again the method assumes that
the two models have been trained, fixed, and then tested
on a common dataset that is randomly and independently
drawn from the population. In estimating the variability of
the AUC difference for hypothesis testing, the approach
accounts for the variance of each AUC due to the finite
test sample and the covariance due to the use of a com-
mon test set. In short, the DeLong method is designed
to test the null hypothesis that the true performance of
two fixed models are equal: AV = Ag,z), where the super-
scripts 1, 2 denote two models under comparison, and
the subscripts indicate that the training data sets may be
different.

The test statistic in the DeLong et al. method is a z score
defined as the difference of AUC divided by its standard
error. Theoretically, the variance estimator that DeLong

et al. used is not unbiased. We have investigated an
unbiased version of the variance estimator based on U
statistics [9] (see Appendix for a brief explanation). How-
ever, the difference between the DeLong et al. variance
estimator and the unbiased one is so tiny that it is not of
practical importance, as we will show below.

To simulate the null hypothesis, we modeled the test
scores of two models as a bivariate binormal distribution
with a common covariance matrix [1, p; p, 1] and means
of [0,0] and [u, ] for the actually negative class and the
actually positive class respectively. In each MC trial, we
drew a sample of test scores from the designated distri-
bution and applied the DeLong et al. method [3] and the
U-statistics based method [9] to compare the AUC val-
ues. By only sampling test scores we are not retraining the
model - it is fixed. We called it a significant finding if the
P value was less than 0.05. We repeated the trials 20,000
times and calculated the fraction of significant findings,
which is the observed type I error rate. The chosen p
and p parameters and the results are shown in Table 3.
The results show that the type I error rate of the DeLong
et al. method is close to the nominal value of 0.05.
Although it is found to be slightly conservative compared
to the U-statistics-based method, the difference is proba-
bly not of practical importance. We conclude from these
simulations that, within its designed scope, the DeLong
et al. method behaves nearly as expected in terms of the
type I error.

The DeLong et al. method was clearly used beyond its
scope in Vickers et al. [1]. In their simulations, they drew
a dataset to train the model in each MC repetition, which
violated the fixed-model assumption. In addition, they
tested the model with the training data, which violates
the requirement in the DeLong et al. method that the test
data is independent of the model. Moreover, the variance
of the resubstitution AUC estimator is a totally different
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Table 3 Simulation results demonstrating the application of the DeLong et al. method [3] and the U-statistics based
method [9] for comparing two fixed models under the null hypothesis

No =50N; =50

No = 50N; =100 No = 100 N; = 200

p=0 n=0 0.0531/0.0547 0.0501/0.0507 0.0515/0.0521
n=1 0.0515/0.0527 0.0542/0.0558 0.0503/0.0511
n=15 0.0482/0.0498 0.0503/0.0512 0.0496/0.0500
p =06 n=20 0.0507/0.0530 0.0488/0.0505 0.0515/0.0526
n=1 0.0457/0.0493 0.0501/0.0519 0.0485/0.0500
n=15 0.0453/0.0486 0.0444/0.0471 0.0501/0.0517

Fraction of significant findings in 20,000 Monte Carlo trials at statistical significance cut-off of 0.05 for the DeLong et al. method and the U-statistics based method

respectively.

quantity from the variance estimated in the DeLong et al.
method.

To appropriately use the DeLong et al. method with a
single dataset, one needs to partition the dataset into two
independent sets: a training set and a test set. After the
models are trained with the training set and fixed, their
performance can be compared by applying the DeLong et
al. method to the test results. The method can be used
to compare any two fixed models that are tested on a
common independent test set.

It is important to note the difference between the
DeLong et al. method and the significance testing meth-
ods investigated in the previous section for comparing
nested models. The null hypothesis in the significance
testing methods in the previous section is that the ideal
AUC values (the AUC values of models with infinite train-
ing) are equal: A1) = A, However, the null hypothesis
in the DeLong et al. method is that the AUC values of
models trained with a finite dataset are equal: AL = Ai,Z).
The two hypotheses are not equivalent (recall the learning
curves and error bars in Figure 1).

Pros and cons of different methodologies

We have considered four methods including two statisti-
cal association tests (the LR test and the Wald test) and
two types of AUC tests (the F test of ideal AUC and
the nonparametric test of the conditional AUC includ-
ing the DeLong et al. method and the U-statistics based
method). We categorize these tests into two paradigms.
Paradigm 1 includes the LR test, the Wald test, and the F
test of ideal AUC. They all target an unconditional pop-
ulation parameter (the theoretical weight coefficients or
the ideal AUC). The null hypotheses of these tests are
equivalent. Paradigm 2 includes the statistical test of the
conditional AUC including the DeLong et al. method and
the U-statistics based method. They target a conditional
population parameter. The null hypothesis is not equiv-
alent with those in Paradigm 1. We summarize the pros
and cons of the different paradigms and statistical tests
below.

1. The purpose of assessment: Paradigm 1 makes a

statistical judgment on whether the new biomarkers
have added value, which is a binary decision and does
not indicate how much the added value is. Paradigm
2 does provide estimate and confidence interval of
the classification performance on the general
population and the potential gain (effect size) of
diagnostic accuracy by adding the new biomarkers,
i.e., it provides information not only on whether the
new biomarkers have added value but also how much
the added value is.

. Required resources: Paradigm 1 requires training

data only. Paradigm 2 requires both the training and
the independent test data.

. Assumptions on the multiple-biomarker

measurement data: The F test of ideal AUC has the
strongest assumption that the biomarker data follow
multivariate normal distributions. The assumption of
the LR test and the Wald test is that of the logistic
regression, i.e., the biomarker data follow the general
exponential family of distributions [10], which is
much weaker than the multivariate normality
assumption. The DeLong et al. method and the
U-statistics based method are nonparametric and
make no distributional assumption on the biomarker
data in computing the AUC and its variance.
However, they do assume asymptotic normality of
the non-parametric AUC estimator, which is true for
a U-statistic estimator [11].

. Applicability: The F test of ideal AUC is limited to

the linear discriminant function applying to the
multivariate normal data. The LR test and the Wald
test are readily available for the logistic regression
model but not necessarily for other classification
models. The nonparametric AUC test can be used
for any classification model on any data.

. Performance: The F test of ideal AUC performs

perfectly well when its assumption is satisfied. The
LR test and the Wald test generally perform well but
can have inflated type I error with limited sample size.
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The nonparametric AUC tests perform perfectly well
or nearly so for comparing the true AUC values of
two fixed models. However, to assess the usefulness
of new biomarkers independent of the finite training
dataset, one would typically need a large training set
to obtain well-trained stable models for comparison.

The hypotheses in the two paradigms converge if there
are infinite training data (or practically a sufficiently large
training sample), which unfortunately is rarely the case
in practical applications. The practical implication of
Paradigm 2 is that one may not have a sufficiently large
training sample or the intention to demonstrate that the
ideal or theoretically optimal performance is realized. It is
more common to show only that the conditional perfor-
mance of a new model is acceptable or better than other
existing solutions. When this is the case, the model can be
shown to be useful (but not necessarily optimal) by evalu-
ating on an independent test set even for a small training
sample.

It should be emphasized again that the model in
Paradigm 2 must be fixed and frozen after it is trained with
a finite dataset. If the model is re-trained, it must be re-
validated with a new test set. When a model is expected to
undergo additional rounds of re-training and one wishes
to fully quantify the variation of the performance then
the variability must also be quantified with respect to the
varying training samples [9]. In this scenario, the DeLong
et al. test would not be appropriate.

Summary

We have shown that there is nothing inherently less pow-
erful or disagreeable about ROC analysis or the area under
the ROC curve as a statistic for showing the usefulness of
new biomarkers or classification models. The cause of the
inconsistency puzzle between the statistical significance
tests of nested models and AUC tests revealed in Vickers
et al. [1] is that the DeLong et al. method was incorrectly
applied to a set of data for which it was not intended.

In addition, it is not unexpected that estimating perfor-
mance of a model using the same data that was used to
train that model, i.e. resubstitution, can result in extremely
biased results. Indeed Vickers et al. [1] are aware of this
and point out “that the use of patient-specific predictors
from the estimated model as data ensures that the esti-
mated ROC curve is biased upwards,” and “that predictive
models need to be validated in independent test sets, or
minimally by using cross-validation techniques” Yet the
authors do neither of these things in their simulation,
from which they still conclude that methods that utilize
ROC/AUC have far less power than other methods and
are not suitable for evaluating new biomarkers.

It is worth mentioning that several other authors have
pointed out the inappropriateness of using the DeLong
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et al. method to compare the ideal AUC based on resubsti-
tution AUC estimators, for example, Demler et al. [2] and
Pepe et al. [12]. Pepe et al. [12] further investigated meth-
ods for variance estimation based on the bootstrap but
found the performance unsatisfactory. The fundamental
difficulty lies in the fact that the difference of resubstitu-
tion AUCs does not follow a normal distribution under
the null hypothesis. This is evident from the empirical
data shown in Demler et al. [2] and is confirmed by our
own empirical data (not shown). A similar observation has
been reported for the resubstitution estimator of other
metrics, for instance, Kerr et al. [13] reported the non-
normality of the resubstitution estimator of the integrated
discrimination improvement index. We have shown in
this paper that statistical inference on the ideal AUC based
on resubstitution AUC estimators can be performed via
Rao’s F test of the Mahalanobis distance. However, this
method requires the multivariate normality assumption.
Further research is warranted for a more general approach
to this problem.

Paradigm 2 is fundamentally different from Paradigm 1.
First, it tests the hypothesis that the performance of the
models conditional on a fixed and finite training set are
the same (4, = E; [A,Atraining setr]). This conditional
performance is important in the setting where we would
like to know how a model is expected to perform when
it is released into the field. Second, Paradigm 2 requires
an independent test dataset. Given an independent test
dataset, the U-statistic AUC is asymptotically normal [11]
and the DeLong et al. method [3] is appropriate and effec-
tive. The DeLong et al. method uses the test dataset to
estimate the AUC performance and its uncertainty due to
the finite test set. This may appear to be less efficient than
other methods that use all the available samples for train-
ing, as pointed out by Pepe et al. [12]. However, the statis-
tical power is not comparable as these two paradigms test
different hypotheses. Moreover, the independent train-
ing/testing approach provides more information than the
all-for-training approach, i.e,, it tells not only whether the
new biomarkers have added value but also how much the
added value is.

Nonetheless, we acknowledge that, for statistical infer-
ence on the AUC conditional on a fixed and finite
training set, the split-sample strategy is not necessarily
the best one in terms of the mean square error. We
have previously shown using Monte Carlo simulations
that resampling based strategies such as the bootstrap
and cross-validation may outperform the split-sample
approach [14,15]. However, the data-partition strategy is
still a practical trade-off for many reasons (e.g., formal
statistical inference methodologies for many resampling
strategies are still not mature or widely available). This is
a topic beyond the scope of this paper.
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Vickers et al. [1] recommend only doing one statisti-
cal test instead of two in assessing the added value of
new biomarkers. However, this recommendation is overly
simplistic and our results and discussions indicate:

1. Different methods have different assumptions and
applicability as we have summarized above. It is
therefore desirable to choose a statistical test by
carefully considering the assumptions and
applicability of all the available tests during the study
design stage.

2. At the early phase of biomarker development, it
might be desirable for investigators to perform two
or more statistical tests because their agreement
generally provides additional confidence in the
conclusions. If two tests do not give similar results,
then it provides an opportunity to investigate if the
methods are applied correctly and/or if the
assumptions are violated.

3. Biomarker development is a phased process [16-18].
At the early phase, the patient sample may be limited
such that a simple linear model such as the logistic
regression is most appropriate. The purpose at this
phase is mainly to assess whether the new biomarkers
are promising, but the limited data may not allow for
reliable assessment of how much value they actually
add. Potentially the statistical significance tests for
new predictor variables could serve the purpose. The
diagnostic accuracy can also be assessed typically in a
cross-validation fashion. At the later phases of
development and evaluation, however, a more
complex classification model could be adopted and
the primary purpose is to assess how much
diagnostic accuracy the new biomarkers can add to
existing ones. Then an independent training and
testing of the model and a rigorous assessment of the
added diagnostic accuracy (e.g., AUC) is necessary.

As we have summarized, each method has its own
strengths and weaknesses, and one should choose
methods to maximize the strengths and minimize the
weaknesses. The one-statistical-test-fits-all concept is
problematic since there is no perfect approach for every
application. Investigators need to choose methods based
on the assessment purpose, the biomarker development
phase at which the assessment is being performed, the
available patient data, and the validity of assumptions
behind the methodologies, among other considerations.

Appendix

Here we explain briefly, from the theoretical point of view,
the difference between DeLong et al. [3] and Chen et al.
[9] in estimating the variance of the nonparametric AUC
estimate. The nonparametric estimate of AUC given the
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test scores of a test sample of Ny actually negative subjects
(X, i = 1,...,Np) and N actually positive subjects (Y},j =
1,..,Np) is

A= G v X Y))
where
1 Xi<Y
Y(XpY) =105X,=Y .
0 XL' > Y]

Using the generalized U-statistics by Hoeffding [11], the
variance of A is

Var(A) = (No — 1)5 P 1)5 1 £ (3)
N() Nl 01 NO Nl 10 NO N1 11
where

fon = E[V X Y)w (X, Y] — A2, i £
fo1 = E [V 0% )Y (X, V)] = 4% j £
£ = E [y (X, Yy (X, 1] — A%,

To obtain an estimator of the variance of A, DeLong et al.
[3] followed Sen’s structural components method [19] to
estimate the terms & and &9 and ignored the second-
order £1; term in Eq. 3. To obtain an unbiased estimator
of Var(zzl), Chen et al. [9] replaced &p1, &10, and &17 with
their unbiased estimators using U-statistics. Terms in the
expression for the covariance of two AUC estimates are
treated similarly.
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