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Abstract

Background: Chained equations imputation is widely used in medical research. It uses a set of conditional models,
so is more flexible than joint modelling imputation for the imputation of different types of variables (e.g. binary,
ordinal or unordered categorical). However, chained equations imputation does not correspond to drawing from a
joint distribution when the conditional models are incompatible. Concurrently with our work, other authors have
shown the equivalence of the two imputation methods in finite samples.

Methods: Taking a different approach, we prove, in finite samples, sufficient conditions for chained equations and
joint modelling to yield imputations from the same predictive distribution. Further, we apply this proof in four specific
cases and conduct a simulation study which explores the consequences when the conditional models are compatible
but the conditions otherwise are not satisfied.

Results: We provide an additional “non-informative margins” condition which, together with compatibility, is
sufficient. We show that the non-informative margins condition is not satisfied, despite compatible conditional
models, in a situation as simple as two continuous variables and one binary variable. Our simulation study
demonstrates that as a consequence of this violation order effects can occur; that is, systematic differences depending
upon the ordering of the variables in the chained equations algorithm. However, the order effects appear to be small,
especially when associations between variables are weak.

Conclusions: Since chained equations is typically used in medical research for datasets with different types of
variables, researchers must be aware that order effects are likely to be ubiquitous, but our results suggest they may be

small enough to be negligible.

Multivariate missing data

Keywords: Chained equations imputation, Gibbs sampling, Joint modelling imputation, Multiple imputation,

Background

Multiple imputation [1] has become a popular approach
for the analysis of incomplete data, with several main-
stream statistical packages now incorporating multiple
imputation tools. It involves making several draws of the
missing data from their posterior predictive distribution
given the observed data and an imputation model. For
multivariate, non-monotone missing data there are two
main approaches for constructing an imputation model:
joint modelling and chained equations. Joint modelling
imputation requires the specification of a parametric joint
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model for the complete data: current implementations
impute under the multivariate normal model, the log lin-
ear model and the general location model [2]. However
for datasets containing different types of variables the
current classes of joint models [3-5] may not be appropri-
ate for the joint distribution of the data. The alternative
method, chained equations imputation [4,6], is more flex-
ible as it specifies a separate imputation model, typically
a univariate regression model, for each incomplete vari-
able and updates the missing data for each variable in
turn.

Chained equations imputation has been proposed
under several different names including: fully conditional
specification, stochastic relaxation, variable-by-variable
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imputation, regression switching, sequential regressions,
ordered pseudo-Gibbs sampler, partially incompatible
MCMC and iterated univariate imputation [3]. In addi-
tion to handling variables of varying types, the chained
equations approach has other flexible features such
as incorporating restrictions, logistical and consistency
bounds (for example, to handle imputation of gender
specific variables or impute only questions that were
not intentionally skipped in a questionnaire [4]). van
Buuren and Groothuis-Oudshoorn [7] discuss the wide
range of medical fields that have used chained equations
imputation (e.g. addiction [8], epidemiology [9], infec-
tious diseases [10], genetics [11], cancer [12], obesity and
physical activity [13]), and a brief review of available
software that have implemented chained equations impu-
tation is given by [14]. Given the popularity of chained
equations, among users of varying degrees of exper-
tise, there is now guidance in its practical use (e.g. [14]
and [15]).

Despite its widespread use, a known theoretical weak-
ness of the chained equations method is that the implicit
joint distribution underlying the separate models may
not always exist: that is, the conditional models may be
incompatible [4,5,16-18]. In such situations, the results
after chained equations imputation may systematically
differ according to the order in which the missing
variables are updated in the chained equations algo-
rithm. We shall refer to this phenomenon as an “order
effect”.

Previous authors [3-5] have stated that chained
equations imputation under a set of normal linear regres-
sion models, with all other variables as covariates and no
interactions, is equivalent to a Gibbs sampler that draws
from a multivariate normal distribution. van Buuren [3]
also states for a dataset of three partially observed binary
variables that chained equations under a set of logistic
regression models, with all other variables included as
main effects only, is equivalent to a joint modelling impu-
tation under a log linear model with the three-way factor
term set to zero. However, none of these papers provides
a proof beyond stating that the set of conditional models
is compatible [16] and are all derived from the specified
joint distribution.

Independently and concurrently with our work, Liu
et al. [19] have given sufficient conditions (which include
compatibility of the conditionals) under which, as the
sample size tends to infinity, the stationary distribu-
tion of the Markov chain generated by the chained
equations algorithm (assuming that this stationary distri-
bution exists and that the chain converges to it) converges
to the posterior predictive distribution of the missing data
implied by a joint Bayesian model. That is, under these
sufficient conditions, the total variation of the distance
between the chained equations stationary distribution and
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the posterior predictive distribution tends to zero as the
sample size tends to infinity. As a corollary, Liu et al
show the equivalence of the two imputation methods in
finite samples under a condition we have independently
identified and named the “non-informative margins”
condition.

Our work is complementary to that of Liu et al. Firstly,
we have taken a different approach to prove the equiv-
alence of the two imputation methods in finite samples.
Additionally, in specific examples, we prove whether the
non-informative margins condition is satisfied or not, and
in a simulation study we demonstrate the consequences
when the conditional models are compatible but do not
satisfy the non-informative margins condition.

In this paper, we provide a “non-informative margins”
condition that, together with compatibility of the condi-
tionals (and assuming that the Markov chain generated
by the chained equations converges to a stationary dis-
tribution), guarantees that the imputed values obtained
using chained equations (at convergence) are drawn from
the posterior predictive distribution of the missing data
implied by a Bayesian joint model. We give examples
of chained equations algorithms that satisfy the non-
informative margins condition when the joint model is
the multivariate normal model and the saturated multi-
nomial model, and examples where this condition is
not satisfied when the joint model is an unsaturated
multinomial model and the general location model. A
simulation study considers a simple chained equations
algorithm in which the conditional models are compatible
but do not satisfy the non-informative margins condition,
and shows that it is not equivalent to any joint model
procedure.

Methods

Notation

Suppose K random variables X = (Xi,...,Xg)T are
intended to be observed on N subjects. We use subscripts
i and j to index subjects and variables respectively (i =
1,...,N; j=1,...,K). Let x = (x;) denote an (N x K)
matrix, whose i, element is x;;. Column j of matrix x is
denoted by x; = (x1, ..., xn;)T. It is assumed that the rows
of matrix x are independent and identically distributed
draws from a probability distribution with probability
distribution function p(X | ), where 6 is an unknown
parameter.

In practice some subjects have missing observations on
up to K — 1 variables and we write x; = (xl‘?bs,x;”is) for
any j, x = (x°%, %) and p(x | 6) = p(°, 2™ | 6),
with superscript obs and mis denoting the observed and
missing data respectively. In keeping with the assump-
tions of joint modelling imputation and chained equations
imputation, the missing data mechanism is assumed to
be ignorable for Bayesian inference [20] p. 120, so that
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inferences about 6 can be based on the marginal observed
data posterior p(0 | x0b5),

Joint modelling imputation

Joint modelling imputation requires the specification of a
parametric joint model p(x°?%, x5 | ) for the complete
data and a prior distribution p(@) for parameter 6. Imputa-
tions are independent draws from the posterior predictive
distribution of the missing data given the observed data
p™s | x005) [2] p. 105, which under the ignorability
assumption is

p <xmis |xobs> — /p (xmis | xobs79>p <9 | xobs) do.

Therefore, to draw from this posterior predictive distri-
bution, first draw 6* ~ p(6 | x°05) followed by xs% ~
p™s | x°65,0%) [2] p. 105. When it is difficult to draw
from the observed data posterior p(6 | x°65), Markov
chain Monte Carlo methods can be used. For example, the
data augmentation algorithm of Tanner and Wong [21]
draws missing values from the posterior predictive dis-
tribution &% ~ p(x™s | x°65,0*) and then draws 6
from the complete data posterior 6% ~ p(6 | %0, &%),
where * denotes the last drawn values of # or . Upon
convergence this produces a draw from the joint posterior
distribution p(@, ™ | %005,

Chained equations imputation

For every incomplete variable the chained equations
algorithm requires an imputation model, typically a uni-
variate regression model, and an accompanying prior
distribution for the model's parameter. Let X_; =

X1 XL X, ,XK)T denote the vector of random
variables excluding variable X; and x_; = (x"_l;s,x’_”;s)

the submatrix of x corresponding to variables X ;. We
write p(x; | x_j, ;) for the probability distribution func-
tion of the imputation model for variable X; and p(¥;)
for the prior distribution of the unknown parameter
vj.

Chained equations draws the imputations using an iter-
ative algorithm, typically with 10 to 20 iterations [15].
To start off, the missing values of each incomplete vari-
able are replaced by its mean or a random sample of its
observed values. Suppose, without loss of generality, that
variables X1, ..., Xg (R < K) are incomplete and variables
XRr+1, .., Xk are fully observed. Given the imputations
from the last iteration (x(ltfl), .. .,ngl) ), iteration t of
the chained equations algorithm consists of the following
draws [18]

(=1

t t—1 t—1
Ui? ~ pp (a8 1480, e v )

is(t i t—1) (-1 t—1 t
xims()~p(x§'”s|x§ ),xg ),...,xx ),xR+1,...,x1(, 1“)
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During each iteration the following two steps are applied
to each incomplete variable X; in turn: 1//1.* is drawn from
the posterior distribution proportional to p(t//j)p(xl‘?bs |

misx

x’jj, ¥;) and missing values xj are drawn from the pre-

dictive posterior p(x;"is | x*., 1/fj*). The imputations from

the last iteration form the imputed dataset. The whole
iterative algorithm is repeated to obtain further imputed
datasets.

Equivalence of joint modelling and chained equations
imputation

We investigated, in finite samples, sufficient conditions
under which a chained equations algorithm with com-
patible conditional models imputes missing data from
the predictive distribution of the missing data implied
by the joint model and its accompanying prior. We pro-
vide examples of chained equations algorithms (with
compatible conditional models) where our identified
condition is satisfied and examples where it is not
satisfied.

Simulation study

We conducted a simulation study to explore the con-
sequences for chained equations imputation when the
conditional models were compatible with the same joint
model but the non-informative margins condition of
Proposition 1 was not satisfied. In particular, we looked
for evidence of “order effects”, where the distribution from
which the final imputed values of the variables were drawn
differed according to the order in which the variables were
updated in the chained equations sampler. If the chained
equations algorithm imputes all variables from the predic-
tive distribution of the missing data implied by a specific
joint model, then order effects cannot occur [22]. Thus,
the existence of order effects implies that the chained
equations algorithm is not equivalent to imputing from
any joint model.

The simulation study was based on a general location
model, discussed in the Theoretical results section below,
with one incomplete binary variable Y and two continu-
ous variables W7 and W5, where W7 was also incompletely
observed. We compared joint modelling imputation under
the general location model, considered as a gold standard,
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with the chained equations algorithm that imputes the
binary variable Y under a logistic regression model and
the continuous variable W7 under a normal linear regres-
sion model.

We generated 500 datasets, each with a sample size of
100. For each dataset, the rows were independent, identi-
cally distributed realizations of the general location model
Y ~ Bernoulli(3/10), W7 | ¥ ~ N0 + BY,9) and
Wy | Wi,Y ~ N + 8/9 + 1/9W; + BY,8 + 8/9).
The data model was a simplified version of data that
can occur in the medical literature [23]. The simulation
study was repeated when S, the regression coefficient for
covariate Y, was set to 1 and 3. The analysis of interest
was the normal linear regression of W, on Wj and Y.
To ensure that any observed order effects could only be
due to the failure of the non-informative margins con-
dition we considered the simplest setting, that of data
missing completely at random [20] p. 16, and set the
values of ¥ and W) to be missing for the first 50 indi-
viduals in the dataset. Below we describe the joint mod-
elling imputation procedure and the chained equations
algorithm that were separately applied to the same 500
datasets.

We used the data augmentation algorithm (as described
under the heading “Joint modelling imputation”) to per-
form joint modelling imputation under the general loca-
tion model and the joint prior given in the general location
example (see example 4 of the Results), setting hyper-
parameters Tt = v = 1/2 and « = 3/2. The number of
imputed datasets generated, the burn-in period and the
number of iterations between imputed datasets was 100.
The analysis model was applied to each dataset separately
and the mean of the multiple estimates of 8, the coefficient
for Y, was calculated.

In the (standard) chained equations algorithm, a logistic
regression model for Y given W) and W, was first fitted to
those rows of the dataset in which Y was observed. Let ¥y
denote the maximum likelihood estimate of the parame-
ters of this model and V denote its associated estimated
variance-covariance matrix. A draw ¥ was then made

from the multivariate normal approximation N(yry, V)
and used to impute the missing Y values. The continu-
ous variable W7 was imputed using the linear regression
model W1 | Y, Wy ~ N(A + §Y + ¢W>, w) and prior
distribution p(%, £, ¢, w) ox w~3/2.

To start off the chained equations algorithm the miss-
ing values of Y and W; were replaced with a ran-
dom sample of their observed values. We augmented
the chained equations algorithm such that, within each
iteration we fitted the analysis model immediately after
updating the binary variable Y and also immediately after
updating the continuous variable Wj. The simulation
study focused on systematic differences between the two
resulting estimates of 8. Given the imputations from the
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last iteration (y~%, Wit_l)), iteration ¢ of the augmented
chained equations algorithm consisted of the following
steps:

1. Generate y¥) by imputing values for the missing

. . A t—
binary observations, conditioning on wi

(t=1)
1

D and wo.
2. Linearly regress wy on w and y¥ and store the
estimate for the coefficient of Y, denoted by ?.

3. Generate wit) by imputing values for the missing
continuous observations, conditioning on y® and ws.
4. Linearly regress wy on wgt) and y® and store the

estimate for the coefficient of Y, denoted by A¢.

The chained equations algorithm was implemented
with 10010 iterations. The first 10 iterations were
regarded as burn-in and the estimates from these iter-
ations discarded. The remaining 10000 estimates of B
were averaged, and likewise for B°. We denote these
means as B2 and B¢ and their difference by BY — B¢. The
quantity B2 — B¢ can be interpreted as an estimate of the
order effect for imputation in one dataset. We estimated
the (Monte Carlo) standard error of 8% — B¢ using the
batch-means method, a method for computing standard
errors for correlated output [24] p. 124, and calculated a
95% confidence interval from this.

Linear discriminant analysis is an alternative way
to estimate a logistic regression [25,26]. A modified
chained equations algorithm using linear discriminant
analysis on all individuals with observed Y has been
proposed as an alternative way to impute the binary
variable Y [27]. Because the linear discriminant likeli-
hood is the joint distribution of Y, W; and W, this
model has the advantage of recovering some informa-
tion about ¥y in the W margin. We repeated the
simulation study using this modified chained equations
algorithm.

We assessed the sensitivity of our results by repeat-
ing the simulation study using different specifications.
For joint modelling imputation we increased the num-
ber of imputed datasets generated, the burn-in period
and the number of iterations between imputed datasets
to 250. For the standard and modified chained equations
procedures we (1) increased the burn-in period of the
chained equations sampler to 1000 iterations and (2) sam-
pled every 507 iteration thereby reducing serial correla-
tion (with a burn-in period of 10 iterations). To check
that our results were not dependent upon our choice of
prior distributions we repeated the simulation study with
improper imputation procedures; that is, using maximum
likelihood estimates of v; instead of Bayesian draws v;
from its posterior distribution p(l/fj)p(x]‘?bs |x*_j, ;). Lastly,
we also repeated the simulation study with a sample size
of 1000 observations.



Hughes et al. BMC Medical Research Methodology 2014, 14:28
http://www.biomedcentral.com/1471-2288/14/28

Results

Theoretical results

Equivalence of joint modelling and chained equations
imputation

In this section, we give our key result Proposition 1,
which shows that, in finite samples, compatibility of the
conditionals and our proposed non-informative margins
condition are sufficient for chained equations and joint
modelling to yield imputations from the same predictive
distribution.

Consider a joint model p(x | ) and prior p(f). From
here onwards we shall use p(. | .) to refer to any probability
distribution derived from this joint model. In particular,
foreachj = 1,...,R, p(x; | x_;,0) is the conditional dis-
tribution of x; given x_; and @ implied by the joint model,
and p(x_; | 0) is the conditional distribution of x_; given
0. The distribution of x given 6 factorizes as

px|0) =p|x_,0)px_;|0).

Let ¥ and 1/7]' be functions of 6 such that p(x; | x_;,6) =
PO | x_j, ) and p(x_j | 0) = p(x_; | I/Nf]'). That is, the dis-
tribution of x; given x_; and the distribution of x_; depend
on 6 only through the functions v and ;, respectively, of
0. Let p(yj, &j) denote the joint prior for ¥ and 1/}/ implied
by p(6), and let p(3;;) and p(lﬂ/) denote the corresponding
marginal priors.

The chained equations algorithm applies the following
two steps for each x;j in turn:

Step CE1 Draw 1/11»* from the distribution proportional to
PANPG | %%, ).
Step CE2 Draw x}ms* from p(x;”is | x’ij, lpj*).

The choice of the parameterizations v; and 1}1 does not
affect the output of step CE2, but a parsimonious choice
will help to make the condition of Proposition 1 hold.

Proposition 1. Upon convergence, the chained
equations algorithm defined by CE1 and CE2 and the
joint model p(x | 0) and prior p(0) draw from the same
predictive distribution of x” if, for each incomplete
variable x;j, p(;, @) = p(wj)p(lﬁj), i.e. if the joint prior
distribution for v; and 1/7; factorizes into independent
priors for ¥; and 1/7,».

Proof. Using the condition of Proposition 1,

P (%w Vi | x}’bs,x’i,) o p (w,-, 1/7/)17 (x}"”,x’i, | ¥, 1%‘)
= pWpp (5 15, 97) p (321 )
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Now, integrating out 1/}/,

p (W) 187555, ) o ppp (57 1 2%, 09)

obs

Therefore, step CE1 yields a draw from p(/; | x; ,x’ij).

Next, x;"is and x]‘.’bs are conditionally independent given
x%; and ¥ so p(x;”is | &%, 9) = p(x}ms | xl‘?bs,x’ij, v
and step CE2 yields a draw from p(x;’”s | xl‘?bs, x’ij, lpj*).

Hence steps CE1 and CE2 together yield a draw from
p(l/fj,x?“ | x]‘?bs,x’ij), and in particular they draw x}ms*
from p(x;”is | xl‘?bs, xf].). The latter is a full-conditional dis-
tribution corresponding to the joint density p(x) implied
by the joint model. Once 27 has been sampled, wj*,
the sampled value of ¥}, is not used again in the chained
equations algorithm. So, the application of steps CE1 and
CE2 to eachj in turn and then iterating is a Gibbs sampler
which, at convergence, yields a draw from p(x” | x0bs),
the predictive distribution implied by the joint model and

its accompanying prior.

Comment 1. The condition of Proposition 1 does not
hold if the conditional and marginal parameters v; and 1}1
are not distinct (i.e. if their joint parameter space is not the
product of their separate parameter spaces), and in partic-
ular if the combined dimension of v; and 1/~fj is greater than
that of 0. Distinctness of parameter spaces is a property
of the model p(x | 6) and not of the prior p(9). It will be
used in the examples of the unsaturated multinomial dis-
tribution and the general location model to identify joint
models where the condition of Proposition 1 does not
hold.

Comment 2. Heuristically, the condition of Proposition 1
says that there is no information about v; in the marginal
distribution of x_j, so we call it the “non-informative mar-
gins” condition. When such information does exist, it is
used by the joint modelling sampler but not by the chained
equations algorithm, so they may draw from different dis-
tributions. Our simulation study will show that this occurs
in an example by demonstrating order effects.

Comment 3. As the non-informative margins condition
has only been shown to be sufficient, then potentially
if this condition is not satisfied the chained equations
algorithm defined by CE1 and CE2 and the joint model
p(x | 0) and prior p(0) could still draw from the same
predictive distribution of x5,

Comment 4. This proof holds for improper prior distri-
butions provided the posterior distributions are proper.

Comment 5. When the non-informative margins condi-
tion holds true the chained equations algorithm is a Gibbs
sampler, and so order effects cannot occur [22].
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Example 1: Multivariate normal
Consider the multivariate normal joint model X ~
N(u, X) with parameter & = (u, X) and prior distribution
p@) x |Z]7 (¢ € Q). We show that the corresponding
chained equations algorithm, which imputes under a set
of normal linear regression models, satisfies the non-
informative margins condition of Proposition 1 (and
hence draws from the same joint model as joint modelling
imputation).

For each j we partition the mean vector p as (i, [J,j)T
and the covariance matrix ¥ as

oy
5 %

such that X; ~ N(;j,05) and X_; ~ N(fi;, £). The con-
ditional distribution of X; given X_; is the normal linear
regression model X; | X_; ~ N(oj + ,BjTX,j, ®;) where
Bl =5 = - Bl yand o = 0; — g3 [2]
p. 157. Using our notation for chained equations imputa-
tion (see under the subsection “Chained equations impu-
tation” of the Methods section) ¥; = (e, B, ;) and Jf]' =
(fij, ).

The joint prior for ; and 1/}/ derived from p(0) is
P, ) = |27 x || [2] p. 158-159. So, using a stan-
dard result from matrix algebra for the determinant of a
partitioned matrix,

~ ~ —K ~
pWp ) = (=" 570g) <1517 x 15
= x |57 *D
=p(Y;) x p(Yj).

Therefore, the non-informative margins condition of
Proposition 1 is satisfied.

Example 2: Saturated multinomial distribution

We now show for joint modelling imputation under a sat-
urated multinomial model and a Dirichlet prior for 6, that
the corresponding chained equations algorithm satisfies
the non-informative margins condition of Proposition 1.

Consider K categorical variables X = (Xj,...,Xk),
where each X; takes possiblevalues 1,...,I; j =1,...,K).
Variables X define a K-way contingency table. Let ¢ =
(c1,...,cx) denote a generic cell of the contingency table,
0. denote the cell probability pr(X = ¢) and 9 denote the
set of all cells of the contingency table. The joint distri-
bution of X is a multinomial distribution with parameter
0 = (6 : ¢ € 9) and index equal to 1.

Summing the table counts over variable X; produces
a collapsed contingency table defined by variables X_;.
Letc; = (c1,.-.,¢-1,¢11,-..,ck) denote a generic cell
of the collapsed table, 1/767, denote the cell probability

pr(X_; = cj) and 5/ denote the set of all cells of the
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collapsed table. The marginal distribution of X_; is multi-
nomial with parameter 1/}/ = {&C_I. P € 5/}, where
1}6_], = ZZ:I 0c. The conditional distribution of X; given
X_j = c_j is the multinomial distribution with parameters
wc_,' ={prXj=¢ | X j=cj):¢=1...,1} So, the
full set of parameters for the conditional distribution of X;
given X_; is y; = {Vfc,,v icj € 5]}

If the prior distribution for 6 is Dirichlet with hyper-
parameter « = {ac : ¢ € 0}, then the implied prior
distributions for ¥; and ; are independent: the prior for
I/Nf]' is Dirichlet with hyperparameter &; = {&,_; : c—; € 5]'},
where &C_]. = Zg:l ac, and the prior distribution for ;
is the product of the set of independent Dirichlet distri-
butions {y. ; ~ D(ac_;) : ¢—j € 9}, where e ; = {oc :
¢ = 1,...,1;} is a subset of o [2] p. 256. Since the prior
for (v, @) can be factored into independent distributions
for ¥ and 1/}/, the non-informative margins condition of
Proposition 1 is satisfied.

Example 3: Unsaturated multinomial distribution

When the joint model is an unsaturated multinomial
model, we give an example where the conditional and
marginal parameters ¥; and 1/7]' are not distinct (see
comment 1 of Proposition 1). Consequently the non-
informative margins condition of Proposition 1 is not
satisfied.

Consider K categorical variables X = (Xi,...,Xx) as
described in the saturated multinomial example. Assume
that all cell probabilities are positive, 8(c) > 0 for all ¢, to
ensure that every multinomial distribution considered can
be written as a log linear model and that all possible con-
ditional distributions exist [28] p. 202. Let the joint model
be the hierarchical log linear model that contains all two-
way factors between the K variables and no higher order
factors. We shall refer to this as the all two-way factor hier-
archical model. Under this model, for any j the conditional
distribution of X; given X_; follows a multinomial logistic
regression model (or a logistic regression model when X;
is binary) where the regression model includes variables
X_j as main effects only (i.e. no interaction terms).

In generating class notation [29] the all two-way fac-
tor hierarchical model is written as [1 2]...[1 K]...
[(K — 1) K]. Any hierarchical log linear model for X can
be represented by an undirected graph in which the graph
vertices are the variables X1, ..., Xx and two vertices X,
and Xj are connected by an edge if and only if the log
linear model contains two-factor or higher order terms
involving variables X, and Xj,. Any model containing all
two-factor terms is therefore represented by the complete
graph. Asmussen and Edwards [29] state that two vertices
in a graph are adjacent if there is an edge between them.
For any subset a of the vertices, Asmussen and Edwards
define the boundary of a to be the set of vertices that are
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not in a4 but that are adjacent to one or more vertices in
a. So, for the complete graph, the boundary of X; is X_;.
Theorem 2.3 of [29] states that a hierarchical log linear
model is collapsible onto X_; if and only if the bound-
ary of X; is contained in a generator of the hierarchical
log linear model. Further, Theorem 4.1 of [29] states that
if a hierarchical log linear model is not collapsible onto
X_j, then parameters v/; and 1/}/ are not distinct. For any
j» X_j, the boundary of X; in the complete graph, contains
all of the remaining K — 1 variables. When K > 4, X_; is
not contained in any of the generators, [1 2]...[1 K]...
[(K — 1) K], of the all two-way factor hierarchical model,
and hence the log linear model is not collapsible onto X_;.
Therefore, parameters v; and 1/}/ are not distinct, and so
the non-informative margins condition of Proposition 1 is
not satisfied when K > 4.

Example 4: General location model

We give an example of a chained equations algorithm
derived from joint modelling under a general location
model that does not satisfy the non-informative margins
condition of Proposition 1. Our simulation study is based
on this example.

Suppose that the data on each individual consist of one
incomplete binary variable Y and K — 1 continuous vari-
ables W = (Wi,..., Wix_1)T, where one or more of the
continuous variables are also incomplete. Let the joint dis-
tribution of X = (Y, W)T be the general location model
Y ~ Bernoulli(y) and W | ¥ ~ N(uo + u1Y, %), for
unknown parameters 6 = (y, wo, 11, £) [30]. Let the joint
prior for 6 be p(#) = y* 1 — y)'"' | T |7¢ with
hyperparameters 7,v > O and x € Q.

From the multivariate normal example above it is
straightforward to show that the non-informative margins
condition of Proposition 1 holds for imputing any W;.

The conditional distribution of Y given W, p(Y | W,
Yy), is the logistic regression model with covariates W
[25]. The marginal distribution of W, p(W | Vy), can be
written as a mixture of normal distributions

pPW | ¥y) = yp(W | Y =1, 1o, 1, £)
+A=py)p(W | Y =0, uo, ).

This cannot be parameterized more parsimoniously
than ¥y = (y, o, 1, £) = 6. As ¥y is a function of 6, it
is determined by 0 = ry.

Consequently, given /y the parameters of the logis-
tic regression model vy are fully determined, and so ¥y
and ¥y are not distinct. Therefore, as discussed in com-
ment 1 above, the non-informative margins condition of
Proposition 1 does not hold.

Using the same argument, the non-informative margins
condition of Proposition 1 does not hold for a chained
equations algorithm derived from joint modelling under
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the restricted general location model, with cell probabil-
ities restricted by the all two-factor hierarchical model
(discussed in the unsaturated multinomial example) and
cell means restricted to be a linear function of the categor-
ical variables.

Simulation study results

This section reports the results of the simulation study,
where the chained equations conditional models were
compatible with the same joint model but the non-
informative margins condition of Proposition 1 was not
satisfied.

Figures la and 1b show, for the first 30 of the 500
datasets, the value of B — B¢ (estimate of the order effect
in one dataset) along with its 95% confidence interval, for
the (standard) chained equations procedure (i.e., binary
variable Y imputed under the logistic regression model).
In a number of the datasets the 95% confidence inter-
vals did not cross zero. Thus, there was clear evidence of
order effects, with the magnitude of such effects varying
between datasets. Such statistically significant evidence of
an order effect occurred in 164 and 386 of the 500 datasets
for 8 = 1 and B = 3 respectively. The range of absolute
values of B2 — B¢ was larger for 8 = 3 than for 8 = 1.
These results confirm that the chained equations proce-
dure was not equivalent to any joint model procedure.

The average magnitudes of the order effects A%, ¢ and
|B? — B¢| over the 500 datasets are shown in Table 1.
Consider the results for the chained equations algorithm
(labelled LR). In keeping with Figure 1, the average mag-
nitude of the order effect was larger for § = 3 than
B = 1. The means of A% and B¢ did not differ system-
atically, consistent with the direction of the order effect
being arbitrary and dataset dependent. Estimates % and
B¢ appeared to be equally good estimates of 3.

The forest plots of B — B¢ with 95% confidence intervals
corresponding to the modified chained equations algo-
rithm (i.e Y imputed under the linear discriminant model)
are shown in Figures 1c and 1d. Order effects were smaller
than in Figures 1a and b, but were still present because
the modified algorithm did not use information about W1
and W5 when Y was missing. Out of the 500 datasets the
number of datasets that showed statistically significant
evidence of an order effect was 113 for 8 = 1 and 330 for
B =3.

From Table 1, the complete case estimates of 8 were
unbiased. When 8 = 3 the linear discriminant analysis
values B¢ and A%, and the joint modelling imputation esti-
mate ,3];\4 were slightly biased towards the null. This bias
was due to the prior (which was the same for imputation
under the linear discriminant analysis model and joint
modelling imputation under the general location model)
and it disappeared when the sample size was increased
to 1000 observations and when the simulation study was
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(c) linear discriminant analysis; § = 1

(d) linear discriminant analysis; 8 = 3

and B = 3 respectively.

015 0 0.15 015 0 0.15
(a) logistic regression; 8 =1 (b) logistic regression; 5 = 3
015 0 0.15 015 0 015

Figure 1 Four forest plots of the posterior mean differences 82 — B¢. Each panel is a forest plot of B2 — B¢ for the first 30 datasets, 95%
confidence intervals calculated using the Monte Carlo standard error. Panels (a) and (b) correspond to binary variable Y imputed under the logistic
regression model, with 8 = 1 and B = 3 respectively. Panels (c) and (d) correspond to Y imputed under the linear discriminant model, with 8 =1

Table 1 Over 500 datasets, average of the complete case estimates, joint modelling imputation estimates and values of
B, B¢ and | 8% — B¢| for the chained equations algorithm and the modified chained equations algorithm, with confidence

intervals [mean + 1.96 x (standard deviation +-.,/500)]

B Beca® Bim* B B 1B® — B°|
1 1.01 0-97 LRY 0-98 0-98 0-0040
[0-93,1-09] [0-891-05] [0-90,1-06] [0-90,1-06] [0- 0034,0 - 0046]
LDAT 0.97 0.97 0-0022
[0-89,1-05] [0-89,1-05] [0 - 0020,0 - 0024]
3 3.00 2-90 LR 2.93 293 0-0166
[2-91,3-09] [2-82,2-98] [2-85,3-02] [2-85,3-02] [0-0145,0-0188]
LDA 2-89 2-89 0 - 0067
[2-81,2-98] [2-81,2-97] [0-0062,0- 0073]

b complete case analysis estimate of 8 from the observed data only;
f estimate of B from joint modelling imputation;

V logistic regression;

9 linear discriminant analysis.
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conducted using improper imputation; i.e using maxi-
mum likelihood estimates instead of Bayesian draws of
parameters. For joint modelling imputation, and the stan-
dard and modified chained equations procedures chang-
ing their specifications (e.g., larger number of iterations,
burn-in period) gave the same pattern of results as above
(results not shown but available on request from the
authors).

In preliminary simulation studies, when the non-
informative margins condition was satisfied the results
were consistent with a zero order effect (results not shown
but available on request from the authors).

Discussion

We have defined a non-informative margins condition
which, together with compatibility of the conditional
models, we have proved is sufficient for a chained
equations algorithm to impute missing data from the pre-
dictive distribution of the missing data implied by the joint
model and its prior distribution. Also, we have shown
that compatibility of the conditional models is not alone
a sufficient condition. In a scenario where the condi-
tionals models were compatible but the non-informative
margins condition failed, our simulation study showed
that the distribution from which the final imputed val-
ues of the variables were drawn differed, in a dataset-
dependent manner, according to the order in which
the variables were updated in the chained equations
sampler.

In work that is complementary to the finite-sample
results presented in this paper, Liu et al. [19] identified suf-
ficient conditions for chained equations imputation and
imputation under a fully Bayesian model to be asymp-
totically equivalent; that is, for the supremum of the
difference between the two imputation distributions to
converge to zero as the sample size tends to infinity. This
implies that when the non-informative margins condition
is not satisfied but the conditional models are compati-
ble with the same joint model, the order effects identified
in our simulation study will disappear as the sample size
tends to infinity.

In our simulation study the average magnitude of the
order effects was small and did not induce bias. Given that
chained equations imputation is a widely used approach to
imputation, these results are somewhat reassuring. How-
ever, the scope of these simulations was limited and it
remains possible that chained equations imputation could
lead to more substantial bias in different situations; for
example, when there are many partially observed vari-
ables.

When the non-informative margins condition does not
hold we expect some loss of efficiency in general (because
some information is discarded). However, in our simula-
tion study we did not detect any sizable loss of efficiency.
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The issue of variance estimation for chained equations
imputation is beyond the scope of this paper.

The advantage of chained equations imputation is that
we do not need to specify the joint distribution of the vari-
ables. In cases where it is not known that there is a joint
distribution, several methods for checking compatibility
have been proposed (e.g., [16,31-35]). In practice, these
methods are either limited to discrete distributions or are
difficult to apply for multivariate distributions of more
than 2 or 3 dimensions. This means that it may not be pos-
sible to check that the conditionals are compatible with
the same joint model or that our non-informative mar-
gins condition holds true. van Buuren and other authors
[3,18], in the examples they considered, concluded that
chained equations is a robust approach even when the
set of conditionals are not compatible with the same
joint model. The findings of our simulation study sup-
port this body of work. Other studies [3,4,36,37] have
compared chained equations and joint modelling, when
missingness is multivariate, nonmonotone and ignorable,
in settings which reflect real data (e.g. mixture of different
types of variables, non-linear relationships and interac-
tions between variables, semi-continuous variables). None
of these studies has reported substantial differences in the
performances of joint modelling imputation and chained
equations imputation. Nonetheless many authors empha-
size the need for further understanding of the theoretical
underpinnings of the chained equations approach and the
establishment of the robustness of the chained equations
method (e.g. [3,7,14,38]).

Conclusions

In finite samples, compatibility of the conditionals and
our non-informative margins condition are sufficient for
chained equations and joint modelling to yield imputa-
tions from the same predictive distribution. Furthermore,
our simulation study demonstrated that, even in a simple
setting, a chained equations procedure that does not sat-
isfy the non-informative margins condition is not neces-
sarily equivalent to a joint model procedure, even though
when its conditional models are compatible.

When conditionals are incompatible or the non-
informative margins condition is not satisfied, the dis-
tribution from which the imputed values are drawn can
differ according to the order in which the variables are
updated in the chained equations sampler, thereby intro-
ducing order effects.

Given the widespread use of chained equations imputa-
tion in medical research for datasets with different types
of variables, researchers must be aware that order effects
are likely to be ubiquitous. As noted by van Buuren [3],
further work is needed to verify the robustness of chained
equations to incompatibility of the conditional models in
more general and realistic settings. Equally, future work
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could evaluate the robustness of chained equations impu-
tation when the sample size is small-to-moderate, the
conditionals are compatible and the non-informative mar-
gins condition is not satisfied.
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