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Abstract

validity evaluation.

considered treatment comparison.

instrument that is known from classical meta-analysis.

Background: In network meta-analysis, several alternative treatments can be compared by pooling the evidence of
all randomised comparisons made in different studies. Incorporated indirect conclusions require a consistent network
of treatment effects. An assessment of this assumption and of the influence of deviations is fundamental for the

Methods: We show that network estimates for single pairwise treatment comparisons can be approximated by the
evidence of a subnet that is decomposable into independent paths. Path-based estimates and the estimate of the
residual evidence can be used with their contribution to the network estimate to set up a forest plot for the
consistency assessment. Using a network meta-analysis of twelve antidepressants and controlled perturbations in the
real and constructed consistent data, we discuss the consistency assessment by the independent path
decomposition in contrast to an approach using a recently presented graphical tool, the net heat plot. In addition, we
define influence functions that describe how changes in study effects are translated into network estimates.

Results: While the consistency assessment by the net heat plot comprises all network estimates, an independent

path decomposition and visualisation in a forest plot is tailored to one specific treatment comparison. It allows for the
recognition as to whether inconsistencies between different paths of evidence and outlier effects do affect the

Conclusions: The approximation of the network estimate for a single comparison by the evidence of a subnet and
the visualisation of the decomposition into independent paths provide the applicability of a graphical validation

Keywords: Network meta-analysis, Multiple treatments comparison meta-analysis, Mixed treatment comparison
meta-analysis, Inconsistency, Influence diagnostics, Forest plot

Background

In medical practice, several treatments are frequently suit-
able for a single indication, but often only two or three
of them are directly compared in one study. Network
meta-analysis is an approach that combines the informa-
tion from all clinical trials on any of the treatments based
on the assumption of consistent treatment effects and
the inclusion of indirect comparisons (for an overview
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see e.g. [1]). The evaluation of the consistency and the
influence of possible deviations of this assumption on
network estimates plays an important role in the vali-
dation of results [2], especially as more complex models
are fitted [3]. In classical meta-analysis, a forest plot of
study effects and the pooled estimate offers the visual-
isation of outlier effects and their contribution to the
aggregated treatment effect [4]. In network meta-analysis,
the homogeneity between studies of each pairwise treat-
ment comparison can also be analysed using forest plots.
However, to assess the consistency assumption in the net-
work, study-based forest plots are not directly applicable,
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since for different pairwise treatment comparisons vari-
ous effects are expected [1]. Therefore, a generalised forest
plot approach is needed.

Salanti et al. [5] graphically analysed consistency using
a forest plot of the differences between direct and indi-
rect evidence in single network loops. In a forest plot,
estimates based on direct, indirect (obtained by back-
calculation or node-splitting [6]), and combined evidence
for one treatment comparison can be compared [1,2]
without reflecting detailed sources of potential inconsis-
tencies. Tools for regression diagnostics like the plot of
posterior mean deviance of individual data points [6,7],
the plot of leverage against the residual deviance for each
data point [8], or the assessment of PRESS residuals and
studentised residuals [9] allow for the singling out of indi-
vidual studies or a set of studies that compared the same
treatments whose direct evidence is badly fitted and may
be responsible for heterogeneity or inconsistency. For an
influence analysis of potentially inconsistent direct evi-
dence, the contribution of direct evidence to network
estimates has to be taken into account. Krahn et al. [10]
proposed a matrix visualisation, called net heat plot, that
highlights hot spots of inconsistency between specific
direct evidence in the whole network and renders possible
drivers transparent.

None of these approaches can offer all the analytical
capacities available in a classical meta-analysis forest plot
to a consistency assessment in a network meta-analysis:
namely the composition of the network effect estimate
based on direct evidence, the consistency between differ-
ent evidence sources, outlier observations and the influ-
ence on aggregated treatment effect estimates.

In the following, we show that a single network effect
estimate (e.g. for the comparison between treatments A
and B) can also be approximated by the evidence of a
subnet that is decomposable into independent paths and
can be visualised in a forest plot. For a consistency inves-
tigation, it allows the visualisation of the contribution
of each independent path as well as that of the residual
evidence in combination with their corresponding treat-
ment effect estimate. Due to the additional display of the
network-based treatment effect, an influence assessment
of deviating direct evidence is possible. We discuss this
tool for consistency and influence assessment in contrast
to the net heat plot [10] by using an evidence network
of twelve antidepressants. We assess controlled perturba-
tions in a constructed, consistent dataset of the example
and subsequently in the real data.

This article is structured as follows: We start with the
data example. In the Methods section, we discuss the
influence of direct evidence in network meta-analysis and
derive an influence function as well as the concept of
a decomposable subnet approximation and its visualisa-
tion. In the Results section, we apply our approach to the

Page 2 of 12

data and compare it with net heat plot results. The paper
concludes with a discussion of our findings.

Application

As a data example, we consider a network meta-analysis
performed by Cipriani et al. [11] (for data availability see
[11]). In this analysis, twelve antidepressants (see Table 1)
are examined regarding response, defined as a reduction
of at least 50% from the baseline of the depression rat-
ing score after eight weeks. The odds ratio (OR) was
used as effect measure. In total, 111 randomised trials
are included in this network meta-analysis comprising
109 two-armed trials and two three-armed trials. Figure 1
shows the complexity of the network; the assessment
of inconsistency and influence of perturbations pose a
challenge.

Methods

In the following, we briefly present a fixed effects model
for network meta-analysis that has already been explained
in more detail by Krahn et al. [10] and in this context
analyse how changes in study effects are translated into
network estimates. We introduce a simplification of meta-
analysis networks into decomposable subnets that allows
the application of a forest plot for a single network-based
treatment effect.

Fixed effects model in network meta-analysis

We consider a network meta-analysis for 7+ 1 treatments
Aog, ..., Ar that are compared in a set of studies build-
ing a connected evidence network as for instance shown
in Figure 1. Assuming consistency, all pairwise treatment
effects in the network are uniquely determined by the
T basic contrasts to a reference treatment Ag, which we
denote by the vector 6, Characterising each study by
the investigated set of treatments (called design in the
context of network meta-analysis [12,13]), it has been
demonstrated that the generalised least squares estima-
tion for a fixed effect model can be partitioned into two
steps [10]: Firstly, the evidence is pooled for each design d
(d = 1,...,D) to get an aggregated treatment effect éjir

Table 1 Twelve antidepressants examined in the network
meta-analysis published by Cipriani et al.[11]

Treatment Abbreviation Treatment Abbreviation
Bupropion bupr Milnacipran miln
Citalopram cita Mirtazapine mirt
Duloxetine dulo Paroxetine paro
Escitalopram esci Reboxetine rebo
Fluoxetine fluo Sertraline sert
Fluvoxamine fluv Venlafaxine venl
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Figure 1 Evidence network of the antidepressants example. The
lines display the observed treatment comparisons. The thickness of a
line is proportional to the inverse standard error of the directly
estimated treatment effect, which is aggregated over all studies
including the two respective treatments.

(e.g. an aggregated log(OR)) with covariance V;ir . (In the
case that d is a design of one or more N;-armed studies,
éjir is a vector of length (N; — 1) and V“iﬂr a matrix of size
(Ng — 1) x (Ng — 1); for a detailed explanation see [10]).
Secondly, the vector of all direct treatment effect estimates

ar ,p NV
gdir .— (9{1", ey 95“) and the known covariance matrix
V := Cov(e) = diag (Vldir, e gir) are used to fit the
model:

édir :)(01’181: + €. (1)

The design matrix X comprises one column for each
treatment Aj,...,Ar and one row for each design and
each comparison with a design-specific reference (i.e. ),
(N4 —1) rows). Ifincluded in a design, this design-specific
reference equals Ag. The entries of X have value 1 in the
column corresponding to the treatment compared with
the reference, -1 in the column corresponding to a design-
specific reference whenever it is not Agp, and 0 else. The
vector of all error terms € is assumed to be independent
across designs and normally distributed with covariance
matrix V.

The vector of basic contrasts §"t can then be estimated
by generalised least squares as

gnet _ Bé‘dir,B _ (X’V’IX)_IX/V’I

with predicted effects X gnet — prpdir, Thereby, the matrix
H = XB projects the estimates based on direct evidence
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to the network estimates and provides in each row the lin-
ear coefficients for one network estimate. Thus, a network
estimate of treatment u versus treatment ¢ is composed as
follows:

D
é\;;let — Htu,.édir — Z htu,dédirr
d=1

where Hy, denotes one row vector, and /1, ; denotes one
entry (or in the case that d is a design of one or more N;-
armed studies, a transposed partial row vector of length
(Ng—1))ofH.

Influence of single studies or designs in network
meta-analysis

In classical meta-analysis, a study with a highly deviating
treatment effect estimate may have a strong influence on
the aggregated effect estimate depending on its weighting
in the estimation process. Using generalised least squares
estimation, the weight is proportional to the inverse vari-
ance of the treatment effect estimate.

In network meta-analysis, the weighting of a study in
one network estimate 62" depends not only on its cor-
responding precision, but also on the network structure:
Study s of design d with covariance matrix V; contributes
in model (1) to the aggregated treatment effect estimate

e ~1

09 with weight W = (ZseSd Vs’l) VL, where S,
denotes the set of all studies with design d. The direct
treatment effect estimate (9:}“ in turn drives a network esti-
mate ég}ft by the value of the corresponding element /1, 4

of matrix H. So, the contribution of study s is given by
htu,s = htu,dVVs'

If treatment effect estimate ét‘ihr of design d is inconsis-
tent with the treatment effect estimates of the remaining
network, the question arises as to how this influences a
network estimate ét’,‘ft. Therefore, we define an influence
function as the change in a network estimate when the
direct treatment effect estimate éjir is shifted by 8. For a
design of two-armed studies, this means if pdir | pdir 4
de; where e; denotes the unit vector with 1 at position d
and O elsewhere,

Faa (35 X, V) =05t (89 + seg) — Ot (6%7)
—Hp 04 1 8Hy ey — Hy, 09
=6htu,d-

In the case of multi-armed designs, influence functions
for each pairwise comparison can be defined similarly.

Net heat plot
To assess consistency and influence in a classical meta-
analysis, study weights and deviations between study
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effects and the aggregated treatment effect are, for exam-
ple, visualised in a forest plot. For a similar analysis in
network meta-analysis, a so-called net heat plot has been
proposed [10]. In a matrix visualisation (see examples in
the Results section), the contribution of the aggregated
direct evidence of each design (in a column) to each net-
work estimate (in a row) is shown by the area of gray
squares. The greater the area of a square, the greater
the contribution of the respective direct evidence to the
network estimate in the row. In combination with this evi-
dence flow, a heat matrix for assessing the inconsistency
in the network (quantified by a generalized Cochran’s Q
statistic) is shown: The colours on the diagonal repre-
sent the inconsistency contribution, the summand of the
Cochran’s Q statistic, of the corresponding design. The
colours on the off-diagonal are associated with the change
in inconsistency between direct and indirect evidence in a
network estimate in the row after relaxing the consistency
assumption for the effect of one design in the column.
Blue colours indicate an increase and warm colours a
decrease. In the case that the colour vector of a column is
equal to the colour vector on the diagonal, the detachment
of the respective design resolves the inconsistency in the
whole network.

The detaching of single designs is similar to the node
splitting technique of Dias et al. [8], but the net heat plot
approach additionally tracks the influence of each design
on the fit on all other designs and visualises the succes-
sive detaching of each designs in one plot. In contrast, the
approach to the consistency assessment presented in the
following allows for the application of a forest plot for one
specific treatment comparison.

Decomposable subnets

For the assessment of consistency and influence in one
network-based comparison, we use a simplification of
the network into a decomposable subnet. Firstly, we will
describe our approach for networks formed only by two-
armed studies and we will refer to the case of multi-armed
studies in Section ‘Multi-armed designs’.

A treatment effect estimate between treatments ¢ and
u is most easily assessable if the underlying network
is entirely composed of independent paths between the
treatment nodes u and ¢ (see also [14]). Two paths are
defined as independent if they do not share any edges.
Each path-based estimate can be formulated by the sum
over the intermediate effect estimates. For example, the
indirect estimate for treatment effect u versus ¢ via treat-
ment v can be calculated by 63T + 4dir [15]. Path based
estimates of independent paths are uncorrelated because
they are based on independent evidence. The variance
is obtained by summing up the direct estimate variances
as described by Bucher et al. [15]. All path-based esti-
mates are combined as a weighted sum with weights
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proportional to their inverse variances. For assessing the
consistency, we display this aggregation step in a for-
est plot where each row represents a path-based effect
estimate and each path is identified by its unique list of
intermediate treatments.

If the given network is not decomposable as described
above, we consider the set of all decomposable subnet-
works and choose one with the most precise resulting
effect estimate. Although challenging in general, it is often
easy to find a well approximating decomposable subnet
just by selecting all paths containing no or only one inter-
mediate treatment. Note that in a network represented by
a complete graph with direct effect estimates of constant
precision, the best approximating decomposable subnet
(i.e. with the most precise resulting effect estimate) is
uniquely defined by the direct path and all two-step indi-
rect paths [16]. The resulting estimate is identical to the
network-based estimate.

Once an approximating decomposition is achieved, we
denote the corresponding network estimate as étabf’ prox,
The residual evidence of the network can be defined as the
pseudo effect estimate

Anet /approx /approx Hnet
0, var (Om ) — 0, var <9m )

)
5approx fnet
var (Gm ) — var (Gm )

Ares .
0, ==

with precision
—1 (pres) _ —1 (pnet —1 ( papprox
var (Qm ) = var (Gtu ) — var (Gm )

(see analogously the back-calculation in [8]). Then, the
network-based estimate is the weighted sum

Anet _ approx "approx approx Ares
gtu =Wy etu + (1 — Wiy ) gtu
with
var é“et)
approx ( 2

Y v ()

This weight describes the proportion of evidence for the
given effect that is contained in the subnetwork. In the
following, we refer to it as approximating evidence pro-
portion. Note that the variance of the difference between
the network and the subnetwork-based estimate is

Aappro: A AaDDIO: ~
var <9mp prox _ Gt';ft) = var (9; p X) — var (9;‘?) ,

which can be used to straightforwardly define a Z statistic
to test for consistency between the approximation and the
network-based estimate (by analogy with e.g. [16]).

Forest plot

We use the path-based effect estimates and the pseudo
estimate together with their precisions to hierarchically
set up a forest plot that captures how the subnet-
work is composed of independent path-based estimates
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and, at a higher level, how the subnet contributes to
the whole network-based estimate (see examples in the
Results section). The resulting overall Cochran’s Q statis-
tic has degrees of freedom (df) equal to the number of
independent paths. It is similar but not identical to the
inconsistency Q [10]. It captures solely that aspects of
inconsistency that have consequences for the uncertainty
about the effect estimate 6/, The weights in the forest
plot can be interpreted as the proportion at which a per-
turbation in any direct estimate contributing to that path
is translated into a bias of the network estimate A2, If
the weight of the residual evidence is small, no perturba-
tion outside the subnet at any plausible scale is able to
substantially affect the network estimate.

Iterated shortest path algorithm

The enumeration of all decomposable subnets may be too
cumbersome. We therefore propose a simple algorithm
that aims to find a good, but not always the best, approx-
imating decomposable subnetwork. We therefore define
the distance between two adjacent nodes as the variance
of the corresponding direct effect estimate, and the length
of a path is identical to the variance of the path-based
effect estimate. The proposed algorithm is as follows:

1. Start selecting the shortest path between nodes ¢ and
u and eliminate all its edges [17].

2. Tterate until the nodes ¢ and u are no longer
connected.

The set of all eventually selected paths make up the
approximating sub-network and its independent path
decomposition.

Multi-armed designs

Different strategies can be used for multi-armed designs:
Firstly, they can be kept out of all paths of a subnetwork
of independent paths. Secondly, one convenient treatment
comparison for each multi-armed design, for example, the
comparison between A and B for the multi-armed design
ABC, can be allowed to potentially contribute in com-
bination with all two-armed studies of design AB. This
implicitly assumes that direct evidence for the relative
effect 6;, does not depend on the remaining treatments
investigated in the same study. A further strategy is to use
at most one comparison (e.g. AB) of each multi-armed
design separated from all two-armed studies (of design
AB) and to build extra paths with these comparisons if
possible. For the examples discussed in the following, we
use the first strategy.

Construction of validation datasets

In the Results section, we illustrate the influence analysis
and the decomposition of an evidence network into inde-
pendent paths based on the antidepressants example. For
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validating the analysis capabilities for the proposed path-
based forest plot assessment in contrast to the net-heat
plot approach, we use controlled perturbations, firstly in
a constructed, consistent dataset and then in the real
data. We constructed the consistent network of treatment
effects based on the antidepressants example by setting
the OR of all studies to one and retaining all standard
errors. The corresponding net heat matrix is drawn in
Figure 2a. Perturbations were effected by adding a § =
log(2) to selected log odds ratios é“}ir .

Results

We demonstrate the influence analysis as well as the
approach of the independent path decomposition and its
visualisation by applying the methods to the antidepres-
sants example. The analysis capability by the indepen-
dent path decomposition is discussed in comparison to
the net heat plot approach using controlled perturba-
tions in the consistent validation dataset as well as in the
real data. To produce the forest plots and the net heat
plots, we used functions of the R packages meta [18]
and netmeta [19]. Software instructions and an R func-
tion for the iterated shortest path algorithm are available
on the website http://www.unimedizin-mainz.de/imbei/
biometrie/software.html.

Influence analysis

The contribution of all design-specific direct evidence to
the network estimates in the antidepressants example is
visualised in Figure 2a. The areas of the gray squares are
determined by the elements of the projection matrix H of
the underlying model (as well as in [10]). As seen from the
column of design fluo:venl for example, the correspond-
ing direct estimate represents a large source of evidence as
it drives the network estimates for many treatment con-
trasts. In particular, (as visualised by the area of the gray
square in the diagonal element fluo:venl) the network esti-
mate for fluo:venl is based on 49% direct evidence of 11
studies with inverse variance weights between 2.1% and
16.3%. The contribution of single studies to the network
estimate is therefore beween 1% and 8%.

Figure 2b shows the influence of the direct evidence of
design fluo:venl on three exemplarily chosen network esti-
mates that could be important if the evidence of design
fluo:venl deviates from the assumption of consistency.
Here, the relative change in the network estimate against
the change in the direct estimate is plotted. The functions
are linear on a log scale with slope determined by the H
matrix entries. For instance, doubling the OR of the direct
estimate with design fluo:venl (94" > A4ir 4§, with § =
log(2)) changes the three network estimates shown by 8%,
26%, and 40%. In the constructed, consistent data exam-
ple (see Section ‘Construction of validation datasets’), this
means that a directly estimated OR in design fluo:venl of
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Figure 2 Influence analysis in the antidepressants example. a) Visualised H matrix: The contribution of the direct estimate of one design in the
column to a network estimate in the row is shown by the area of the corresponding gray square. The two contrasts of the two three-armed studies
with design fluo:paro:sert are marked by *. A design whose direct evidence contributes greatly to the network estimate of some other designs is
framed. b) Three exemplary influence functions: The influence of direct evidence of design fluo:venl on the network estimates with designs fluo:venl
(dashed line), sert:venl (solid line), and fluo:paro (dashed and dotted line) and their corresponding 95% confidence intervals (dotted lines) is shown.
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2.00 [1.67;2.39] instead of 1.00 [0.84;1.2] shifts the network
estimates for comparisons fluo:paro, sert:venl, fluo:venl
from 1.00 [0.89;1.12], 1.00 [0.86;1.17], and 1.00 [0.88;1.13]
to 1.08 [0.96;1.21], 1.26 [1.08;1.47], and 1.41 [1.24;1.59].
Such a deviation of the direct evidence of design fluo:venl
from the assumption of consistency would bias the net-
work estimates of comparisons sert:venl and fluo:venl to
at 5% level significant treatment effects.

Approximation by independent path decomposition
The network of antidepressants shown in Figure 1 is
highly complex and interconnected. It has 42 edges
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supported by direct evidence including two three-armed
studies. But a lot of treatment comparison estimates in
this network meta-analysis are dominated by direct and
simple indirect evidence including only one intermediate
treatment.

For example, the network estimate of comparison
sert:venl is primarily based on direct evidence with 22%
and on eight indirect comparisons including only one
intermediate treatment (via bupr, cita, esci, fluo, fluv, mirt,
paro, and rebo). This independent path decomposition is
shown in Figure 3a and is the result of the iterative shortest
path algorithm. The corresponding forest plot is displayed

fluo
a cita
sert
mirt
bupr
venl
) rebo
esci
Comparison Odds Ratio OR 95%-Cl W(fixed)
direct - 1.16 [0.83;1.62] 21.7%
indirect via bupr N 1.26 [0.85;1.85] 16.3%
indirect via cita R B 0.85 [0.38; 1.87] 3.9%
indirect via esci —1 0.74 [0.43;1.27] 8.5%
indirect via fluo —&— 1.00 [0.74;1.36] 25.8%
indirect via fluv —+——2.80 [1.01;7.77] 2.3%
indirect via mirt — 0.64 [0.35;1.15] 6.9%
indirect via paro S 0.81 [0.45; 1.46] 7.0%
indirect via rebo ——+—— 1.63 [0.38;6.97] 1.1%
Fixed effect model T 1.02 [0.88; 1.20] 100%
Heterogeneity: 1=13.9%, 1>=0.011, p=0.3147
\ \ T 1
0.2 05 1 2 5
favors sert favors venl
Figure 3 Approximation by independent path decomposition for network estimate of comparison sert:venl in the antidepressants
example. a) Approximating decomposable subnet. The thickness of a gray line is proportional to the inverse standard error of the corresponding
directly estimated treatment effect. The thickness of a black line represents the contribution of direct evidence to network estimate sert:venl.
b) Forest plot of the independent path subnet and the residual evidence.




Krahn et al. BMC Medical Research Methodology 2014, 14:131
http://www.biomedcentral.com/1471-2288/14/131

in Figure 3b. The approximation by the independent paths
provides 93.5% of the whole network’s evidence regarding
the estimation of the treatment comparison sert:venl.

This display shows fairly consistent independent path-
based estimates with exception of the indirectly estimated
treatment effect via fluv with OR 2.8 [1.01;7.77]. Since the
contribution of this estimate is 2.3%, the network esti-
mate is only influenced a little. The pseudo estimate of
the residual evidence is in accordance with the approxi-
mation, and the Q statistic of 10.46 (df=9, p=0.31) between
the different sources of evidence indicates only slight
inconsistency.

We generated approximations for all 66 pairwise treat-
ment comparisons in the network. The median approx-
imating evidence proportion was 85% (with range of
55-97%).

Validation of the sensitivity to perturbations in contrast to
the net heat plot approach
To compare the consistency analysis in forest plots
of independent paths in contrast to the net heat plot
approach, we perturbed chosen direct treatment effects in
the constructed, consistent dataset as described above.
At first, we perturbed the direct treatment effect esti-
mate of design fluo:venl by inflating the OR by a factor
of two. In the net heat plot, this results in an associated
red-coloured diagonal element that depicts the contribu-
tion of design fluo:venl to the inconsistency in the network
(see Figure 4a). Other designs, for example sert:venl, con-
tribute to the inconsistency statistic as well, albeit in
attenuated form, which can be seen by the correspond-
ing yellow-coloured diagonal elements. This is because
their network estimates are largely driven by the direct
treatment effect of design fluo:venl (see the gray squares
in column fluo:venl), and these network estimates are
also affected. Inspecting the warm-coloured off-diagonal
elements, inconsistency between the direct evidence of
designs fluo:venl and bupr:venl as well between fluo:venl
and fluo:bupr can be observed. Since only the elements in
the column of fluo:venl are coloured the same as the cor-
responding diagonal elements, a complete elimination of
inconsistency in the whole network is only reached after
relaxing the consistency assumption for design fluo:venl.
On the right side of Figure 4a, the forest plot for the
network estimate of comparison sert:venl based on the
independent path decomposition of Figure 3a is shown.
Since we constructed the dataset by setting the OR of all
studies to one (with exception of the OR of studies with
design fluo:venl in this perturbed case), the network esti-
mate for comparison sert:venl, shown by the diamond on
the bottom of the forest plot, should be equal to one. But
it can be seen that the indirect estimate via fluo (OR:
exp (Bgli;):venl - ef(litilro:sert) = exp(log(2) — log(1)) = 2) as
well as the pseudo effect estimate of the residual evidence
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is affected by the perturbed direct treatment effect esti-
mate of design fluo:venl. This, in turn, influences the net-
work estimate of comparison sert:venl, since the indirect
estimate via fluo comprises 26% of the estimate.

In perturbation setting two, when we perturbed not only
the direct treatment effect of design fluo:venl, but also of
design dulo:esci to the same extent, we can observe the
largest inconsistency contributions in the net heat plot in
Figure 4b for these designs as well as for design dulo:paro.
The blue-coloured elements in the upper left corner indi-
cate that the direct effect of design fluo:venl and that of
dulo:esci (or alternatively dulo:paro) support each other.
This means the detachment of one of both designs from
the network estimation increases the residual of the other
design and the inconsistency in the network can be elim-
inated in neither of the detachments. Since the adjacent
edges corresponding to designs dulo:esci and dulo:paro
are part of an essentially non-branching path, the residu-
als resulting from the detachment of one of both designs
are highly correlated, and the two corresponding columns
contains very similarly coloured elements. Because the
direct evidence of design dulo:esci drives only a little of
the network estimate of comparison sert:venl, which can
be seen by the little gray square in column dulo:esci and
row sert:venl, the additional perturbation of the effect of
design dulo:esci hardly changes the network estimate of
comparison sert:venl.

This is duly reflected in the accompanying forest plot.
Due to the small contribution of the direct evidence of
design dulo:esci to the network estimate of comparison
sert:venl, the edge corresponding to design dulo:esci is
not part of the subnet that approximates the network esti-
mate of comparison sert:venl, and the perturbation is only
slightly recognisable in the forest plot by the small change
of the residual evidence.

In perturbation setting three, in addition to the direct
treatment effect of design fluo:venl, we perturbed the
effect of design fluo:sert by inflating the OR by a fac-
tor of two. An indirect effect estimate of comparison
sert:venl via fluo therefore also results in an OR of 1
as in the unperturbed case (exp (Gglifo:venl — glifosert)
exp(log(2) — log(2)) = 1). The net heat plot in Figure 4c
indicates that both perturbations take effect in the same
direction (the direct effects of both designs support each
other, as shown by the blue-coloured elements), whereas
in the forest plot only a small change in the pseudo effect
estimate of the residual evidence is recognisable, and the
indirect estimate via fluo is not affected at all. Thus, the
forest plot clearly reveals that both perturbations taken
together are not relevant for the comparison sert:venl.

In summary, in the forest plot for one network esti-
mate, an inconsistent direct estimate is only identified if
its edge is part of the approximating subnet and is not
dissolved within an independent path. That is, the forest
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Figure 4 Approximation by independent path decomposition versus net heat plot approach in the constructed examples after
perturbing the direct estimates in a) of fluo:venl, in b) of fluo:venl and dulo:esci, and in c) of fluo:venl and fluo:sert (column red marked
respectively) by inflating the corresponding OR by a factor of two. Left: Net heat plots in which the area of a gray square displays the
contribution of the direct estimate of one design in the column to a network estimate in the row. The colours on the diagonal represent the

inconsistency contribution of the corresponding design. The colours on the off-diagonal are associated with the change in inconsistency between
direct and indirect evidence in a network estimate in the row after relaxing the consistency assumption for the effect of one design in the column.
Blue colours indicate an increase and warm colours a decrease. Only rows and columns of the net heat plots are shown, where the maximal
absolute entry exceeds or is equal one. The two contrasts of the three-armed studies are marked by *. Right: Forest plots for the network estimate of
comparison sert:venl based on the independent path decomposition of Figure 3a in the three constructed examples.
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plot is selectively sensitive to biases that affect the consid-
ered treatment comparison. In contrast the net heat plot
summarises the network drivers and inconsistencies in the
whole network.

Using the real data of the antidepressants network-meta
analysis after perturbing the directly estimated odds ratios
for designs fluo:venl and dulo:esci by a factor of two, we
can also see that both perturbations are detected by the
net heat plot in Figure 5. But as seen in the forest plot
for comparison sert:venl, the first one almost exclusively
affects the network estimate and the consistency between
different evidence sources.

Discussion and conclusions

In network meta-analysis, evidence from different designs
contributes to a comparison between two treatments. For
the consistency assessment between the effects of differ-
ent evidence sources, we have provided a visualisation
of an approximating independent path decomposition by
forest plots and have investigated its performance in com-
parison to that of the net heat plot. We have shown
for the example of the highly interconnected network
of twelve antidepressants that most network-based treat-
ment comparisons are approximated well by the evidence
of independent paths. The proposed forest plot discloses
and summarises the essentials of a given network-based
treatment comparison: the weight given to each path, the
consistency between all paths, the comparison between
the estimate based on the approximation and on the whole
network, and the residual evidence that is not included in
the approximation is condensed into a pseudo estimate.
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The heterogeneity reported in this forest plot captures
these aspects of the inconsistency, which are crucial for
the considered comparison.

By perturbing the antidepressants network, after mak-
ing it artificially perfectly consistent, we have shown how
different kinds of perturbation show up as drivers of
inconsistency in the net heat plot or as outlying path-
specific evidence in the forest plot. While the net heat plot
is sensitive to all kinds of perturbation that sufficiently
inflate Cochran’s Q statistic for inconsistency, the forest
plot indeed revealed to be selectively sensitive to pertur-
bations that are influential to the considered comparison.

Independent path approximations should be considered
only if they capture, say, more than 80% of the network
evidence. If this is not the case, the complete network
should be inspected. The flow of evidence can be dis-
played as a graph as outlined in [16], and influential
designs can be sought for in the net heat plot. A for-
est plot that exhibits consistent and balanced evidence
from several independent paths and that is additionally
in accordance with the residual evidence may indeed be
more convincing than a simple meta-analysis of direct
comparisons (as similarly argued in [20]).

Paths independence can be defined in two ways, edge
independence and vertex independence. In both defini-
tions, the path-based effect estimates are uncorrelated.
We have applied edge independence. Note that in an edge
independent path decomposition, the estimate based on
the subnet may be different from the estimate based on the
independent paths if some paths share a common inter-
mediate vertex. Two paths may contain some common
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Figure 5 Approximation by independent path decomposition versus net heat plot approach in the antidepressants example after
perturbing the red-marked direct estimates in the columns. Left: Net heat plot in which only rows and columns are shown, where the maximal
absolute entry exceeds or is equal one. Right: Forest plot for the network estimate of comparison sert:venl.
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intermediate vertices, and the forest plot implicitly splits
these nodes. As a consequence, the subnet has more
inconsistency degrees of freedom [10] than the corre-
sponding forest plot. For the antidepressants network, on
average only 2% of precision is lost by the approximation
based on independent paths instead of the subnet.

We focused on the fixed effects model in our exposition,
because inconsistency is most easily detectable then [1],
but note that the proposed forest plot can be adapted to
random effects models by assuming that the heterogene-
ity variance is known and fixed and by adding appropriate
elements to the covariance matrix of direct effect esti-
mates. The heterogeneity variance parameters would have
to be assessed using the study level data (see e.g. [21]
for various options to model the heterogeneity covariance
structure). Then a forest plot is set up for the result-
ing independent paths formally using the fixed effects
option but based on increased variances of the direct
effect estimates. Random effects parameters can be esti-
mated e.g. via the method of moments, by restricted max-
imum likelihood or by Bayesian methods. If the resulting
point estimates of heterogeneity variance parameters are
plugged in, our diagnostic tools are valuable for all these
approaches.

In the literature, various methods have been discussed
for the assessment of outliers and influence. In princi-
ple, all methods introduced for linear regression [22,23]
can be used [2,9]. For network meta-analysis, plots of
deviance residuals [24] have been discussed [8] as well
plots of squared Pearson residuals [25]. At an aggregate
level, regression diagnostics amount to analysis of incon-
sistency, with index plots of leverages and residuals [26],
concepts like node-splitting [8], and design-by-treatment
interaction [12,13]. None of these approaches focuses on
the meaning of inconsistency-generating evidence for a
specific treatment comparison and none offers all the ana-
lytical capacities known from the forest plot in classical
meta-analysis for visualising the composition of evidence
and identifying potential discrepancies.

Our proposed methods are confined to comparisons
that are well-approximated by an estimate based on an
independent path decomposition. In complex networks,
comparisons that do not fit into this scheme may well
be assessed by defining an approximating subnet that is
more complex than a decomposable subnet, but much less
complex than the whole network. In the antidepressants
example more than half of all edges have weights less than
1/44, which is one fourth of the weights seen in a com-
plete and balanced network of 12 treatments. Only a few
percentages loss in precision should result from omitting
these edges. Resorting to a subnet estimate if it captures
more than 95% of the evidence for one comparison could
be a remedy to the model uncertainty, e.g. with regard to
the network size that was discussed in [27].
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In conclusion, we have introduced forest plots of
independent path decompositions for the assessment
of consistency in complex meta-analytic networks as
well. We have seen that this graphical presentation
known from classical meta-analysis captures the essen-
tials of a network-based treatment comparison and dis-
closes both the composition of evidence and sources
of potential inconsistency relevant for the considered
comparison.
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