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Abstract

Background: The tendency towards publication bias is greater for observational studies than for randomized
clinical trials. Several statistical methods have been developed to test the publication bias. However, almost all
existing methods exhibit rather low power or have inappropriate type I error rates.

Methods: We propose a modified regression method, which used a smoothed variance to estimate the precision
of a study, to test for publication bias in meta-analyses of observational studies. A comprehensive simulation study
is carried out, and a real-world example is considered.

Results: The simulation results indicate that the performance of tests varies with the number of included studies,
level of heterogeneity, event rates, and sample size ratio between two groups. Neither the existing tests nor the
newly developed method is particularly powerful in all simulation scenarios. However, our proposed method has a
more robust performance across different settings. In the presence of heterogeneity, the arcsine-Thompson test is a
suitable alternative, and Peters’ test can be considered as a complementary method when mild or no heterogeneity
is present.

Conclusions: Several factors should be taken into consideration when employing asymmetry tests for publication
bias. Based on our simulation results, we provide a concise table to show the appropriate use of regression
methods to test for publication bias based on our simulation results.
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Background
Meta-analyses of observational studies are as common
as the meta-analyses of controlled trials [1]. Combining
observational studies is useful in situations where evi-
dence must be synthesized in research areas that are not
conducive to randomized controlled trials [2]. However,
publication bias (the selective publication of studies
based on the magnitude (usually larger) and direction of
their findings) presents a particular threat to the validity
of meta-analyses [3]. The tendency towards publication
bias is greater for observational studies than for random-
ized clinical trials [4].
More generally, the tendency for smaller studies to

show greater effects than larger studies has been termed
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the “small-study effect” [5,6]. This effect may be due to
publication bias or heterogeneity, which often arises
from population differences or methodological diversity
across studies. Factors that confuse the relationship be-
tween study effect and study size may cause small-study
effects [6]. However, to maintain consistency with the
previous literature, we consider this distorted relation-
ship to be a form of “publication bias” in this paper.
A convenient way of visualizing the evidence for publi-

cation bias is the use of funnel plots [7]. When publication
bias is present, the funnel will be asymmetrical, with a ten-
dency for effect sizes to be larger in less precise studies,
suggesting a missing “chunk” of the funnel. However,
decision-making based on the visualization of funnel plots
is rather subjective. Several statistical methods have been
developed to examine the publication bias by testing
asymmetry in funnel plots. The principle of the existing
methods is to test the association between the estimated
effect size and the precision of individual studies using
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Table 1 Notation of outcomes for a single study

Case group Control group

Exposed ai bi M exposed
i ¼ ai þ bi

Unexposed ci di Mun exposed
i ¼ ci þ di

Ncase
i ¼ ai þ ci Ncontrol

i ¼ bi þ di
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rank correlation or regression methods. Rothstein et al.
provided a detailed discussion of these methods [8]. Two
commonly used approaches are Begg’s and Egger’s tests
[9,10]. However, rank correlation-based tests have been
criticized for their low power, and most regressions exhibit
high type I error rates [5,11-13]. These tests assume that,
under the null hypothesis of no publication bias, there is
no association between effect size and precision. This is
plausible when the outcome is quantitative, because the
assumption of normality implies that the sample mean is
statistically independent of the sample variance. This does
not hold for binary outcomes [11-16]. Suppose a binary
outcome is summarized by the log-odds ratio (logOR).
The variance estimators of logOR are statistically
dependent of the estimated logOR. Even in the absence of
publication bias, as in the simulation study conducted by
Rucker et al., this dependence induces asymmetry in the
funnel plot [15]. The principle behind recently developed
methods (such as funnel plot regression [11], Harbord’s
score test [14], Peters’ test [12,17], and Rucker’s arcsine
transformed tests [15]) is a reduction in the intrinsic asso-
ciation between the estimated effect size and its estimated
asymptotic variance. One potential approach to reduce
this association is to use smoothed variance estimates,
which have successfully replaced asymptotic variance in
simulation studies in the context of random-effects meta-
regression. In Berkey’s study, the smoothed estimator of
the within-study variance was used in the random effect
regression model for meta-analysis to estimate less biased
regression coefficients [18].
Sterne et al. recommended certain tests for funnel plot

asymmetry in meta-analyses with randomized controlled
trials [19]. For binary outcomes, Peters’ test, Harbord’s
score test, and Rucker’s arcsine-Thompson (AS-Thompson)
test were recommended based on simulated meta-analyses
with randomized controlled trials. However, observational
studies have different characteristics: unbalanced sample
sizes in the case and control arms, and possible rare events.
Hence, these recommendations are not necessarily appro-
priate for meta-analyses of observational studies.
In this paper, we develop new regression methods that

use a smoothed variance as the precision scale of an indi-
vidual study to test the asymmetry of funnel plots. In
addition, we conduct a comprehensive simulation study
based on data from Human Genome Epidemiology (HuGE)
to compare the performance of the existing methods with
that of the proposed methods. Finally, we make some rec-
ommendations based on the simulation results.

Methods
Smoothed variance
Suppose we conduct a meta-analysis of k studies with
binary outcomes. The results for the ith study are sum-
marized in Table 1.
Using the notation in Table 1, we obtain estimators for

logOR and its asymptotic variance as θ̂ i ¼ log aidi=bicið Þ
and v̂i ¼ 1=ai þ 1=bi þ 1=ci þ 1=di , respectively. The es-
timator of the logOR and its asymptotic variance estima-
tor are intrinsically correlated [14,15]. To reduce the
correlation, we use a smoothed variance to replace the
original asymptotic variance or standard error, as in
Egger’s regression test.
With k studies in a meta-analysis, the estimated

smoothed variance for the estimated logOR in the ith
study is given by

v̂smoothed
i ¼ Ncase

i �
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i¼1
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i
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and the standard error is given by sei ¼ v̂smoothed
i

� �1=2
.

Regression models
We introduce two linear regression models based on this
smoothed variance. In the first model, we use a weighted
regression of θi on sei with weight 1=se2i . We term this
method the SVE test (Smoothed Variance regression
model based on Egger’s test). The regression model is
θi = α + β × sei + εi weighted by wi ¼ 1=se2i , with εi∼N
0; se2i
� �

.
In the second model, which was proposed by Thompson

et al. [20], we introduce a between-study heterogeneity
parameter τ2. We also regress θi on sei, with weight
1= se2i þ τ2
� �

. The regression model is

θi = α + β × sei + εi weighted by wi ¼ 1= se2i þ τ2
� �

, with

εi∼N 0; se2i þ τ2
� �

.
The method of moments is used to estimate the

between-study variance τ2 [20,21]. We term this the SVT
test (the Smoothed Variance regression model based on
Thompson’s method). The maximum likelihood estimates
of α and β are obtained by least-squares regression with
weight wi. The null hypothesis for both methods is β = 0,
which corresponds to no publication bias.
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Simulation study
To compare the performance of the existing methods
with that of the proposed methods, we conducted a
comprehensive simulation study. The main simulation
procedure is similar to the studies of Peters and Moreno
[6,12,17]. Our study considers the random effect model.
We use Begg’s test [9], Egger’s test [10], Harbord’s score
test [14], Peters’ test [12], Schwarzer’s count test [16],
the AS-Begg test, AS-Egger test, AS-Thompson test
[15], SVE test, and SVT test to examine the publication
bias. To make the simulation study more realistic, we
reviewed all the Human Genome Epidemiology (HuGE)
meta-analyses in the American Journal of Epidemiology.
We searched the journal using the keywords “Human
Genome Epidemiology Review,” “HuGE review,” “poly-
morphisms,” and “systematic review or meta-analysis”.
The information extracted and used in our simulation
included the number of individual studies included in
each meta-analysis, sample size in the case and control
arms, sample size of the included studies, OR values,
and heterogeneity. Two investigators performed the lit-
erature search and data extraction procedures independ-
ently. We now describe the parameters used in the
simulation study.

a. The number of individual studies included in the
meta-analyses were 5, 10, 20, 30, and 60.

b. According to the OR values reported in HuGE
articles, we set the underlying OR to 1.0, 1.2, 1.4,
1.6, 1.8, and 2.0.

c. The average event rates were sampled from the
uniform distributions (0.3, 0.7) and (0.1, 0.3),
corresponding to the common event rate and rare
event rate, respectively, as in previous studies
[6,12,13,16,17].

d. Following the simulation reported by Peters et al. [12],
the between-study variance τ2 was set to 300%, 100%,
33%, and 1% of the average within-study variance of
the fixed effect models. These percentages correspond
to I2 of 75%, 50%, 25%, and 1%, respectively, where
the I2 statistic represents the percentage of the
observed between-study variability resulting from
heterogeneity rather than chance. As suggested by
Higgins [22], we also assigned high, moderate, low,
and no heterogeneity to the I2 values of 75%, 50%,
25%, and 1%, respectively.

e. The sample size of the individual studies was generated
from the log-normal distribution with a mean of 6.049
and a standard deviation of 0.848, as estimated from
the reviewed meta-analyses. The sample size ratios for
the combined case and control groups were set to 1:1,
1:2, 1:3, and 1:4. To mimic a real situation, we took the
sample ratio for an individual study randomly from a
triangle distribution [23], rather than from a uniform
distribution. Using the total sample size and group
ratio, we generated sample sizes N1 and N2 for the case
and control groups, respectively.

f. Using the parameters generated in steps a to e, we
generated data for the ith study as follows [6,24]:

aieBinomial p1i ;Ni1
� �

;
bieBinomial p2i ;Ni2

� �
;

logit p1i
� � ¼ μi−δi=2;

logit p2i
� � ¼ μi þ δi=2; and

δieN θ; τ2ð Þ:

Here, p1i and p2i are the event probabilities in the case and
control groups, respectively. μi is the average event rate on
the logit scale, and θ is the logarithmic form of the under-
lying OR. The other notation is the same as in Table 1.

g. No publication bias was induced in this step: all the
studies would be published regardless of the
significance of their results. Step f was repeated until
the desired number of studies (5, 10, 20, 30, or 60)
was obtained. All studies were included in the
meta-analysis, which we defined as the meta-analysis
without publication bias. Ten methods were used
to test for publication bias, and the process was
repeated 1,000 times. The empirical type I error
rates of the tests can be estimated from these
simulated data under the null hypothesis that there
is no publication bias.

h. To estimate the power of the tests for detecting
publication bias, we introduced publication bias. The
probability of publishing a study is determined by
the p-value of each study’s primary outcome. Mild
and severe publication bias was introduced as
follows. Mild bias occurs when the probability of
publishing and including an individual study in a
meta-analysis was 0.95 when p ≤ 0.05, 0.75 when
0.05 < p ≤ 0.5, and 0.5 when p > 0.5. In addition,
10% of the most extreme effect sizes were censored.
Severe bias occurs when the probability of publishing
and including a study was 0.95 when p ≤ 0.05, 0.5
when 0.05 < p ≤ 0.5, and 0.25 when p > 0.5. Again,
10% of the most extreme effect sizes were censored.
Random numbers were generated from a uniform
distribution (0, 1). The probability of inclusion was
compared to the generated random number to
determine whether each study would be included in
a meta-analysis. This was repeated until the desired
number of studies (5, 10, 20, 30, or 60) had been
obtained. The 10 methods mentioned above were used
to test for publication bias and the whole process was
repeated 1,000 times. The power of the tests was
estimated from these datasets. The Monte Carlo error
was around 0.0095.
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The power of asymmetry tests largely depends on the
number of studies included in a meta-analysis, which is
generally small. This limits the power of the test. There-
fore, following previous studies [5,10,15], we used p ≤ 0.10
as evidence for publication bias. The R programming lan-
guage was used to conduct the simulations [25].

Results
Simulation results
In total, 2,880 combinations were simulated (five different
numbers of included studies × six different OR values ×
two average event rates × four levels of heterogeneity ×
four sample size ratios between the case and control
groups × three different levels of publication bias: no bias,
mild bias and severe bias). Because of space limitations,
we present only the results under the common event rate
and the balanced sample size ratio.
The empirical type I error rates are shown in Figure 1.

Only three regression tests (Peters’ test, AS-Thompson
test, and our SVT test) had appropriate type I error rates,
regardless of the degree of heterogeneity and the number
of included studies. In general, the rank correlation tests
were more conservative than the regression tests in all
scenarios. We observed that the type I error rates of the
three rank correlation tests and the other four regression
tests diverged from the nominal level as the heterogeneity
or number of included studies increased. However, when
I2 was close to zero, all of the regression tests had appro-
priate type I error rates, except for the AS-Thompson test.
We compared the power of the three tests that had

appropriate type I error rates in the presence of hetero-
geneity. From the results shown in Figure 2, we can con-
clude that our newly developed SVT test is the preferred
method. This test exhibits a higher power than Peters’
test and the AS-Thompson test in almost all scenarios.
The AS-Thompson test is a suitable alternative when
moderate or severe heterogeneity is present. However,
the AS-Thompson test is rather conservative when no
heterogeneity or mild heterogeneity is present. Peters’
test can be considered a complementary method in such
cases. However, several other regression methods can
also be used to detect asymmetry in the absence of het-
erogeneity. The number of individual studies included
was another important factor in determining the power
of a test. The power of Peters’ test, the AS-Thompson
test and the SVT test increased with the number of in-
cluded studies. All test powers were very low when fewer
than 10 studies were included (data not shown). When
the event rate and sample size ratio of two groups were
considered, Harbord’s test was preferable to the others
under the combination of a rare event and larger size ra-
tio between two arms in the absence of heterogeneity.
However, the power of our SVT test was only slightly
lower than that of Harbord’s test for this combination.
In general, rank correlation tests are more conserva-
tive than regression methods. Thus, we do not recom-
mend using rank correlation-based models to test for
publication bias. To make these tests more accessible to
less technical readers, Table 2 describes which regression
method is most appropriate to test for asymmetry in
funnel plots based on the results of our simulation
study. This table is very easy to read. As the number of
included studies increases, the power of the tests also in-
creases, but the relative ranks for the test powers do not
change. Therefore, we do not list this factor in the table.
This table is applicable to all meta-analyses with more
than 10 individual studies. For example, if a meta-analysis
with 15 studies has an I2 value of around 50%, size ratio of
approximately 1, and an event rate close to 0.60, we search
the table for a method indicated by solid circles with a
moderate level of heterogeneity and a size ratio of 1:1, i.e.,
the SVT test, Peters’ test and the AS-Thompson test.
However, the SVT test always has a slightly higher power
than Peters’ test and the AS-Thompson test.

A real HuGE review example
We illustrate the use of the tests by detecting the publi-
cation bias in a HuGE review that examines the associ-
ation between ACE-I/D polymorphism and Preeclampsia
risk [26]. The meta-analysis of ACE-I/D polymorphism
includes 22 studies comprising 2,596 cases and 3,828
controls. The additive model (per-D-allele) reveals a
positive association between the ACE-I/D variant and
preeclampsia (OR = 1.26, 95% CI, 1.07–1.49). The au-
thors present the results of Egger’s and Peters’ test under
the per-allele model. However, these tests may not be
appropriate for binary outcomes or severe heterogeneity.
Additionally, the authors do not fully describe the publi-
cation bias under other genetic models. Table 3 lists all
the test results under five genetic models. Given the vi-
sualized funnel plots (Figure 3) and resulting p-values,
we can summarize the results as follows (α = 0.10).
(1) Comparing Figure 3a and b, we can see that the

variance of each individual study became smoother after
it was re-estimated, which means that the variance of
the studies decreased. The cases of D vs I and DD vs
ID+II in Figure 3b show the asymmetry of the plots.
(2) The results of the AS-Thompson test and SVT test

agreed in finding publication bias in all comparison
groups.
(3) In Serrano’s paper, all comparison groups exhibit

asymmetry using Egger’s and Peters’ tests, except in the
ID vs. II group [26]. However, the results of our study
suggest that only the per-allele model and the recessive
model have such asymmetry.
(4) Schwarzer’s count test, a rank-based method, was the

most conservative, and did not detect any asymmetry in
the four groups. Egger’s test and Peters’ test seemed to give



Figure 1 Empirical type I error rate. Empirical type I error rate with respect to the number of included studies and different OR values and
heterogeneity: a. Type I error rate of 10 tests with heterogeneity; b. Type I error rate of 10 tests without heterogeneity. Nominal significance
level is 0.10.
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false positive results under the dominant model (DD+ID vs
II); none of the other eight tests found asymmetry in this
group. The positive results given by Egger’s test, Harbord’s
test, Peters’ test, the AS-Egger test, AS-Begg test, and SVE
test for the DD vs II group may have been caused by the
inflated type I error rate under severe heterogeneity.
We can conclude that the funnel plots and test results

suggest the existence of publication bias under the per-
allele model and the recessive model. We have confirmed
that the preeclampsia risk associated with the ACE D-
allele may largely be a result of publication bias. Note that
the publication bias or reporting bias in the HuGE review
arises from particular sources. Genetic association studies
usually investigate more than one Single Nucleotide Poly-
morphism (SNP) simultaneously. However, the authors
tend to report only SNPs with more favorable results, as
well as results under favorable genetic models.

Discussion
In this research, we have proposed modified regression
methods that use smoothed variance estimates to replace
the asymptotic variance estimates in Egger’s test when the
effect size is the odds ratio. This smoothed variance re-
duces the correlation between the estimated odds ratio
and its variance. Using Thompson’s method, we intro-
duced the parameter t2 of between-study heterogeneity to



Figure 2 Statistical power of the tests. Power with respect to the number of included studies in meta-analyses with severe publication bias
and different OR values and heterogeneity: a. Power of three regression tests with heterogeneity; b. Power of seven regression tests without
heterogeneity; Nominal significance level is 0.10.
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the regression weight. Our simulation results indicate that
the performance of the existing methods and modified
methods varies with the number of included studies, levels
of heterogeneity, event rates, and sample ratio between
the two groups. Neither the existing tests nor the newly
developed methods were powerful in all scenarios. How-
ever, in most scenarios, our modified regression test, the
SVT test, had the most appropriate type I error rate and a
relatively high power compared with existing tests.
From the definition of smoothed variance, we can see

that the total numbers of cases ( Ncase
i ) and controls

(Ncontrol
i ) directly influence the smoothed variance of the
ith study. The exposure rates do not affect this smoothed
variance. To some extent, this definition implicitly as-
sumes that the difference in variances between studies
is largely a result of differences in the sample size of
case and control groups. In fact, Knapp et al. found that
the order of precision based simply on the sample sizes
is exactly the same as that based on the smoothed vari-
ance estimates [27]. It is worth noting that all of the
methods mentioned above have low power when the
sample sizes of the included studies were similar. In this
circumstance, methods based on selection models could
be used [28,29].



Table 2 Recommendation about using the regression methods to test the asymmetry of funnel plot

Heterogeneity Size ratio SVT SVE Egger Harbord Peters AS-Egger AS-Thompson

No 1:1 ● ● ●○ ● ● ● –

1:2 ● ● ● ●○ ● ● –

1:3 ● ● ● ●○ ● ● –

1:4 ● ● ● ●○ – ● –

Low 1:1 ●○ – – – ●○ – –

1:2 ●○ – – – ●○ – –

1:3 ●○ – – – ●○ – –

1:4 ●○ – – – ●○ – –

Moderate 1:1 ●○ – – – ●○ – ●○

1:2 ●○ – – – ●○ – ●○

1:3 ●○ – – – ●○ – ●○

1:4 ●○ – – – ●○ – ●○

High 1:1 ●○ – – – – – ●○

1:2 ●○ – – – – – ●○

1:3 ●○ – – – – – ●○

1:4 ●○ – – – – – ●○

● Applicable for common event.
○ Applicable for rare event.
– Not applicable.
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Compared with the results of Rucker’s simulation study,
we found similar conclusions for Peters’ test and the AS-
Thompson test [15]. Our results and those of Rucker’s
suggest that the AS-Thompson test was more conservative
than Peters’ test when there was no heterogeneity and
more powerful than Peters’ test when heterogeneity was
present. In this latter case, our SVT test became slightly
more powerful than Peters’ test as the number of included
studies increased. However, their performance is compar-
able when around 20 studies are included, which is a typ-
ical number for many meta-analyses. Therefore, when
there are fewer than 20 studies, both tests can be used. As
Table 3 Resulting p-values for testing the publication bias un

Methods

D vs. I DD vs. II

(I2 = 81.1%)* (I2 = 71.8%)

Begg 0.04 0.11

Schwarzer 0.05 0.19

AS-Begg 0.03 0.03

Egger 0.02 0.02

Harbord 0.02 0.07

Peters 0.004 0.01

AS-Egger 0.02 0.06

AS-Thompson 0.03 0.13

SVE 0.02 0.06

SVT 0.09 0.21

*I2 represents the percentage of between-study variability due to heterogeneity.
to our test’s apparent superiority over Peters’ test when
heterogeneity is present and the number of included stud-
ies is larger, we acknowledge that this does not have a
solid statistical basis.
From the simulation results, almost all tests performed

poorly in the presence of severe heterogeneity. In this
case, we recommend exploring possible factors for het-
erogeneity, rather than testing the asymmetry of funnel
plots. The simulation study showed that when few stud-
ies (e.g., five) were included in the meta-analyses, the
power was very low. As described in the Cochrane
Handbook for Systematic Reviews, statistical tests for
der five genetic models

ACE-I/D Polymorphism

ID vs. II DD vs. ID+II DD+ID vs. II

(I2 = 31.5% ) (I2 = 74.5%) (I2 = 63.1%)

0.80 0.09 0.17

0.80 0.15 0.27

0.76 0.03 0.23

0.76 0.01 0.09

0.97 0.02 0.19

0.74 <0.001 0.05

0.97 0.01 0.16

0.95 0.01 0.18

0.98 0.01 0.15

0.99 0.04 0.24



Figure 3 Funnel plots of a real world example. Funnel plots of the real HuGE review example under different genetic models. Black circles.
Standard error estimated from asymptotic variance as the studies’ precision; Red circles. Standard error estimated from smoothed variance as the
studies’ precision.
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funnel plot asymmetry should only be used when there
are at least 10 studies included, because the power of
the tests is too low to distinguish chance from real
asymmetry when there are fewer studies [30].
Our simulation study has a number of strengths. First,

the simulation parameters were mainly extracted from
practical reviews, which made the simulation more real-
istic. Second, we made the sample size between the two
arms more realistic for observational studies. The sizes
of the two arms in individual studies had a rigorous bal-
ance ratio of one in previous simulation studies [12,14],
but this ratio may fluctuate around one or become
higher in observational studies. We used the triangle
distribution rather than the uniform distribution to ran-
domly generate the sample size ratio between two
groups. Taking an arm size ratio of 1:2 as an example,
this can be taken from a uniform distribution of (0.30,
0.36). In this situation, the total sample ratio for the case
and control groups in a meta-analysis could reach 1:2,
but the ratio for each individual study would range from
0.43 to 0.56, which is irrational. The triangle distribution
can ensure that the ratio for an individual study comes
from a rational range. Additionally, unlike Peters and
Rucker, we simulated meta-analyses of rare events,
which are not uncommon in HuGE reviews and meta-
analyses of adverse events.
Some limitations should be mentioned. Unlike Rucker

et al. [15,31,32], we did not use the Copas selection
model to introduce publication bias. We found that the
probability of including an individual study in the meta-
analysis was very small (nearly 10%) under this model
with the previous parameters [15,31]. This small prob-
ability means that the Copas model introduces a very
severe publication bias, which is unrealistic [33]. However,
the mechanism used to introduce publication bias in our
simulation is also somewhat arbitrary. Second, we have
not assessed the performance of the rank correlation-
based tests when the effect size was under other distribu-
tions than the normal distribution. However, in practice,
the assumption of normality for the random effect size
is rarely verified.

Conclusions
We have proposed a new version of the regression method
with better type I error control and relatively higher power
than other methods. We evaluated two newly developed
regression methods and other existing methods to test for
publication bias under situations that often arise in meta-
analyses with observational studies, using the log-odds
ratio as the measure of effect size. The purpose of our pro-
posed method is not to replace other tests in all scenarios.
Indeed, none of the methods were consistently good at
detecting publication bias in all scenarios. Instead, the
methods listed in Table 2 are complementary, and should
be deployed according to the situation. However, our
newly proposed method was generally more robust in
most scenarios. Finally, preventing publication bias is bet-
ter than applying curative methods—the main strategy of
prevention is the registration system. The R functions for
implementing the proposed method are available from the
first author upon request.
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