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Abstract

Background: Meta-regression is becoming increasingly used to model study level covariate effects. However this
type of statistical analysis presents many difficulties and challenges. Here two methods for calculating confidence
intervals for the magnitude of the residual between-study variance in random effects meta-regression models are
developed. A further suggestion for calculating credible intervals using informative prior distributions for the residual
between-study variance is presented.

Methods: Two recently proposed and, under the assumptions of the random effects model, exact methods for
constructing confidence intervals for the between-study variance in random effects meta-analyses are extended to
the meta-regression setting. The use of Generalised Cochran heterogeneity statistics is extended to the
meta-regression setting and a Newton-Raphson procedure is developed to implement the Q profile method for
meta-analysis and meta-regression. WinBUGS is used to implement informative priors for the residual between-study
variance in the context of Bayesian meta-regressions.

Results: Results are obtained for two contrasting examples, where the first example involves a binary covariate and
the second involves a continuous covariate. Intervals for the residual between-study variance are wide for both
examples.

Conclusions: Statistical methods, and R computer software, are available to compute exact confidence intervals for
the residual between-study variance under the random effects model for meta-regression. These frequentist methods
are almost as easily implemented as their established counterparts for meta-analysis. Bayesian meta-regressions are
also easily performed by analysts who are comfortable using WinBUGS. Estimates of the residual between-study
variance in random effects meta-regressions should be routinely reported and accompanied by some measure of
their uncertainty. Confidence and/or credible intervals are well-suited to this purpose.

Keywords: Heterogeneity, Informative priors, Meta-regression, Quadratic forms

Background
Meta-analysis is well established in medical statistics
and meta-regression models [1-3] are becoming increas-
ingly popular [4]. Here, study level covariates, some-
times referred to as moderator variables, are included
in the model. A fixed effect meta-regression model,
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where the residual between-study variance is taken to be
zero, results from the assumption that these covariates
explain all between-study heterogeneity. Under this strong
assumption, exact inference for the covariate effects is
straightforward. This analysis can be performed using
output from fitting standard weighted linear regression
models, whilst ensuring that the reported standard errors
are adjusted, as explained by Sharp and Thompson [2].
This fixed effect assumption is however generally

implausible, because in most applications we anticipate
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the existence of residual between-study heterogeneity
(i.e. between-study heterogeneity that is not explained
by the covariates). Hence, the use of random effects
meta-regression models (also called mixed-effects meta-
regression models) is typically recommended [2]. This
model collapses to a fixed effect meta-regression only
if the estimated residual between-study variance is zero.
The standard approach for making inferences about the
covariate effects using the random effects meta-regression
model involves initially estimating the residual between-
study variance and then treating this estimate as the
true value, but a refined method has also been sug-
gested [1]. This standard approach results in straight-
forward inference for the covariate effects [2], but the
resulting inferences are approximate and reasonably large
numbers of studies are needed for this approach to pro-
vide accurate inference [5]. Furthermore, meta-regression
models are subject to further statistical issues and
limitations [6].
The covariate effect parameters from a random effects

meta-regression are usually of primary interest but the
residual between-study variance is also of interest. This is
because its magnitude describes the extent of the unex-
plained variation in the studies’ results. However, the
uncertainty in the estimated between-study variance in
random effects meta-analyses is usually considerable [7,8]
and this can also be expected to be the case in meta-
regression models unless very many studies contribute
to the analysis. Hence interpreting point estimates of the
residual between-study variance without any regard to
their uncertainty, which is quite common practice, could
be misleading.
The main contributions of this paper are to show

that two recently proposed exact frequentist methods
for random effects meta-analysis (generalised Q statis-
tics and the Q profile method [8,9]) may be extended
to meta-regression models, and to suggest how infor-
mative distributions for the between-study variance in
Bayesian random effects meta-analysis [10] can also be
used in the meta-regression setting. Our hope is that
meta-analysts will consider using these methods to per-
form interval estimation for the residual between-study
variance in their random effects meta-regressions and
that they will find these intervals to be a useful aid
to inference. However it is important to recognise that
the two frequentist methods are only exact under the
random effects meta-regression model. Hence the exact-
ness of the confidence intervals for both examples below
is brought into question, because the random effects
model only provides an approximation for real data such
as these. Some may therefore describe our confidence
intervals as ‘non-approximate’ or ‘small sample’ confi-
dence intervals, in order to avoid any connotations of the
word ‘exact’.

Although the proposed extension of the Q pro-
file method for meta-regression has previously been
described, Viechtbauer’s account [11] does not provide
proof that this procedure is guaranteed to produce a con-
fidence interval (instead of a confidence set that need not
be an interval). Furthermore, the proof of the result that
ensures this by Panityakul et al. [12] involves quite sophis-
ticated matrix theorems and calculations. In this paper
we explain why both the proposed frequentist methods
provide confidence intervals for the residual between-
study variance. We also provide an alternative and, in
our opinion, more elementary proof of the result given
by Panityakul et al. As we explain below, our proof pro-
vides an easily computed derivative that can be used in
a Newton-Raphson procedure for implementing the Q
profile method in practice. To our knowledge, the two
frequentist methods proposed in this paper are the only
methods currently available that provide confidence inter-
vals for the residual variance with exactly the nominal
coverage probability under the random effects model for
meta-regression. However, alternative, but approximate,
methods for obtaining confidence intervals are also avail-
able in the meta-analysis setting [9] that could also be
extended to meta-regression.

The random effects model for meta-regression
The random effects meta-regression model assumes that
Yi|xi ∼ N(xiβ , σ 2

i + τ 2), where Yi is the estimated effect
from the ith study, i = 1, 2, · · ·n, xi is the 1 × p row
vector of covariates associated with this study and β is
the vector of regression parameters of interest. Unless an
intercept free regression is required, the first ‘covariate’ in
each study is taken to be one to include the intercept. The
parameter τ 2 is the residual between-study variance that
describes the variation in the results that is not explained
by the covariates. The within-study variances σ 2

i are esti-
mated in practice but are treated as fixed and known
in the analysis. The matrix formulation of this standard
model is

Y |X ∼ N
(Xβ ,� + τ 2I) (1)

where Y is a column vector containing the Yi, X is the
n × p design matrix (sometimes referred to as the model
matrix) whose ith row is xi, � = diag(σ 2

i ) (i.e. � is the
diagonal matrix containing the σ 2

i ) and I is the n × n
identity matrix. We will also define and make frequent
use of � = � + τ 2I. Although we use the conven-
tional regression terminology of a ‘design matrix’ when
referring to X, we agree with Thompson and Higgins
[6] that meta-regressions have the same disadvantages
as observational epidemiological investigations and that
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the covariates used in meta-regressions are rarely, if ever,
chosen by design.
All the methods that follow are for performing inter-

val estimation of τ 2 under the assumptions of the ran-
dom effects model for meta-regression. This model makes
a number of important assumptions, such as normal
distributions, independent outcomes, fixed and known
within study distributions and linear covariate effects.
Assumptions such as these are usually approximations
in practice. Hence the extent to which model (1) is
an approximation should be taken into account when
interpreting the intervals for τ 2 below. Alternative types
of inference for the residual between-study variance
parameter, such as testing for the presence of unex-
plained between-study heterogeneity and measuring its
impact, can be obtained from the intervals presented
in this paper. We return to these possibilities in the
discussion.

Methods
In this section we develop two exact frequentist meth-
ods for computing confidence intervals for τ 2 and we
also present our proposal for Bayesian meta-regressions
using informative prior distributions for this parameter.
By ‘exact’ we mean, under the random effects model for
meta-regression (1), that these two frequentist methods
provide confidence intervals with exactly the nominal cov-
erage probability (subject to the way we interpret empty
confidence intervals, see below). A disadvantage of these
methods is that they are not based on sufficient statistics
and so have not been shown to possess any optimal-
ity properties. We assume throughout that the design
matrix is of full rank, so that all parameters are identifi-
able. In practice we suggest that, as a minimum, n = 10
is needed to fit a meta-regression with a single covari-
ate effect. Even larger n will be required in order to
estimate the effect of multiple covariates in the same
meta-regression model.

Generalised Cochran heterogeneity statistics for
meta-regression
The conventional Q statistic for meta-regression is

Q =
n∑

i=1
wi

(
yi − ŷi

)2 (2)

where wi = σ−2
i and ŷi is the fitted value for the ith study

from the fixed effects model, where τ 2 = 0. That is ŷi =
xiβ̂F where β̂F = (XtWX)−1XtWY andW = diag(wi) =
�−1. Under the null hypothesis H0 : τ 2 = 0, Q follows a
χ2
n−p distribution and so may be used as a test statistic.

DerSimonian and Kacker [13] proposed a generalised
version of Q in the special case of meta-analysis and
where the only ‘covariate’ is the intercept. They pro-
posed using an arbitrary set of fixed positive constants ai
instead of wi when computing (2). Jackson [8] showed that
this can be used to compute confidence intervals for the
between-study variance in random effects meta-analyses.
An obvious and more general version of DerSimonian and
Kacker’s heterogeneity statistic for meta-regression is

Qa =
n∑

i=1
ai

(
yi − ŷi

)2 (3)

where the ai are arbitrary positive constants and ŷi is now
ŷi = xiβ̂a, where β̂a = (X tAX)−1XtAY and A = diag(ai).
If ai = wi for all i, or equivalently A = W , then Qa
in equation (3) reduces to the usual heterogeneity statis-
tic (2). We will develop the theory in terms of Qa and so
include the conventional Q as a special case.
In order to derive the properties of (3) we write this in

matrix form. We have that

Y − Ŷ =
(
I − X (XtAX)−1 XtA

)
Y

and (3) can be written as

Qa =
(
Y − Ŷ

)t
A

(
Y − Ŷ

)
.

After a little manipulation we can write

Qa = Y tBY (4)

where B = A − AX (XtAX)−1 XtA.
Next, essentially following Biggerstaff and Jackson [7]

and Jackson [8], let Z denote a standard n dimensional
multivariate normal vector. Noting that Qa is ‘location
invariant’ (by this we mean that we can write Y = Xβ +
�1/2Z in equation (4), where Z is standard multivariate
normal, and the location Xβ cancels in the computation
of Qa), we can obtain

Qa = YtBY d= Zt�1/2B�1/2Z = ZtSZ,

defining S = �1/2B�1/2. B is symmetric and hence so is
S. Following the same procedure described by Biggerstaff
and Jackson [7] and Jackson [8], writing S in terms of its
spectral decomposition, we obtain

Qa
d=

n−p∑
i=1

λi(S)χ2
1,i (5)

where χ2
1,i are mutually independent chi-squared ran-

dom variables with 1 degree of freedom and λ1
(S) ≥ λ2(S) ≥ · · · ≥ λn(S) are the ordered eigenvalues of
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S. Because we take the covariates, the within-study vari-
ances σ 2

i and the ai as fixed constants, from (5) we have
that the only unknown parameter that the distribution of
Qa depends on is τ 2. The summation in (5) extends to
n − p, rather than n, because p of the eigenvalues of S
are zero. This is because S = �1/2A1/2(I − H)A1/2�1/2,
where H is the hat matrix for the regression where the
designmatrix isA1/2X. BecauseA and� are diagonal, and
because the eigenvalues of CD are those of DC when C
and D are both square matrices [14], p 57, the eigenvalues
of S are those of �1/2A1/2(I − H)A1/2�1/2 or equiva-
lently those of (I −H)A�. Then, because (I −H) and A�

are positive semi-definite symmetrical matrices, Theorem
8.12 from Zhang [14], p 274, implies that λi(S) = λi((I −
H)A�) ≤ λi(I −H)λ1(A�). λ1(A�) > 0 and, because Qa
is non-negative, the eigenvalues of S are also non-negative;
p eigenvalues of (I − H) are zero and hence so are p
eigenvalues of S, as stated.

Obtaining confidence intervals numerically
The cumulative distribution function of Qa is decreasing
in τ 2. This is because the eigenvalues of S are increas-
ing in τ 2. This can be shown in a similar way to the
meta-analysis setting as explained by Jackson [8]. The
eigenvalues of S are those of �1/2A1/2(I − H)A1/2�1/2

as noted above. Consider a larger between-study variance,
so that � becomes �M and �1/2 becomes �1/2M1/2,
where M is a diagonal matrix in which all diagonal
entries and hence all eigenvalues are also greater than one.
Then Theorem 8.12 from Zhang [14], p 274, implies that
λi (A1/2 �1/2 M1/2(I − H)A1/2�1/2M1/2) = λi(A1/2�1/2

(I − H)A1/2�1/2M) ≥ λi((A1/2�1/2(I − H)A1/2�1/2))
λn(M), which means that the larger between-study vari-
ance has resulted in larger eigenvalues of S. Hence these
eigenvalues are increasing in τ 2 as stated.
This ensures that confidence intervals (rather than

confidence sets) for τ 2 can be obtained in the way
described by Jackson [8] for meta-analysis, using the dis-
tributional result in (5) and test inversion (eg Casella
and Berger [15], section 9.2.1). This means that τ 2J
is accepted by the two-tailed hypothesis test, and
so lies in the corresponding confidence set, if and
only if

P
(
Qa ≥ qa; τ 2 = τ 2J

) ≥ α/2 (6)

and

P
(
Qa ≤ qa; τ 2 = τ 2J

) ≥ α/2 (7)

where qa is the observed value of Qa and the coverage
probability is (1 − α). As noted by Jackson [8], alternative

values to α/2 are possible in (6) and (7), but we will
use ‘equal tailed’ two-sided confidence intervals. If no τ 2J
satisfies (7) then we have two main choices. The first
option is to follow Jackson [8] in providing an interval of
[0,0] that increases the coverage probability by α/2 when
τ 2 = 0 which is therefore conservative. The second option
is to provide an empty set as suggested by Viechtbauer
[9] in relation to the Q profile method below. Providing
the empty set retains the nominal coverage probability
for all τ 2 but means that the analyst is faced with the
task of explaining why the empty set is appropriate to
practitioners. We leave it to the reader to decide which
convention they prefer. Since the empty set is itself an
interval, either convention can be described as provid-
ing confidence intervals. A possible third convention, as
discussed by Jackson [8], would be to refrain from giv-
ing a confidence interval in such instances and instead
conclude that the interval is undefined. This statement
would be accompanied with a conclusion like ‘the data
appear to be highly homogenous’ or that ‘the interval
estimation fails’.
Because the cumulative distribution function of Qa

is decreasing in τ 2, we can easily perform numeri-
cal searches to obtain the confidence interval limits
using Farebrother’s algorithm [16] to evaluate the dis-
tribution function of Qa implied by (5). Since, as in
the Q profile method below, the confidence intervals
are based upon an exact (under the assumptions of
the model) distributional result, exact confidence inter-
vals are obtained, subject to the [0,0] or empty set
caveat discussed above. An R function is provided in
the Additional files 1, 2 and 3 that produces confidence
intervals using this method, where empty confidence sets
are given as [0,0]. This function has now been imple-
mented in the metafor package and code for use with
this package is also provided in the Additional files
1, 2 and 3.

Choosing the ‘weights’
One issue when using this procedure is that it involves
choosing a set of ‘weights’ ai. Jackson [8] discusses pos-
sible approaches for this. In the absence of information
about the likely magnitude of the between-study vari-
ance, Jackson [8] suggested using ai = 1/σi but practi-
tioners may prefer to use the conventional fixed effects
weights ai = 1/σ 2

i because these may be more famil-
iar. An investigation into the optimal choice of weights,
as undertaken in a simulation study by Jackson [8], could
provide suitable further work but similar results to those
in the meta-analysis (no covariates) scenario may rea-
sonably be anticipated: that is, weights that reflect the
magnitude of the true residual heterogeneity (equal to the
reciprocal of the true total variances) can be expected to
perform well.
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Moments of generalised Cochran heterogeneity statistics
The above method of computing confidence inter-
vals using generalised Cochran heterogeneity statistics
requires the use of Farebrother’s algorithm and iterative
methods to find the bounds of the confidence interval. In
this section we show how to use the moments of gener-
alised Cochran heterogeneity statistics to produce a point
estimate of the residual between-study variance and a
much simpler method for quantifying the uncertainty in
this point estimate. The point estimate of τ 2 proposed
in this section is a natural estimate to accompany the
confidence interval obtained using a generalised Cochran
heterogeneity statistic.
In Appendix 1, we show that the expectation of the

generalised Cochrane heterogeneity statistic is

E(Qa) = tr (B�) + tr(B)τ 2 (8)

where tr(·) denotes the trace of a matrix. Alternatively,
E(Qa) can be evaluated numerically as

∑n−p
i=1 λi(S).

Hence (8) provides a moments based estimator of
τ 2 upon replacing E(Qa) with Qa, solving the resulting
equation and truncating to zero if the estimate is nega-
tive. Equation (8) reduces to the usual formula [1] for the
expectation ofQwhen ai = wi for all i, or equivalently that
A = W , so that the conventional moments based estima-
tor is obtained as this special case. Using (8) to produce a
point estimate of τ 2 using the method of moments in this
way, we obtain an ‘untruncated’ (not set to zero if negative)
estimate

τ̂ 2u = Qa − tr(B�)

tr(B)
. (9)

The estimator τ̂ 2u is unbiased. Upon truncating τ̂ 2u to
zero if it is negative, which introduces positive bias, we
obtain a generalisation of the estimator using DerSimo-
nian and Kacker’s [13] general method of moments for
meta-analysis. This estimator is itself a generalisation of
the method proposed by DerSimonian and Laird [17].
Since the entries of B are fixed constants, we have

Var
(
τ̂ 2u

) = Var(Qa)
(tr(B))2

. (10)

Using standard properties of quadratic forms involving
normal distributions, (e.g., Searle [18], page 57, Corollary
1.2), we have that

Var(Qa) = 2tr(B�B�) = 2tr(B�B�) + 4τ 2tr(B�B)

+ 2τ 4tr
(B2)

(11)

This formula reduces to equation (7) from Bigger-
staff and Tweedie [19] for meta-analyses and the stan-
dard weights if ai = wi. Alternatively, Var(Qa) can be

obtained as 2
∑n−p

i=1 λ2i (S). Together (10) and (11), after
taking the square root, provide the standard error and
hence a measure of the uncertainty in the ‘untruncated’
estimate τ̂ 2u . However, the distribution of Qa, and hence
the distribution of τ̂ 2u , is usually very skewed in typi-
cal meta-analytic datasets with few studies. Hence using
a normal approximation for these statistics is generally
inadequate. For this reason we do not propose that con-
fidence intervals are obtained using τ̂ 2u , its standard error
and a normal approximation, but the standard error of
τ̂ 2u could still be used to give an indication of the uncer-
tainty in this point estimate by those who do not have
access to Farebrothers’ algorithm and/or iterative meth-
ods. When τ̂ 2u > 0, a normal approximation on the
log scale might be expected to perform better because
a log transformation would counteract the skewness of
Qa but the resulting confidence interval could then not
include zero.

Using weights equal to the reciprocal of the estimated total
variances
Methods for estimating τ 2 have been suggested above and
it is tempting to consider using weights ai = 1/(σ 2

i + τ̂ 2),
where τ̂ 2 is some estimate of τ 2. Jackson [8] found that
this idea performed well in random effects meta-analyses
using the DerSimonian and Laird [17] estimator. Weights
of this form reflect the variation in the sample of study
estimates, and can be expected to provide precise estima-
tion (and so shorter confidence intervals). These weights
mean that the conventional weights for making inferences
about the overall effect are also used for making infer-
ences about the residual between-study variance. How-
ever this choice of weights invalidates the theory because
the weights are now random variables and are no longer
fixed constants. Jackson [8] found that this problemwas of
little practical consequence in the context ofmeta-analysis
and this idea warrants further investigation in both the
meta-analysis and meta-regression scenarios.

The Q profile method for meta-regression
The Q profile method for meta-analysis has recently been
proposed [9,20,21]. Viechtbauer [11] and Panityakul et al.
[12] subsequently explained how to extend this method to
meta-regressionmodels in theway we also describe below.
This method is based on the Q profile statistic given
in equation (12) below and is not based on the profile
likelihood. The Q profile method has been implemented
in the R package metafor for both meta-analyses and
meta-regressions. In this paper we show that the method
proposed by Viechtbauer [11] and Panityakul et al. [12]
for meta-regression is guaranteed to provide confidence
intervals, that is, confidence sets that are not intervals are
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never produced. Viechtbauer [11] implicitly assumes that
this is the case. The previous proof [12] that the function
Q(τ 2) below is decreasing in τ 2 is sophisticated, so the
main contribution of this paper concerning this particu-
lar method is to prove this result in a simpler and more
direct way.We do this in a similar way to Knapp et al. [21],
who prove this result in the simpler setting of the random
effects model for meta-analysis (no covariates).
In order to describe the Q profile method for meta-

regression, we define ŷi(β̂(τ 2)) as the fitted value
of Yi from the true meta-regression model. This
means that ŷi

(
β̂

(
τ 2

)) = xiβ̂
(
τ 2

)
, where β̂

(
τ 2

) =
(Xt�−1X)−1 Xt�−1Y .
The Q profile method is then based on

Q
(
τ 2

) =
n∑

i=1

{
Yi − ŷi

(
β̂(τ 2)

)}2

σ 2
i + τ 2

∼ χ2
n−p (12)

where we use (12) as a pivot to test the null hypothesis
that the true value of the residual between-study vari-
ance is equal to τ 2. If χ2

(n−p,α/2) ≤ Q(τ 2) ≤ χ2
(n−p,1−α/2),

where χ2
(n−p,α/2) and χ2

(n−p,1−α/2) denote the α/2 and
1 − α/2 quantiles of the χ2

n−p distribution respectively,
then we accept (or fail to reject) the null hypothesis that
the true residual between-study variance is equal to τ 2

using a significance level of α. Otherwise, we reject this
hypothesis.
The confidence set for the residual between-study vari-

ance, with (1 − α) coverage probability, is again obtained
by test inversion. The confidence set for τ 2 contains all
the values of τ 2 that are accepted by the hypothesis test
resulting from (12).

Ensuring that confidence intervals are obtained
As previously noted [12], the condition that the deriva-
tive dQ(τ 2)/dτ 2 is negative is sufficient to show that theQ
profile method for meta-regression is guaranteed to pro-
vide confidence intervals. In Appendix 2, we show that

dQ
(
τ 2

)

dτ 2
= −

n∑
i=1

{
Yi − ŷi

(
β̂(τ 2)

)}2
(
σ 2
i + τ 2

)2 < 0 (13)

which means that Q(τ 2) is decreasing in τ 2. This is
a generalisation of the result provided in Appendix 2
of Hartung and Knapp [20], that Knapp et al. [21]
refer to when establishing that the Q profile method
for meta-analysis is guaranteed to provide confidence
intervals. The form of the derivative in (13) is consider-
ably more straightforward than the expression previously
given [12].

Obtaining confidence intervals numerically
From (13)we have thatQ(τ 2) is decreasing in τ 2. IfQ(0) <

χ2
(n−p,α/2) then no τ 2 satisfies χ2

(n−p,α/2) ≤ Q(τ 2) ≤
χ2

(n−p,1−α/2), and an empty confidence set is obtained.
This occurs when the data appear to be highly homoge-
nous, and we can either follow Knapp et al. [21] and
Jackson [8] by interpreting these empty sets as provid-
ing confidence intervals of [0,0], or Viechtbauer [9] and
report the empty confidence set. As for the confidence
intervals obtained using generalised Cochran heterogene-
ity statistics described above, providing the interval [0,0]
increases the coverage probability by α/2 when τ 2 =
0 but this avoids the difficulty in interpreting empty
confidence sets.
If instead Q(0) ≥ χ2

(n−p,α/2) then there are no fur-
ther difficulties. Furthermore if Q(0) ≤ χ2

(n−p,1−α/2) then
Q(τ 2) ≤ χ2

(n−p,1−α/2) for all τ 2, so that the confidence
interval is comprised of the τ 2 that satisfy Q(τ 2) ≥
χ2

(n−p,α/2). The lower bound of the confidence interval is
then zero and the upper bound is given by the value of τ 2
that satisfies Q(τ 2) = χ2

(n−p,α/2).
Finally, if Q(0) > χ2

(n−p,1−α/2), then the lower and
upper bounds of the confidence interval are given by
the values of τ 2 satisfying Q(τ 2) = χ2

(n−p,1−α/2) and
Q(τ 2) = χ2

(n−p,α/2) respectively. SinceQ(τ 2) is continuous
and decreasing in τ 2, simple numerical search methods
for finding the values of τ 2 that satisfy the equations that
give rise to the confidence intervals will always converge
to the correct answers.

ANewton Raphson procedure for implementing the Q profile
method in practice
In order to implement the Q profile method, we need to
solve equations of the form Q(τ 2) = c, where c are criti-
cal values from χ2

n−p. Since in (13) we have the derivative
of Q(τ 2) in easily computed form we can use the New-
ton Raphson procedure for this purpose, where we use the
iterative method

τ 2k+1 = τ 2k +

n∑
i=1

{
Yi−ŷi

(
β̂
(
τ2k

))}2

σ 2
i +τ2k

− c

n∑
i=1

{
Yi−ŷi

(
β̂
(
τ2k

))}2
(
σ 2
i +τ2k

)2

with a suitable starting value τ 20 . Once τ 2k+1 ≈ τ 2k con-
vergence is reached and the solution to Q(τ 2) = c is
obtained. This algorithm has been found to perform well
provided that estimates of τ 2 are used as starting values
and any negative values of τ 2k are replaced by zero when
performing the iteration.
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A corresponding point estimate of the residual
between-study variance
Paule-Mandel [13,22] suggested solvingQ(τ̂ 2PM) = n−1 in
the context of meta-analysis. This idea can be generalised
to the meta-regression scenario considered here [12] by
solving Q(τ̂ 2PM) = n − p. This equation can be solved
using the Newton Raphson procedure suggested above,
with c = n − p, and if there is no solution to this equation
then τ̂ 2PM = 0 [13,22]. The empirical Bayes estimator
[23] is equivalent to this Paule-Mandel estimator [24]. By
adopting the convention that empty sets are interpreted
as [0,0], this estimator will always lie in the corresponding
Q profile confidence interval. In general point estimates
of τ 2 need not lie inside the various confidence intervals
that are available, so this is an attractive property. Hence
the Paule-Mandel estimator provides a natural point esti-
mate to accompany the confidence interval from the Q
profile method and we recommend using them together.
The Paule-Mandel estimator is also unique, as previously
noted [12].

Bayesian analyses with informative prior distributions for
the residual between study variance
In addition to specifying the form of the likelihood,
Bayesian analyses also require the specification of prior
distributions. ‘Vague’ or ‘uninformative’ prior distribu-
tions, that are typically taken to be uniform distributions
on a particular scale, are often used for this purpose. How-
ever choosing ‘vague’ prior distributions for variance com-
ponents is problematic as Lambert et al. [25] show for the
between-study variance in random effects meta-analysis
with small numbers of studies. We anticipate that that
the issues surrounding the use of ‘vague’ priors for vari-
ance components, as exemplified by the simulation study
by Lambert et al., will also apply in the meta-regression
scenario.
Informative prior distributions for parameters in ran-

dom effects meta-analyses are now available for some
settings [10,26-28]. In practice we suggest also using
prior distributions for the between-study variance that
have been derived for meta-analysis as prior distribu-
tions for the residual between-study variance in meta-
regressions. Deriving prior distributions for τ 2 for specific
meta-regression models is, at best, very difficult because
there are very many combinations of study covariates
that could be used in regression models. Typically meta-
regression models involve only a few covariates and,
although we might anticipate the residual between-study
variance to be less than the between-study variance in
a corresponding random effects meta-analysis (because
we might expect the covariates to explain some hetero-
geneity), unless the covariate effects are strong we can
reasonably expect the difference between these two types

of between-study variance to be small. Furthermore, if the
residual between-study variance is indeed the smaller of
these two types of between-study variances, then using
priors elicited in the context of meta-analysis for meta-
regressionmodels can be thought of as being conservative.
This is because the values of τ 2 supported by the prior,
and hence the posterior, will be too large. This gener-
ally results in wider credible intervals and larger posterior
standard deviations for the regression parameters, and
favours the side of concluding that there is further unex-
plained variation that could be explained using additional
covariates.
We follow Turner et al. [10] in using vague priors for

the regression parameters (the entries of β) and infor-
mative priors for τ 2. An informative prior for τ 2, where
available, is to be taken from the context of the meta-
regression. Hence we only use out-of-sample information
about the residual between-study variance, because it
is this particular parameter that is hard to identify in
typically small meta-analytic samples. We provide Win-
BUGS [29] code, for both examples, in the Additional
files 1, 2 and 3 to show how informative priors for τ 2

can be used in practice. The use of MCMC to fit meta-
regression models means that convergence of the chains
must be carefully checked in practice. Alternative (non
MCMC) methods for performing Bayesian estimation of
meta-regression models deserve investigation and could
form the subject of further work. Meta-analysts should
be aware that Bayesian analyses of this kind make more
assumptions than frequentist meta-analyses because they
involve priors. However, by taking the limits of the cred-
ible interval as the 2.5% and 97.5% quantiles of the pos-
terior distribution, Bayesian interval estimation is easily
performed.

Ethical approval
This is a paper on statistical methods. All data used are
for illustration purposes and come from published meta-
analyses from the Cochrane Library. Hence no ethical
approval for the use of these data is required.

Results and discussion
In this section we apply our methods to two contrasting
examples and we discuss the results that we obtain.

Example one: paracetamol for pain relief after surgical
removal of lower wisdom teeth
This example is taken from Analysis 1.1 of Cochrane
review CD004487 [30], where paracetamol is compared
to placebo and the outcome of interest is at least 50%
pain relief at 4 hours. 16 studies contribute to the analysis
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where 10 studies treat patients with up to 1000mg of
paracetamol and the remaining 6 studies treat patients
with 1000mg or more. We follow the Cochrane review
by using the log relative risk as the outcome mea-
sure for the analysis (the review presents the results
in terms of the relative risk but the analysis is per-
formed on the log scale), where 1/2 is added to all
cells of the 2 × 2 tables of the two studies with zero
counts. Normal approximations are used for the log
relative risks.
The results of the subgroup analysis presented by the

Cochrane review suggest that treatment effects may be
larger in studies that treat patients with 1000mg or more.
Meta-regression can be used to investigate this, by includ-
ing a binary covariate that equals one if the study treats
patients with 1000mg or more and equals zero other-
wise. Fitting this meta-regression using the R package
metafor using REML confirms that there is evidence of a
covariate effect, where the estimated effect is 0.929 with
a standard error of 0.302. The REML estimated resid-
ual between-study variance is (τ̂ 2 = 0.083), for which
metafor reports a standard error of S.E.(τ̂ 2) = 0.086
and I2 = 40%.
Since the distribution of estimates of τ 2 can be very

skewed, an approximate confidence interval was calcu-
lated on the log scale using the approximation

Var
(
log

(
τ̂ 2

)) ≈ 1
τ̂ 4

(
S.E.

(
τ̂ 2

))2

so that an approximate 95% REML confidence inter-
val for τ 2 was obtained as

(
exp

(
log

(
τ̂ 2

) − 1.96
√
Var(log(τ̂ 2))

)
, exp

(
log(τ̂ 2) + 1.96

√
Var(log(τ̂ 2))

))
=

(0.011, 0.633). The width of this approximate confi-
dence interval, from the asymptotic theory of maximum
(REML) likelihood, gives a useful benchmark to compare
the proposed methods to. We can however anticipate
that the two proposed frequentist methods will result
in wider confidence intervals than this interval for two
main reasons. First of all, the proposed methods are
not based on sufficient statistics (while likelihood based
methods are). Hence we can anticipate some loss of
precision when using the proposed procedures because
they have not been shown to possess any optimality
properties. Secondly, the asymptotic theory of maxi-
mum likelihood cannot be very accurate, because we
estimate three parameters (the intercept, the covariate
effect and the residual between-study variance) using
just 16 observations. Since likelihood based meth-
ods take the standard errors as those implied by the
Cramer-Rao bound, we can anticipate that the uncer-
tainty in the estimated residual between-study variance
will be underestimated using asymptotic likelihood
based methods.

Confidence intervals using generalised Cochran
heterogeneity statistics
Using the conventional weights ai = wi = σ−2

i , the
moments estimate of τ 2 from (9) is 0.115 and the corre-
sponding 95% confidence interval, obtained using Fare-
brother’s algorithm and numerical searches, is (0.003,
0.691). This confidence interval is in good agreement with
the approximate REML interval but is slightly wider, as
anticipated.
Jackson [8] suggested using the weights ai = σ−1

i in sit-
uations where heterogeneity is anticipated but it is uncer-
tain how much. However, this results in a notably larger
τ̂ 2 = 0.261, which helps to explain why the corresponding
95% confidence interval of (0.000, 1.125) is considerably
wider. This choice of weights has not resulted in a shorter
confidence interval for τ 2 for this example.

Confidence intervals using theQ profilemethod
The R package metafor was used to implement the Q
profile method. To check numerically that all the pro-
posed methods for calculating the proposed extension of
the Paule-Mandel estimator agree, this was obtained in
three ways: using the metafor package and the empirical
Bayes option, using the code provided in the Appendix
of Panityakul et al. [12], and also using the proposed
Newton Raphson procedure with c = 14. All three
methods gave τ̂ 2PM = 0.219. The Q profile 95% con-
fidence interval is (0.002, 1.487) which is even wider
than the intervals obtained using other methods and
provided above.
To summarise the results using the frequentist meth-

ods, wide confidence intervals for τ 2 are obtained using all
methods. This means that it is not possible to make strong
statements about whether the true residual between-study
variance is large or small without making use of out-
of-sample information, such as expert opinion or the
informative prior distributions that follow.

Bayesian analyses using informative prior distributions
Uninformative uniform priors (from -10 to 10) were used
for the regression parameters (the entries of β) and an
informative τ 2 ∼ logN(−1.83, 1.522) prior was used, as
suggested by Turner et al. [27], where ‘logN’ denotes a log-
normal distribution. Three chains were run using starting
values equal to the REML estimate of τ 2 and the lower and
upper bounds of the corresponding approximate 95% con-
fidence interval. A burn-in of 10,000 iterations was used
and another 200,000 iterations were used to make infer-
ence, so that with three chains 600,000 simulated realisa-
tions from the posterior were used to calculate estimates
and credible intervals. The WinBUGS implementation of
the Gelman-Rubin statistic, as modified by Brooks and
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Gelman [31], was stable for each parameter and trace plots
after the burn-in showed no apparent trend. These find-
ings indicate that convergence was achieved for all three
chains.
Similar results for the covariate effect parameter were

obtained from this Bayesian analysis: the posterior mean
was 0.917 with a posterior standard deviation of 0.330,
again suggesting that treatment effects may be larger in
studies that treat patients with 1000mg of paracetamol
or more. The posterior distribution of τ 2 was positively
skewed, with a posterior mean and median of 0.135 and
0.095 respectively. The bounds of the 95% credible inter-
val for τ 2, obtained as the 2.5% and 97.5% quantiles of
the posterior density, were 0.011 and 0.495. The poste-
rior median of τ 2 is quite close to the REML estimate
0.083 but the upper bound of this credible interval is
appreciably less than all the upper bounds of the 95%
confidence intervals. The use of this informative prior
distribution has substantively reduced the range of plau-
sible values of τ 2, but this more precise inference comes
at the price of specifying priors and hence making more
assumptions.
A summary of themain results for this example is shown

in Table 1. In order to assess the sensitivity of the esti-
mates and credible intervals for τ 2 to its prior distribution,
three further priors were considered: (1) an informative
τ 2 ∼ logN(−2.56, 1.742) for a more general research set-
ting [10], (2) a vague uniform prior for τ and (3) a vague
half normal prior for τ . See the Additional files 1, 2 and 3
for the WinBUGS code that provides full details of these
alternative prior distributions. The posterior means of τ 2

were 0.102, 0.188, and 0.184, and the 95% credible inter-
vals were (0.004, 0.409), (0.002, 0.796), and (0.002, 0.779),
using these three priors, respectively. We conclude that
there is some sensitivity to the prior distribution, in par-
ticular the results using informative priors differ quite
considerably to the results using vague priors.

Example two: interventions for promoting physical activity
This example is taken from Analysis 1.1 of Cochrane
review CD003180 [32] and was also used by Baker and

Table 1 Summary of results for example one: paracetamol
for pain relief

Method Estimate Interval

REML 0.083 (0.011, 0.633)

Gen Q (ai = σ−2
i ) 0.115 (0.003, 0.691)

Gen Q (ai = σ−1
i ) 0.261 (0.000, 1.125)

Paule-Mandel/Q profile 0.219 (0.002, 1.487)

Bayesian 0.135 (0.011, 0.495)

The REML confidence interval for τ 2 is approximate and the Bayesian estimate is
the posterior mean.

Jackson [33] who propose a novel model and estimation
methods formeta-analysis datasets with time trends. Here
we use a conventional meta-regression to investigate the
possibility of time trends in the 19 studies that contribute
to this analysis, where we use the publishing date as a con-
tinuous covariate in a meta-regression. The treatment is
an intervention for promoting physical activity and the
outcome data are standardised mean differences, where
a positive mean difference indicates that the intervention
has a positive effect on promoting physical activity.
Again fitting the meta-regression using the metafor

package using REML provides evidence of a covariate
effect and hence the type of time trend observed by Baker
and Jackson [33]: the estimated effect of time is -0.022
with a standard error of 0.011. The REML estimated resid-
ual between-study variance is τ̂ 2 = 0.042, for which
metafor reports a standard error of S.E.(τ̂ 2) = 0.021 and
I2 = 79%. An approximate 95% REML confidence inter-
val for τ 2, calculated on the log scale as for the previous
example, is (0.016, 0.111).

Confidence intervals using generalised Cochran
heterogeneity statistics
Using the conventional weights ai = wi = σ−2

i , the
moments estimate of τ 2 from (9) is 0.043 to three deci-
mal places and the corresponding 95% confidence interval
is (0.017, 0.139). Once again, this confidence interval is in
good agreement with the approximate REML interval but
is slightly wider, as anticipated.
Using the weights ai = σ−1

i results in similar results
for this example: τ̂ 2 = 0.048, and the corresponding 95%
confidence interval is (0.018, 0.138).

Confidence intervals using the Q profilemethod
The proposed extension of the Paule-Mandel estimator
is τ̂ 2PM = 0.049. The Q profile 95% confidence interval
is (0.018 0.156) which is slightly wider than the intervals
obtained using other methods and provided above.
To summarise the results using the frequentist methods,

wide confidence intervals for τ 2 are again obtained using
all methods. However, the intervals do not include zero,
which reinforces the notion that residual between-study
heterogeneity is present, as suggested by the large I2 =
79% statistic. Nonetheless, the true residual between-
study variance could be considerably smaller or larger
than the point estimate. It is not possible to make very
precise statements about the magnitude of this parameter
without using out-of-sample information.

Bayesian analyses using informative prior distributions
An informative τ 2 ∼ lt5(−3.02, 2.272) prior was used,
as suggested by Rhodes et al. [28], where ‘lt5’ denotes a
log-t distribution with 5 degrees of freedom. The same
uniform priors for the regression parameters, and the
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same numbers of chains and iterations and methods for
checking convergence, were used as in the previous exam-
ple. However we (approximately) standardised the time
covariate in the meta-regression, by centering this at 1998
and dividing by 6, as often suggested in order to aidmixing
in MCMC algorithms. Inferences in terms of the non-
standardised time covariate were then obtained from the
MCMC output by dividing results for the standardised
covariate effect parameter by 6. This resulted in an esti-
mated (posterior mean) effect of time of -0.022 with a
posterior standard deviation of 0.011, in agreement with
the REML analysis to three decimal places. The posterior
distribution of τ 2 was positively skewed, with a poste-
rior mean and median of 0.050 and 0.043 respectively.
The bounds of the 95% credible interval for τ 2 were 0.017
and 0.119. The posterior median of τ 2 is close to the
REML estimate 0.042 but the upper bound of this inter-
val is notably lower than the upper bounds of the three
exact 95% confidence intervals. Interestingly, it is similar
to the upper bound of the approximate REML interval,
which is likely to understate the uncertainty in the resid-
ual between-study variance as explained above. However,
in the case of the credible interval, it seems reasonable
to conclude that the reduction of the upper bound is a
result of the informative prior distribution that has, as in
the first example, reduced the range of plausible values
of τ 2.
A summary of the main results for this example is

shown in Table 2. In order to assess the sensitivity of
the estimates and credible intervals for τ 2 to its prior
distribution, three further priors were considered: (1) an
informative τ 2 ∼ lt5(−3.44, 2.592) for a more general
research setting (2) a vague uniform prior for τ and (3) a
vague half normal prior for τ . The posterior means of τ 2

were 0.049, 0.069, and 0.071, and the 95% credible inter-
vals were (0.016, 0.118), (0.024, 0.163), and (0.025, 0.167),
using these three priors, respectively. As in the previous
example, we conclude that there is some sensitivity to the
prior distribution. Also as before, the results using infor-
mative priors differ quite considerably to the results using
vague priors.

Table 2 Summary of results for example two:
Interventions for promoting physical activity

Method Estimate Interval

REML 0.042 (0.016, 0.111)

Gen Q (ai = σ−2
i ) 0.043 (0.017, 0.139)

Gen Q (ai = σ−1
i ) 0.048 (0.018, 0.138)

Paule-Mandel/Q profile 0.049 (0.018, 0.156)

Bayesian 0.050 (0.017, 0.119)

The REML confidence interval for τ 2 is approximate and the Bayesian estimate is
the posterior mean.

Conclusions
We have presented three methods for performing inter-
val estimation of the residual between-study variance in
random effects meta-regression models. All three meth-
ods are relatively straightforward extensions of methods
that have been proposed for random effects meta-analysis,
where there are no covariates. R code is provided in the
Additional files 1, 2 and 3 for implementing the method
based on generalised Cochran heterogeneity statistics but
this methodology and code is now incorporated in the
metafor package. R code for use with themetafor package
is also provided Additional files 1, 2 and 3. The Q pro-
file method has previously been described by others, so
our contribution regarding this methodology is to provide
a simple and easily computed form of the derivative (13)
that facilitates a Newton-Raphson procedure for obtain-
ing the confidence interval bounds. In our two examples,
the use of informative prior distributions was useful in
producing credible intervals with smaller upper bounds
than the confidence intervals. This more precise esti-
mation comes at the price of having to specify a prior
distribution and so makes more assumptions based on
out-of-sample information.
Network meta-analysis is becoming increasingly popu-

lar and a variety of approaches to modelling the variance
components have been proposed in this setting [34-37].
When all studies are two arm trials, models for net-
work meta-analysis can be expressed as standard univari-
ate meta-regressions [38]. This means that the methods
developed here are immediately relevant and applicable to
networkmeta-analysis. Our workmay therefore also serve
to motivate the use of informative prior distributions for
τ 2 in network meta-analysis. See Xiong et al. [39] for an
example of a network meta-analysis where informative
priors are used in this way.
Interpreting point estimates of the residual between-

study variance without any regard to its uncertainty can
be misleading; for example, a large point estimate might
be construed as providing strong evidence of consider-
able unexplained between-study heterogeneity. However,
if the intervals we suggest contain small values of τ 2

then such a conclusion is, at best, weak. Presenting stan-
dard errors (or posterior standard deviations) of τ 2 is
an alternative to presenting intervals but in our experi-
ence confidence and credible intervals for this parameter
are generally very asymmetric. Hence we suggest that the
methods for interval estimation that we have proposed are
preferable, because an estimate and a standard error (or
a posterior standard deviation) may give a poor indica-
tion of the range of values of τ 2 supported by the data. In
any case, accompanying a point estimate with some mea-
sure of its uncertainty, such as a standard error, is still
preferable to giving no indication at all of the uncertainty
in τ̂ 2.
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Approximate methods for constructing confidence
intervals for the between-study variance in meta-analysis
are available [9] and extending these to meta-regression
may form the subject of future work. Since the proposed
confidence intervals are not based on sufficient statis-
tics, and have not been shown to possess any optimality
properties, a comparison of their width with confidence
intervals obtained using the asymptotic theory of maxi-
mum likelihood gives an indication of the loss of precision
that may have been incurred by using these methods.
We illustrate this comparison using both our example
datasets.
Those who would wish to test the null hypothesis H0 :

τ 2 = 0 versus H1 : τ 2 > 0 can obtain the results from
this test by determining if the proposed confidence inter-
vals contain zero or not. However they would report a
significance level of α/2 when inverting these two-sided
confidence intervals because inverting a two-sided confi-
dence interval with coverage probability (1 − α) gives the
results of a one-tailed test with significance level α/2. I2
statistics are also very popular and can be obtained for
a meta-regression by defining the “typical” within-study
variance as σ 2

t = (n−p)/tr(B), where the standard weights
A = W are used. Confidence intervals for I2 can then be
obtained by interpreting I2 as the monotonic function of
τ 2, I2 = τ 2/(σ 2

t + τ 2).
To summarise, our methods for performing interval

estimation of the residual between-study variance in
meta-regression models are almost as easily performed
as the corresponding methods for random effects meta-
analysis. We propose that confidence and credible inter-
vals, such as those that we describe, should be routinely
used when reporting the results from both meta-analyses
and meta-regressions.

Appendix 1
From the text in the Methods section we have

Qa = Y tBY = tr(Y tBY )

Interchanging the expectation and trace operators, and
using the property that tr(AB)=tr(BA), we have that

E(Qa) = tr(BE(YY t)) = tr(B(� + τ 2I + Xβ(Xβ)t))

It is straightforward to show that all entries of BX, and
hence BXβ(Xβ)t , are zero. Hence

E(Qa) = tr(B�) + tr(B)τ 2

as stated.

Appendix 2
Let β̂i(τ 2) denote the i entry of β̂(τ 2). Then we can write

Q(τ 2) =
n∑

i=1

{
Yi − ŷi

(
β̂1

(
τ 2

)
, β̂2

(
τ 2

)
, · · · , β̂p

(
τ 2

))}2

σ 2
i + τ 2

DifferentiatingQ(τ 2)with respect to τ 2 using the product
rule, and using the chain rule for multivariate calculus to
evaluate the second term involving a double summation,
gives

dQ(τ 2)

dτ 2
= −

n∑
i=1

{
Yi − ŷi

(
β̂

(
τ 2

))}2
(
σ 2
i + τ 2

)2

− 2
p∑

j=1

dβ̂j
dτ 2

n∑
i=1

{
Yi − ŷi

(
β̂

(
τ 2

))}

σ 2
i + τ 2

∂ ŷi
∂β̂j

(14)

Now consider the procedure for obtaining the estimated
regression parameters for a fixed value of τ 2, β̂(τ 2), using
either, and equivalently, maximum likelihood or weighted
least squares. We therefore optimise


 =
n∑

i=1

{
Yi − ŷi(β1, β2, · · · , βp)

}2
σ 2
i + τ 2

(15)

with respect to the regression parameters. Differentiating
(15) with respect to βj we obtain

∂


∂βj
= −2

n∑
i=1

{Yi − ŷi(β1, β2, · · · , βp)}
σ 2
i + τ 2

∂ ŷi
∂βj

Setting this derivative to zero implies that the second
term in (14) involving a double summation is zero. This
immediately results in (13).

Additional files

Additional file 1: R Code for Generalised Q Statistics (now
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Additional file 3: R Code for use with the metafor package.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DJ performed the statistical analyses and developed the theory for the
generalised Q statistics and the Newton Raphson procedure for implementing
the Q profile method. WV originally proposed the extension of the generalised
Q statistic for calculating confidence intervals for meta-regression, developed
the theory for the Q profile method and is the author of themetafor R package.
VW prepared the Additional files 1, 2 and 3 document that provides code that
can be used with themetafor package. KR and RT provided WinBUGS code
that DJ adapted and provided the priors for the Bayesian analyses. KR double

http://www.biomedcentral.com/content/supplementary/1471-2288-14-103-S1.docx
http://www.biomedcentral.com/content/supplementary/1471-2288-14-103-S2.docx
http://www.biomedcentral.com/content/supplementary/1471-2288-14-103-S3.docx


Jackson et al. BMCMedical ResearchMethodology 2014, 14:103 Page 12 of 12
http://www.biomedcentral.com/1471-2288/14/103

checked the results from the Bayesian computation. All authors contributed to
the writing of the paper. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank Ian R White for both helpful general
discussion and his specific suggestions that improved the paper greatly.

Author details
1MRC Biostatistics Unit, Cambridge, UK. 2Department of Psychiatry and
Psychology School for Mental Health and Neuroscience Faculty of Health,
Medicine, and Life Sciences Maastricht University, P.O. Box 616 (VIJV1), 6200
MD, Maastricht, The Netherlands.

Received: 25 April 2014 Accepted: 28 August 2014
Published: 6 September 2014

References
1. Knapp G, Hartung J: Improved tests for a random effects

meta-regression with a single covariate. Stat Med 2003, 22:2693–2710.
2. Sharp S, Thompson SG: Explaining heterogeneity in meta-analysis: a

comparison of methods. Stat Med 1999, 18:2693–2708.
3. van Houwelingen HC, Arends LR, Stijnen T: Advancedmethods in

meta-analysis: multivariate approach andmeta-regression. Stat Med
2002, 21:589–624.

4. Baker WL, White CM, Cappelleri JC, Kluger J, Coleman CI: Understanding
heterogeneity in meta-analysis: the role of meta-regression. Int J Clin
Pract 2009, 63:1426–1434.

5. Jackson D: The significance level of meta-regression’s standard
hypothesis test. Commun Stat Theory Methods 2008, 37:1576–1590.

6. Thompson SG, Higgins JTP: How should meta-regression analyses be
undertaken and interpreted? Stat Med 2002, 21:1559–1573.

7. Biggerstaff BJ, Jackson D: The exact distribution of Cochran’s
heterogeneity statistic in one-way random effects meta-analysis.
Stat Med 2008, 27:6093–6110.

8. Jackson D: Confidence intervals for the between-study variance in
random effects meta-analysis using generalised Cochran
heterogeneity statistics. Res Synth Methods 2013, 4:220–229.

9. Viechtbauer W: Confidence intervals for the amount of heterogeneity
inmeta-analysis. Stat Med 2007, 26:37–52.

10. Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JPT: Predicting the
extent of heterogeneity inmeta-analysis, using empirical data from
the Cochrane database of systematic reviews. Int J Epidemiol 2012,
41:818–827.

11. Viechtbauer W: Analysis of moderator effects in meta-analysis. In Best
Practices in Quantitative Methods. Edited by Osborne JW. Thousand Oaks,
California, USA: Sage Publications; 2008.

12. Panityakul T, Bumrungsup C, Knapp G:On estimating residual
heterogeneity in random effects meta-regression: a comparative
study. J Stat Theory Appl 2013, 12:253–265.

13. DerSimonian R, Kacker R: Random-effects model for meta-analysis of
clinical trials: An update. Contemp Clin Trials 2007, 28:105–114.

14. Zhang F: Matrix Theory (2nd edition). New York: Springer; 2010.
15. Cassella G, Berger Rl: Statistical Inference. Pacific Grove, USA: Duxbury

Press; 2002.
16. Farebrother RW:AlgorithmAS 204: the distribution of a positive linear

combination of χ2 random variables. Appl Stat 1984, 33:332–339.
17. DerSimonian R, Laird N:Meta-analysis in clinical trials. Control Clin Trials

1986, 7:177–188.
18. Searle SR: Linear models. New York, USA: Wiley; 1971.
19. Biggerstaff BJ, Tweedie R: Incorporating variability in estimates of

heterogeneity in the random effects model in meta-analysis. Stat
Med 1997, 16:753–768.

20. Hartung J, Knapp G: On confidence intervals for the among-group
variance in the one-way random effects model with unequal error
variances. J Stat Plann Inference 2005, 127:157–177.

21. Knapp G, Biggerstaff BJ, Hartung J: Assessing the amount of
heterogeneity in random-effects meta-analysis. Biom J 2006,
48:271–285.

22. Paule RC, Mandel J: Consensus values and weighting factors. J Res
National Bureau Stand 1982, 87:377–385.

23. Berkey CS, Hoaglin DC, Mosteller F, Colditz GA: A random-effects
regression model for meta-analysis. Stat Med 1995, 14:395–411.

24. Viechtbauer W, López-López J, Sáchez-Meca J, Marín-Martínez F: A
comparison of procedures to test moderators in mixed-effects
meta-regression models. Psychol Methods. (under review). http://www.
ncbi.nlm.nih.gov/pubmed/25110905

25. Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR: How vague is
vague? A simulation study of the impact of the use of vague prior
distributions in MCMC usingWinBUGS. Stat Med 2005, 24:2401–2428.

26. Pullenayegum EM: An informed reference prior for between-study
heterogeneity in meta-analyses of binary outcomes. Stat Med 2011,
30:3082–3094.

27. Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JPT: Predictive
distributions for between-study heterogeneity andmethods for
their application in Bayesian meta-analysis. Undergoing peer review.

28. Rhodes KM, Turner RM, Higgins JPT: Predictive distributions were
developed for the extent of heterogeneity in a meta-analysis, using
continuous outcome data from the Cochrane database of
systematic reviews. J Clin Epidemiol. (Epub ahead of print).

29. Lunn DJ, Thomas A, Best N, Spiegelhalter D:WinBUGS–a Bayesian
modelling framework: concepts, structure, and extensibility. Stat
Comput 2000, 10:325–337.

30. Weil K, Hooper L, Afzal Z, Esposito M, Worthington HV, van Wijk A,
Coulthard P: Paracetamol for pain relief after surgical removal of
lower wisdom teeth. Cochrane Database Syst Rev 2007. (3): Art. No.
CD004487. doi:10.1002/14651858.CD004487.pub2.

31. Brooks SP, Gelman A: Alternativemethods for monitoring
convergence of iterative simulations. J Comput Graphical Stat 1998,
7:434–455.

32. Foster C, HillsdonM, ThorogoodM, Kaur A, Wedatilake T: Interventions
for promoting physical activity. Cochrane Database Syst Rev 2005. (1):
Art. No. CD003180. doi:10.1002/14651858.CD003180.pub2.

33. Baker R, Jackson D: Inference for meta-analysis with a suspected
temporal trend. Biom J 2010, 52:538–551.

34. Lu G, Welton NJ, Higgins JPT, White IR, Ades AE: Linear inference for
mixed treatment comparison meta-analysis: a two-stage approach.
Res Synth Methods 2011, 2:43–60.

35. Lu G, Ades AE:Modeling between-trial variance structure in mixed
treatment comparisons. Biostatistics 2009, 10:792–805.

36. Thorlund K, Thadane L, Mills EJ:Modelling heterogeneity variances in
multiple treatment comparison meta-analysis–Are informative
priors the better solution? BMC Res Methodol 2013, 13:2.

37. Jackson D, Barrett JK, Rice S, White IR, Higgins JPT: A
design-by-treatment interaction model for network meta-analysis
with random inconsistency effects. Stat Med 2014, 33:3639-3654.

38. White IR, Barrett JK, Jackson D, Higgins JPT: Consistency and
inconsistency in network meta-analysis: model estimation using
multivariatemeta-regression. Res Synth Methods 2012, 3:111–125.

39. Xiong T, Turner R, Wei Y, Neal D, Lyratzopoulos G, Higgins J: Comparative
efficacy and safety of treatments for localized prostate cancer: an
application of network meta-analysis. BMJ Open 2014, 4:e004285.

doi:10.1186/1471-2288-14-103
Cite this article as: Jackson et al.:Methods for calculating confidence and
credible intervals for the residual between-study variance in random
effects meta-regression models. BMCMedical ResearchMethodology
2014 14:103.

http://www.ncbi.nlm.nih.gov/pubmed/25110905
http://www.ncbi.nlm.nih.gov/pubmed/25110905

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	The random effects model for meta-regression

	Methods
	Generalised Cochran heterogeneity statistics for meta-regression
	Obtaining confidence intervals numerically
	Choosing the `weights'
	Moments of generalised Cochran heterogeneity statistics
	Using weights equal to the reciprocal of the estimated total variances

	The Q profile method for meta-regression
	Ensuring that confidence intervals are obtained
	Obtaining confidence intervals numerically
	A Newton Raphson procedure for implementing the Q profile method in practice
	A corresponding point estimate of the residual between-study variance

	Bayesian analyses with informative prior distributions for the residual between study variance

	Ethical approval
	Results and discussion
	Example one: paracetamol for pain relief after surgical removal of lower wisdom teeth
	Confidence intervals using generalised Cochran heterogeneity statistics
	Confidence intervals using the Q profile method
	Bayesian analyses using informative prior distributions

	Example two: interventions for promoting physical activity
	Confidence intervals using generalised Cochran heterogeneity statistics
	Confidence intervals using the Q profile method
	Bayesian analyses using informative prior distributions


	Conclusions
	1
	2
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

