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Abstract

time-to-event outcomes and a small sample size.

analysis, Stratified analysis

Background: When multiple prognostic factors are adjusted for in the analysis of a randomised trial, it is unclear (1)
whether it is necessary to account for each of the strata, formed by all combinations of the prognostic factors
(stratified analysis), when randomisation has been balanced within each stratum (stratified randomisation), or
whether adjusting for the main effects alone will suffice, and (2) the best method of adjustment in terms of type |
error rate and power, irrespective of the randomisation method.

Methods: We used simulation to (1) determine if a stratified analysis is necessary after stratified randomisation, and
(2) to compare different methods of adjustment in terms of power and type | error rate. We considered the
following methods of analysis: adjusting for covariates in a regression model, adjusting for each stratum using
either fixed or random effects, and Mantel-Haenszel or a stratified Cox model depending on outcome.

Results: Stratified analysis is required after stratified randomisation to maintain correct type | error rates when (a)
there are strong interactions between prognostic factors, and (b) there are approximately equal number of patients
in each stratum. However, simulations based on real trial data found that type | error rates were unaffected by the
method of analysis (stratified vs unstratified), indicating these conditions were not met in real datasets. Comparison
of different analysis methods found that with small sample sizes and a binary or time-to-event outcome, most
analysis methods lead to either inflated type | error rates or a reduction in power; the lone exception was a
stratified analysis using random effects for strata, which gave nominal type | error rates and adequate power.

Conclusions: It is unlikely that a stratified analysis is necessary after stratified randomisation except in extreme
scenarios. Therefore, the method of analysis (accounting for the strata, or adjusting only for the covariates) will not
generally need to depend on the method of randomisation used. Most methods of analysis work well with large
sample sizes, however treating strata as random effects should be the analysis method of choice with binary or
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Background

Some randomised controlled trials (RCTs) adjust their
analyses for prognostic factors which are thought to influ-
ence outcome (such as age or disease stage). This is com-
monly done to increase power [1-7], to guard against
chance imbalances between treatment arms [3,8], or be-
cause the prognostic factors have been used as balancing
variables in the randomisation process and it is necessary
to account for them in the analysis to obtain correct type I
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error rates [9-14]. There are often several available
methods to account for covariates in a trial analysis. For
example, with a binary outcome either logistic regression
with the prognostic factors as covariates or a Mantel-
Haenszel technique may be used to estimate the treatment
effect. Alternatively, one could adjust for the individual
strata, formed by all combinations of the covariates, using
a logistic regression model with the strata modelled as ei-
ther fixed or random effects.

Although many articles have highlighted the benefits of
covariate adjustment [1-8], relatively little attention has
been paid to the best method of adjustment with multiple
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prognostic factors (with only one prognostic factor most
methods of adjustment will give a similar answer [3]). Like-
wise, little research has looked into whether the type of ad-
justment should match the type of randomisation (e.g. a
stratified analysis for stratified randomisation). When ran-
domisation is carried out within each stratum (for example
using stratified permuted blocks [15]), not only will each
stratification factor be balanced between treatment arms,
but each combination of stratification factors (i.e. each
stratum) will as well. If there is an interaction between bal-
ancing factors (e.g. if the effect of age on outcome depends
on the patient’s disease stage), it may be necessary to ac-
count for not only the stratification factors, but also their
interactions (or for each stratum) in the analysis in order
to obtain correct type I error rates [9]. Conversely, when
randomised is not carried out within strata (e.g. when bal-
ancing factors are not used in the randomisation process,
or when covariates are balanced marginally), it may be un-
necessary to account for interactions between covariates to
obtain correct type I error rates (although adjustment for
strong interactions may lead to increased power). Mini-
misation [15] is the most commonly used method of bal-
ancing covariates marginally [10]. Briefly, the balance
between treatment groups is calculated for each covariate,
and then summed across all covariates to give an overall
measure of balance. The patient is then allocated to the
group that would give the best overall balance (usually with
an element of probability [16]). Thus, treatment assign-
ments are balanced within a covariate considered individu-
ally, but not within combinations of balancing covariates.
This implies that for minimisation, adjusting only for the
covariates used in the minimisation process (and not for
their interactions, or equivalently each strata) should give
valid type I error rates.

The goals of this paper are (1) to determine whether
a stratified analysis is necessary to maintain correct
type I error rates after randomisation is performed
within each stratum (stratified randomisation), and (2)
to compare different methods of adjustment in terms
of type I error rate and power, irrespective of the
method of randomisation used. We do not consider the
issue of how best to adjust for centre-effects in
multicentre RCTs, as this issue has different consider-
ations, and has been discussed previously [3,14,17-21].
We also do not consider the case of treatment-by-co-
variate (or treatment-by-strata) interaction (that is, all
analysis methods presented here assume the treatment
effect is constant across different covariates or strata).

Methods

Methods of adjustment

Methods of adjustment for covariates will generally fall
into two classes. The first involves adjusting only for the
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individual covariates. We refer to this as a covariate-ad-
justed analysis. The second involves adjusting for each
individual stratum. We refer to this as a stratified ana-
lysis. We illustrate these two different approaches using
an example. Suppose we wish to account for two binary
covariates in the analysis: gender (male vs. female) and
disease stage (early vs. late). A covariate-adjusted ana-
lysis would involve adjusting for gender and disease
stage as two separate variables in a regression model. A
stratified analysis however would account for each
stratum formed by these covariates (male/early stage vs
male/late stage vs female/early stage vs female/late
stage). This could be done by adjusting for each stratum
in a regression model using three dummy variables, but
is often done by performing the analysis within each
stratum, and combining the results. Examples of this in-
clude Mantel-Haenzel for binary outcomes, or a strati-
fied Cox model for time-to-event outcomes.

We illustrate some general approaches to adjustment
using the previous example, where there were two covari-
ates of interest, gender and disease stage. Let X be a bin-
ary variable indicating the patient’s gender (0 = female, 1 =
male), X5 be a binary variable indicating the disease stage
(0 = early, 1 =late), and X,.,, be a binary variable indicat-
ing whether the patient received the treatment or not.

Then, a covariate-adjusted analysis can be carried out
by adjusting for the individual covariates in a regression
model. This can be done with a model of the form:

f(Y) =a +/3treatXf"eﬂf +/))GXG +/))SXS (1)

Where Y is the patient outcome, f{) is the link func-
tion, a the intercept, and the f’s represent regression
coefficients.

There are several methods of performing a stratified
analysis, some of which apply only to certain outcome
types. One method of performing a stratified analysis is
to account for all the strata in a regression model using
indicator variables. This can be thought of as a stratified
analysis using fixed effects (this is a common method of
analysis for multicentre trials with continuous outcomes
[14]). Since gender and disease stage form four strata
(female/early, female/late, male/early, male/late) we need
three dummy variables. Let Xz, be a binary variable indi-
cating whether the patient was female with late-stage
disease (0 = no, 1 =yes), X,z be a binary variable indicat-
ing whether the patient was male with early-stage dis-
ease (0=no, 1=yes), and X,y be a binary variable
indicating whether the patient was male with late-stage
disease (0 =no, 1 =yes) (the choice of which stratum to
drop from the parameterisation is arbitrary, and will
have no impact on the estimated treatment effect or its
standard error).
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Then, a stratified analysis using fixed effects can be
performed using the following model:

SY) = a+ B Xirear + B Xe + BypXume + Bag X

(2)

It should be noted that (provided there are no continu-
ous covariates) equation (2) is equivalent to adjusting for
all the individual covariates as well as all interactions in
the sense that the treatment effect and its standard error
will be identical.

Another method of performing a stratified analysis is
to treat strata as random effects from a distribution
(which is also sometimes used to analyse multicentre tri-
als [14]). This can be thought of as a stratified analysis
using random effects. Consider the scenario where we
have j strata (in the above example we have four strata).
A stratified analysis using random effects could then be
performed using the following model:

f(Y) =a + uj + ﬁtreatXtreat (3)

where u; is a random effect for the jth stratum. u; would
generally be assumed to follow a normal distribution. This
assumption is likely to be violated in many scenarios, but
previous research has shown that the fixed parameters
from random effects models are robust to misspecification
of the random effects distribution [14,22].

As mentioned previously, some types of stratified ana-
lyses can only be performed for specific outcome types.
Two examples of this are a Mantel-Haenszel analysis
and a stratified Cox model. Mantel-Haenszel applies to
binary outcomes, and involves calculating an odds ratio
within each stratum, then calculating a weighted average
of the results to get a final estimate. A stratified Cox
model is performed with time-to-event outcomes, and
involves calculating a hazard ratio within each stratum,
then combining the results for a final estimate.

For continuous outcomes, the interpretation of the
treatment effect will not depend on the method of ana-
lysis. However, for binary or time-to-event outcomes,
adjustment for different factors can lead to different esti-
mates [23,24], and therefore must be interpreted based
on the adjustment factors. If the interactions between
prognostic factors are large, a stratified-analysis may lead
to larger estimates of treatment effect compared with a
covariate-adjusted analysis, and may therefore increase
power [23,24].

Simulation study based on theoretical data

We performed a simulation study to determine (i) if a
stratified analysis is necessary after stratified randomisa-
tion to maintain correct type I error rates, and (ii)
whether a covariate-adjusted analysis is adequate after
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minimisation for correct type I error rates (rendering a
stratified analysis unnecessary).

We used two different methods of randomisation; (i)
stratified permuted blocks, with a block size of 2, and
(ii) minimisation with a random component of 80%. For
each method of randomisation we performed two ana-
lyses; (a) covariate-adjusted analysis, using equation 1, and
(b) stratified analysis using fixed effects, using equation 2
(which, as noted previously, is the same as model (4),
and so is equivalent to the data generating model). We
therefore assessed four randomisation-analysis combi-
nations in total:

a) Stratified permuted blocks, with a covariate-adjusted
analysis

b) Stratified permuted blocks, with a stratified analysis

¢) Minimisation, with a covariate-adjusted analysis

d) Minimisation, with a stratified analysis

Our hypothesis was that using a covariate-adjusted
analysis after stratified randomisation would lead to in-
flated type I error rates when there were substantial in-
teractions between prognostic factors, but that a
stratified analysis would lead to nominal type I error
rates. Conversely, we hypothesised that a covariate-
adjusted and a stratified analysis would lead to nominal
type I error rates after minimisation.

We generated continuous outcomes from the follow-
ing model (which in this scenario is equivalent to model
(2) above):

Yi=a+ /))trmtxtreat +/3)1X1 +ﬁ2X2 + /312)(12 té&
(4)

where Y; is the outcome from the ith patient, X; and X,
are balancing factors and X5 is their interaction, 5; and 3,
are the regression coefficients for those balancing factors,
and f3;, is the regression coefficient for their interaction. ¢;
is a random error term, and is normally distributed with
mean 0 and variance ¢°.

We performed two sets of simulations. In the first, we
varied the size of 5,5, while holding the other parameters
constant. In the second, we varied the proportion of pa-
tients with X;,=1 while holding the other parameters
constant. More information on both of these scenarios is
available below. We set the sample size to 250 patients,
and used 5000 replications for each scenario to give a
standard error of about 0.3% when estimating the type I
error rate, assuming a true type I error rate of 5%.

Varying the size of the interaction term

For the first set of simulations we varied the size of 5,
while holding the other parameters constant. We varied
B2 from 0 to 3 in increments of 0.2. 3; and 3, were set
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to 0.5, Biear Was set to 0 and o tol Weset P(X;=1) =
P(X,=1)=0.5, and generated X; and X, independently.
It follows that P(X;, =1) = 0.25.

Varying the distribution of patients across strata

For the second set of simulations we varied the propor-
tion of patients with X;, =1 while holding the other pa-
rameters constant. We did this by varying P(X; = 1) and
P(X,=1) together from 0.1 to 0.5 in increments of 0.05.
This corresponds to varying P(X;, = 1) from 0.01 to 0.25.
All other parameters were set to the same values as
above, except f3;, which was set to 1.5 (which is 50% lar-
ger than o, and is unlikely to occur often in practice, but
is used here for the purposes of illustration).

Simulation study based on real trial data
Methods
We performed a simulation study based on real datasets
to (1) determine whether stratified randomisation is ne-
cessary to maintain correct type I error rates after strati-
fied randomisation in real trial scenarios, and (2) to
compare different methods of adjustment in terms of
type I error rate and power, irrespective of the method
of randomisation used. We used three datasets (one each
with a continuous, binary, and time-to-event outcome),
which are further described below.

When generating data, we used the linear predictor:

C C
=« + ﬁtreatXfV@ﬂf + ZﬁcXc + Z ZﬁchCd (5)
c=1

c=1 d>c

where 8. denotes the main effect from the cth covariate,
and f3.; denotes the two-way interaction between the cth
and dth covariates (for ¢ # d). More information on the
exact data generating models can be found below.

For simplicity, we chose to simulate data based only
on the two-way interactions between covariates, rather
than including any three-way or higher interactions. It
should be noted that although we simulated data based
only on the two-way interactions, stratified analyses were
performed adjusting for all interactions (or, equivalently,
all strata), rather than only the two-way interactions.

We generated prognostic variables from a multivariate
normal distribution with a covariance matrix based on
the original data set so that the proportion of patients in
each stratum was similar to the original study. We then
categorised binary covariates using a cut-point specified
to give the desired proportions in each group.

We randomised patients to one of two treatments
using three different methods: (1) simple randomisation,
where all patients had a 50% chance of either treatment;
(2) stratified permuted blocks, with a block size of 4;
and (3) minimisation, with a random element of 80%
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(i.e. patients were assigned to the preferred treatment
arm with a probability of 80%).

As above, we used 5000 replications for each scenario.
We compared different analysis methods in terms of the
type I error rate and power. For continuous, binary, and
time-to-event outcomes, the treatment effect was calcu-
lated as a difference in means, an odds ratio, and a haz-
ard ratio respectively. To assess the type I error rate, we
set Siear to 0. To assess power, we set Siear to give 80%
power based on the specified sample size (for binary and
time-to-event outcomes, we powered the study based on
reducing, rather than increasing, the number of events).

MIST2 (continuous outcome) For continuous out-
comes, we based our simulations on the MIST?2 trial,
which has been described previously [9,10,25,26]. Briefly,
MIST2 was a randomised controlled trial assessing
whether tissue plasminogen activator, deoxyribonoclease,
or their combination was effective in reducing the size
of patients’ pleural effusion (a continuous outcome).
Two hundred and ten patients were randomised using
minimisation, with a random component of 80%. Balan-
cing variables were the size of the baseline pleural effu-
sion (greater or less than 30% of the hemithorax),
whether the patient was purulent, and whether the infec-
tion was community or hospital acquired.
We generated data from the following model:

Yi=n+¢g

where Y; is the outcome for the ith patient, #; is the lin-
ear predictor (as in equation 5), and g; is a random
error term. The parameters for the covariates and their
two-way interactions can be found in Table 1. g was
generated from a normal distribution with mean 0 and
standard deviation 19.1.

We used sample sizes of 100, 200, 500, and 1000 pa-
tients. We used three methods of analysis; (a) covariate-
adjusted analysis (equation 1); (b) stratified analysis

Table 1 Parameters from the MIST2 dataset

Variable Proportion of patients Regression
with covariate parameter

Main effects

Pleural effusion >30% 67 -254

Purulence 49 1.8

Hospital infection 13 -70
Interaction

Pleural effusion X purulence 29 35

Pleural effusion X hospital 7 244

infection

Purulence X hospital infection 6 -16
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using fixed effects (equation 2); and (c) stratified analysis
using random effects (equation 3).

AUGIB (binary outcome) For binary outcomes, we
based our simulations on the Acute Upper Gastrointestinal
Bleeding (AUGIB) audit dataset. This dataset has been de-
scribed previously [27-30]. Briefly, this was an observa-
tional dataset collected on consecutive patients presenting
with AUGIB in the UK. We used further bleeding as an
outcome. We chose four prognostic factors; urea (as a bin-
ary covariate, dichotomised at its median), presence of
shock, prolonged coagulation, and outpatient at admission.
The dataset comprised of 4342 patients with complete data
on the above covariates.

We generated latent outcomes using the following
model:

Yi=n+e

where Y; is a latent outcome for ith patient, #; is the lin-
ear predictor (as in equation 5), and ¢; is a random error
term that follows a logistic distribution with mean 0 and
variance 1%/3. Binary responses were generated as Y; =1
if ¥; >0, and 0 otherwise. The regression parameters for
the covariates and their two-way interactions can be
found in Table 2.

We used sample sizes of 100, 200, 500, 1000, and 2000
patients. We used four methods of analysis; (a) covariate-
adjusted analysis (equation 1); (b) stratified analysis using
fixed effects (equation 2); (c) stratified analysis using ran-
dom effects (equation 3); and (d) Mantel-Haenszel esti-
mates (a type of stratified analysis).

The event rate was approximately 23.6% in the control
arm for all scenarios, except for a sample size of 100
where we used an event rate of about 30.1% in order to

Table 2 Parameters from the AUGIB dataset

Page 5 of 11

ensure an adequate number of events occurred in the
treatment arm when assessing power.

PBC (time-to-event outcome) For time-to-event out-
comes, we based our simulations on the PBC trial. This
dataset has been described previously [9,31]. Briefly, this
was a randomised trial assessing whether D-penicillamine
could increase overall survival time (primary outcome) in
patients with primary biliary cirrhosis. We chose four
prognostic factors; age, log(bilirubin), albumin (all as bin-
ary covariates, dichotomised at their medians), and disease
stage (1/2 vs 3/4). The dataset comprised of 312 patients.

We generated time to event outcomes using the
method described by Bender et al. [32]:

Y; = Hy'[-In(U) exp(-7;)]

where Y; is the time to death, #; is the linear predictor
(as in equation 5), Hy is the cumulative baseline hazard
function, and U ~ Uniform (0, 1). This model implies
proportional hazards. We censored event times at a cut-
point specified to give a similar proportion of censoring
as seen in the original dataset. The event rate was ap-
proximately 40.4% in the control arm for all scenarios.
The regression parameters for the covariates and their
two-way interactions can be found in Table 3.

We used sample sizes of 100, 200, 500, 1000, and 2000
patients. We used four methods of analysis; (a) covariate-
adjusted analysis (equation 1); (b) stratified analysis using
fixed effects (equation 2); (c) stratified analysis using ran-
dom effects (equation 3); and (d) a stratified Cox model
(a type of stratified analysis).

Sensitivity analysis We performed a sensitivity analysis
to assess whether increasing the size of the observed in-
teractions in the MIST2, PBC, and AUGIB datasets had

Table 3 Parameters from the PBC dataset

Variable Proportion of patients Odds ratio  Variable Proportion of patients Hazard
with covariate with covariate ratio
Main effects Main effects
Outpatient 83 0.32 Age > 50 years 51 3.01
Shock 36 283 Log(bilirubin) > 0.3 50 10.65
Urea >9.1 55 1.88 Albumin > 3.55 50 0.58
Coagulation 13 1.87 Disease stage >3 73 5.02
Interaction Interaction
Outpatient X shock 30 1.07 Age X log(bilirubin) 24 1.03
Outpatient X urea 44 167 Age X albumin 23 140
Outpatient X coagulation 10 1.97 Age X disease stage 38 0.66
Shock X urea 24 0.71 Log(bilirubin) X albumin 18 0.77
Shock X coagulation 6 0.79 Log(bilirubin) X disease stage 42 045
Urea X coagulation 9 0.77 Albumin X disease stage 32 0.65
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any impact on type I error rates. Simulations were
performed as above, but we systematically increased the
size of each interaction term by of a factor of 2.5, 5, 7.5,
and 10. For example, the size of the observed interaction
terms in the MIST2 dataset (Table 1) was —-1.6, 3.5, and
24.4. Increasing these interactions by a factor of 2.5 for
this sensitivity analysis led to interaction sizes of —4.0, 8.8,
and 61.0 respectively.

Results

Simulation study based on theoretical data

Varying the size of the interaction term

Results are shown in Figure la. When patients were
randomised using minimisation, both a covariate adjusted
analysis and a stratified analysis gave valid type I error rates,
regardless of the size of the interaction. Likewise, when a
stratified analysis was used after patients were randomised
using stratified permuted blocks, error rates were nominal.
However, a covariate adjusted analysis gave incorrect type I
error rates whenever the interaction was = 0.

This demonstrates that, in principle, when randomisa-
tion has been balanced within strata, a stratified analysis
may be necessary to maintain nominal type I error rates
when there are large interactions between balancing fac-
tors. For minimisation, which does not balance within
strata, either a stratified or a covariate adjusted analysis

Page 6 of 11

will give valid type I error rates in the presence of large
interactions.

Varying the distribution of balancing factors

Results are shown in Figure 1b. The impact of a covariate
adjusted analysis after randomisation using stratified
blocks on the type I error rate depended on the propor-
tion of patients with X;,=1; when this was small, type I
error rates were close to nominal. However, as this in-
creased, the type I error rates became too low.

This demonstrates that it is not only the size of the
interaction which could impact the type I error rate
under a covariate adjusted analysis, but also the distribu-
tion of patients across the different strata.

Simulation study based on real trial data

MIST2 (continuous outcome)

Results after stratified permuted blocks and minimisation
are shown in Figure 2. As expected, all methods of analysis
(covariate-adjusted analysis, stratified analysis using fixed
effects, and a stratified analysis using random effects) gave
close to nominal type I error rates after simple randomisa-
tion (results not shown) or minimisation. Stratified ana-
lyses (using either fixed or random effects) gave valid
results after randomisation using stratified permuted
blocks. However, a covariate adjusted analysis also gave

7.5 A

Type | error rate (%)

0 1 2 3
B (interaction effect)

7.5 B

0 .05 1 15 2 25
PX,=1)

--------- SPB, covariate adjusted
----------------- Min, covariate adjusted

————— SPB, stratified analysis
Min, stratified analysis

Figure 1 Type | error rate with different randomisation and analysis methods. (A) shows the type | error rate for different values of the
interaction term between the two balancing factors. (B) shows the type | error rate for different values of P(X;, = 1) (which indicates the proportion
of patients in the interaction group i.e. with both prognostic factors present). Two methods of randomisation were used (Min = minimisation,
SPB = stratified permuted blocks), and two methods of analysis were used (covariate adjusted indicates the two balancing factors were used as
covariates in a regression model; stratified analysis denotes that the strata formed from the combinations of the two balancing factors were
entered as covariates in a regression model).
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Figure 2 Type | error rate and power results for the MIST2 trial (continuous outcome).

close to nominal type I error rates after stratified per-
muted blocks, contradicting results seen earlier.

A stratified analysis using random effects gave a small
increase in power compared to either a covariate adjusted
analysis or a stratified analysis using fixed effects with a
sample size of 100 (approximately 1-2% across different
randomisation methods). For larger sample sizes (between
200 and 1000 patients), stratified analyses using either
fixed or random effects had similar levels of power, and
were slightly more powerful than covariate adjusted ana-
lysis (approximately 1.5%).

Each method of analysis had a convergence rate of
100% in all scenarios.

AUGIB (binary outcome)

Results after stratified permuted blocks and minimisation
are shown in Figure 3. For larger sample sizes (500 or
more patients), all analysis methods gave similar type I
error rates and power; as above, a covariate-adjusted ana-
lysis gave correct type I error rates, even when used after
stratified permuted blocks. Convergence rates were greater
than 99% for all analysis methods.

For smaller sample sizes (100 or 200 patients), results for
the different analysis methods were less similar. With 100
patients, all analysis methods apart from a stratified analysis
using random effects had convergence issues; convergence
rates for a covariate-adjusted analysis, a stratified analysis
using fixed effects, and Mantel-Haenszel varied between
96-97%, whereas rates for a stratified analysis using random

effects were >99%. All convergence rates were >99% with
200 patients.

The type I error rate for Mantel-Haenszel was too low
with a sample size of 100 patients; this lead to a small loss
in power (between 2-5% compared with a stratified ana-
lysis using random effects). With 200 patients, Mantel-
Haenszel experienced a loss in power of 1-5% compared
with a stratified analysis using random effects. Type I error
rates and power results between a covariate-adjusted ana-
lysis and stratified analyses using either fixed or random
effects were similar for 100 or 200 patients.

PBC (time-to-event outcome)

Results after stratified permuted blocks and minimisation
are shown in Figure 4. Convergence rates were above
99.9% for each method of analysis in all scenarios. For
large sample sizes (1000 or 2000 patients) each method of
analysis gave similar results; as above, a covariate-adjusted
analysis gave correct type I error rates when used with
stratified permuted blocks.

For other sample sizes (100, 200, and 500 patients) a
stratified analysis using fixed effects had type I error
rates that were too large (range across three different
randomisation methods 7.4-8.5%, 6.2-6.7%, and 5.5-
5.8% for 100, 200, and 500 patients respectively). Type I
error rates were slightly too large for covariate-adjusted
analyses, although less so than for stratified analyses
using fixed effects (range across different randomisation
methods 5.4-6.0%, 5.5-5.7%, and 5.1-5.7% for 100, 200,
and 500 patients respectively). Conversely, stratified
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Figure 3 Type | error rate and power results for the AUGIB dataset (binary outcome).

analyses using random effects and stratified Cox models
gave nominal type I error rates (range across random-
isation methods and sample sizes 4.7-5.5% and 4.4-5.6%
for 100-500 patients for stratified analyses using ran-
dom effects and stratified Cox models respectively).
Stratified analyses using fixed effects and covariate-
adjusted analyses had highest power for smaller sample

sizes, although this is likely a result of the inflated type I
error rate associated with these analysis methods. Of the
two analysis methods that gave nominal type I error rates
for smaller sample sizes, stratified analyses using random
effects had higher power than stratified Cox models
(power increases of 3.6-5.5% and 1.7-2.5% for sample sizes
of 100 and 200 respectively).
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Figure 4 Type | error rate and power results for the PBC trial (time-to-event outcome).
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Sensitivity analysis

Results are shown in Figure 5. For MIST2, the type I
error rate was too low when the size of the observed in-
teractions was increased by a factor of at least 2.5. For
the PBC and AUGIB datasets, type I error rates were
not substantially affected until the interactions had been
increased by a factor of at least 7.5.

To be these results in perspective, increasing the ob-
served interactions from the MIST2 dataset by a factor
of 2.5 resulted in the effect size of the largest interaction
being increased to almost 60 (approximately 3 times lar-
ger than the residual standard deviation). Increasing the
observed interactions in the PBC and AUGIB datasets
by a factor of 7.5 resulted in the odds ratio or hazard ra-
tio of the largest interactions being increased to almost
399 and 162 respectively.

Discussion

Our aims for this paper were to (1) determine whether it
is necessary to perform a stratified analysis after using a
randomisation method that balances within strata (such
as stratified permuted blocks) to obtain correct type I
error rates, and (2) to compare different methods of ac-
counting for multiple prognostic factors in terms of
power and type I error rates, irrespective of the method
of randomisation.

Regarding point (1), it has previously been noted that
for randomisation methods that balance within each
stratum (e.g. stratified permuted blocks), it may be neces-
sary to use a stratified analysis to obtain correct type I
error rates when there are large interactions between bal-
ancing factors [9]. By comparison, this issue should not
affect randomisation methods that do not balance within
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strata (e.g. simple randomisation, permuted blocks with-
out stratification, or minimisation), and so both covariate-
adjusted and stratified analyses should give correct results.
We explored this issue using simulation under specific
(and potentially unrealistic) conditions, and found that the
necessity of a stratified analysis after stratified randomisa-
tion depended on (a) the size of the interactions between
prognostic factors, and (b) the distribution of patients
across strata. When there were both large interactions,
and a relatively equal number of patients in each stratum,
a covariate-adjusted analysis led to type I error rates that
were too low. A stratified analysis by comparison gave
valid results. However, when either the interactions were
small, or there was a low percentage of patients in some
strata, a covariate-adjusted analysis gave close to nominal
type I error rates. As expected, both analysis methods gave
valid results after minimisation. This is because minimisa-
tion balances baseline variables marginally, meaning that
although variables are balanced, their interactions are not.
Adjustment for the main effects will then be sufficient to
obtain the nominal type I error rates.

In order to determine whether this issue was likely to
affect real RCTs, we performed further simulations based
on real data. Contrary to expectations, we found that a
stratified analysis was not necessary after stratified ran-
domisation; covariate-adjusted analyses lead to valid re-
sults in each of the three datasets we used. The reasons
for this are not entirely clear. One possible explanation is
that the interaction sizes we used (based on observed data)
were not large enough to affect results. However, some of
the interactions we used were substantial. For example, in
the MIST2 trial one of the interactions was 28% larger
than the standard deviation, in the AUGIB dataset one

Type | error rate (%)
w
1

e MIST2 & PBC = AUGIB

25

systematically increasing the size of the observed interactions.

Multiple of observed interactions
Figure 5 Sensitivity analysis for MIST2, PBC, and AUGIB datasets. Shows the type | error rate for the MIST2, PBC, and AUGIB datasets, after
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interaction had an odds ratio of 2.01 and another an odds
ratio of 1.65, and in the PBC dataset one interaction had a
hazard ratio of 0.45 and two others a hazard ratio of 0.67.
Another explanation is that the distribution of patients
across strata affected the results (i.e. some strata had too
low a proportion of patients). This indicates that in prac-
tice, both large interactions between balancing factors and
similar numbers of patients in most strata are necessary
for a covariate-adjusted analysis to affect type I error rates
after balancing within strata. However, the second condi-
tion may be unlikely; this would require a similar propor-
tion of patients in each group for all balancing factors (i.e.
close to 50% of patients in each level of a binary factor), as
well as small correlations between balancing factors (as
moderate to large correlations would lead to patients be-
ing much more likely to fall into certain stratum). In our
view, these conditions seem unlikely to be met in practice.
Given the imbalance in the number of patients in each
stratum observed in the datasets, the size of the interac-
tions would have to have been 2.5-7.5 times larger than
they were in order to affect results. For the MIST2 trial
for example, this would have required an interaction term
of almost 60 (about three times larger than the standard
deviation), which is not realistic in practice. We conclude
that choosing between covariate-adjusted and stratified
analyses does not need to be based on whether stratified
randomisation was used.

This brings us to our second question; of the numerous
methods of analysis available, which is most powerful, irre-
spective of the randomisation method used? For continu-
ous outcomes, stratified analyses (either fixed or random
effects) gave slightly higher power than a covariate-adjusted
analysis, while all methods of analysis gave nominal type I
error rates.

For binary and time-to-event outcomes, all methods of
analysis gave similar results with large sample sizes. How-
ever, there were differences between analysis methods for
small sample sizes. A stratified analysis using fixed effects
led to inflated type I error rates in several scenarios, and
cannot be recommended. A covariate-adjusted analysis
also led to type I error rates that were too large when used
with a time-to-event outcome; this is similar to results
seen previously [9] where accounting for several balancing
factors led to inflated type I error rates with a binary or
time-to-event outcome.

Both Mantel-Haenszel for binary outcomes and a strati-
fied Cox model for time-to-event outcomes gave close to
nominal type I error rate (though Mantel-Haenszel was
slightly too low in certain scenarios), but both suffered
from a lack of power compared with other methods.

The one method of analysis which gave good results
across all scenarios and sample sizes was a stratified ana-
lysis using random effects. While other analysis methods
gave inflated type I error rates (stratified analysis using
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fixed effects, covariate-adjusted analysis) or led to a loss
of power (Mantel-Haenszel, stratified Cox model) with a
binary or time-to-event outcome and a small sample
size, a stratified analysis using random effects gave nom-
inal type I error rates and good power.

In this paper we have only considered methods of ad-
justment for prognostic covariates, and have not discussed
ways to account for centre effects in multicentre RCTs.
Comparison of methods for adjusting for centre effects
in multicentre RCTs have been published previously
[14,17,18]. However, many trials may adjust for both prog-
nostic covariates and centre effects, and it is therefore
worth considering whether the methods we have discussed
in this paper will apply when also accounting for centre ef-
fects. A stratified analysis could be performed by account-
ing for the strata made up of all the centre-prognostic
covariate combinations. However, if the number of centres
is large, this may lead to over-stratification, which could
lead to a loss of power. Therefore, we do not recommend
this approach in general. An alternative approach is to
perform a covariate-adjusted analysis for the prognostic
factors (provided the sample size is large enough), and to
account for centre-effects separately (e.g. using fixed or
random effects, or generalised estimating equations). Al-
ternatively, if centre effects are accounted for using fixed
effects, a stratified analysis using random effects could be
used for the prognostic factors.

One limitation of this paper is that we have dichotomised
the continuous covariates from the original datasets for
use in our simulation study. This has been done because a
stratified analysis is only possible with categorical covari-
ates. However, we would generally not recommend cate-
gorising continuous variables in practice. Provided the
sample size is large enough, we would recommend ac-
counting for continuous variables as covariates in a regres-
sion model. If there is a mixture of continuous and
categorical variables, we could either perform a covariate-
adjusted analysis for all variables, or perform a mixture of a
covariate-adjusted and a stratified analysis, where the cat-
egorical covariates are grouped into strata and accounted
for using random effects, and the continuous variables are
included as covariates in the regression model.

Conclusion

It is unlikely that a stratified analysis is necessary after
stratified randomisation except in extreme scenarios.
Therefore, the method of analysis (accounting for the
strata, or adjusting only for the covariates) will not generally
need to depend on the method of randomisation used. All
of the methods of analysis considered in this article are ac-
ceptable with a continuous outcome, although when there
are large interactions between covariates, a stratified ana-
lysis may increase power. With a binary or time-to-event
outcome and a small sample size, we recommend the use
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of a stratified analysis using random effects, as this has been
shown to maintain nominal type I error rates while giving
high power. For binary or time-to-event outcomes with a
large sample size, all methods of analysis are acceptable;
however, it is often unclear what constitutes a large sample
size. Therefore, if in doubt, we recommend the use of a
stratified analysis using random effects to ensure correct
type I error rates and power.
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