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Abstract

Background: Thresholds for statistical significance are insufficiently demonstrated by 95% confidence intervals or
P-values when assessing results from randomised clinical trials. First, a P-value only shows the probability of getting
a result assuming that the null hypothesis is true and does not reflect the probability of getting a result assuming
an alternative hypothesis to the null hypothesis is true. Second, a confidence interval or a P-value showing
significance may be caused by multiplicity. Third, statistical significance does not necessarily result in clinical
significance. Therefore, assessment of intervention effects in randomised clinical trials deserves more rigour in
order to become more valid.

Methods: Several methodologies for assessing the statistical and clinical significance of intervention effects in
randomised clinical trials were considered. Balancing simplicity and comprehensiveness, a simple five-step
procedure was developed.

Results: For a more valid assessment of results from a randomised clinical trial we propose the following five-steps:
(1) report the confidence intervals and the exact P-values; (2) report Bayes factor for the primary outcome, being
the ratio of the probability that a given trial result is compatible with a ‘null’ effect (corresponding to the P-value)
divided by the probability that the trial result is compatible with the intervention effect hypothesised in the sample
size calculation; (3) adjust the confidence intervals and the statistical significance threshold if the trial is stopped
early or if interim analyses have been conducted; (4) adjust the confidence intervals and the P-values for multiplicity
due to number of outcome comparisons; and (5) assess clinical significance of the trial results.

Conclusions: If the proposed five-step procedure is followed, this may increase the validity of assessments of
intervention effects in randomised clinical trials.
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Background
Clinical experience and observational studies cannot and
should not be used to validate intervention effects [1].
The randomised clinical superiority trial remains the
mainstay of modern clinical intervention research and is
needed for a valid assessment of possible causality be-
tween interventions and outcomes [1].
Most commonly, the statistical analyses in randomised

clinical trials are performed under the frequentist
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paradigm. In this approach, a significant difference in ef-
fect is declared when a value of a test statistic exceeds a
specified threshold showing that it is unlikely that the
trial results are produced by zero difference in effect be-
tween the compared interventions, i.e., that the null hy-
pothesis is true [2]. A P-value less than 5% has been the
most commonly used threshold for statistical signifi-
cance in clinical intervention research since Fisher
warned against exactly that in 1955 [3-5]. P-values are
easily calculated but are often misinterpreted [6,7] and
misused [8-10].
In the following we describe the methodological limi-

tations of focusing too much on confidence intervals
and P-values, and suggest a five-step procedure for a
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more valid assessment of results of intervention effects
in randomised clinical superiority trials [11]. Our recom-
mendations do not solve all problems of interpreting re-
sults from randomised clinical trials, but we aim to
present a valid, practical, relatively simple, and yet com-
prehensive assessment tool to be used by trial investiga-
tors and clinical research consumers. The five following
sections of the manuscript will correspond to each step
of the proposed five-point assessment.

Methods and results
The confidence interval and the P-value
Due to stochastic variation (‘play of chance’) in biomed-
ical data, statistical analyses are needed to clarify if the
results demonstrate a genuine difference in effect be-
tween the compared interventions in a randomised clin-
ical trial [1]. The P-value describes the probability of
obtaining an observed or larger difference in interven-
tion effect purely by ‘play of chance’ assuming that there
is no intervention effect (i.e., assuming that the ‘null hy-
pothesis’ is true) (Additional file 1: Table S1). Trialists
can and should report the calculated confidence inter-
vals and the exact P-values, but their exclusive relation
to the null hypothesis should be kept in mind.
Confidence intervals not containing 1.0 for binary out-

comes (or hazard ratios for survival data) or 0.0 for
continuous outcomes are, as well as the corresponding
P-value, often used as thresholds for statistical significance.
Reporting confidence intervals have rightfully been claimed
a more appropriate and understandable demonstration of
the statistical uncertainty [12,13]. However, confidence in-
tervals do not essentially provide more information than
implicitly given by the estimated effect and the P-value.
The confidence interval and the observed effect size can be
derived from the P-value — and vice versa [14,15]. We be-
lieve it is informative both to report the confidence interval
and the corresponding exact P-value because the former
explicitly demonstrates the range of uncertainty of the
intervention effect and the latter tells how likely the results
are assuming the null hypothesis is true.

Sample size estimation, the alternative hypothesis to the
null hypothesis, and Bayes factor
Before conducting a randomised clinical trial one should
estimate the required sample size based on the primary
outcome [16-18]. A sample size calculation estimates the
number of trial participants necessary to demonstrate or
discard a specific a priori anticipated intervention effect
with specified error probabilities [16]. In order to calcu-
late a sample size relating to one specified primary out-
come, it is necessary:

� To define an anticipated difference in intervention
effect (i.e., a hypothesis alternative to the null
hypothesis) between the compared intervention
groups. This intervention effect could, e.g., be a mean
difference, an odds ratio, or a hazard ratio [16]. This
hypothesised difference in effect should be based on
the most realistic intervention effect as suggested by a
meta-analysis of prior evidence with low risks of bias
(Additional file 1: Table S1) [19,20], but may also be
defined as a ‘minimal relevant clinical difference’ (see
Statistical significance and clinical significance).

� To estimate the variability of the anticipated
difference in intervention effect (e.g., a standard
deviation of a mean difference or a proportion of
participants with an outcome of interest in the
control intervention group).

� To decide on an acceptable risk of falsely rejecting
the null hypothesis (alpha or type I error) (most
investigators choose 5%, see ‘Discussion’) and an
acceptable risk of falsely accepting the null
hypothesis (beta or type II error) (most investigators
choose 10% or 20%).

The lower the anticipated intervention effect is and
the lower the above acceptable risks are, the larger the
sample size becomes.
When the estimated sample size has been obtained, the

null hypothesis can be tested and rejected if P is below 5%.
However, a low exact P-value may be misleading if there,
at the same time, is a low probability of the trial results be-
ing compatible with the intervention effect hypothesised
in the sample size calculation. To compensate for this de-
ficiency of the P-value it is helpful to calculate Bayes factor
[21,22], which is the ratio between the probability of get-
ting the result assuming the null hypothesis (H0) is true
divided by the probability of getting the result assuming
the alternative hypothesis (HA) is true [21]. In the follow-
ing we have chosen to quantify the alternative hypothesis
(HA) (Additional file 1: Table S1) as the intervention effect
hypothesised in the sample size calculation, but Bayes fac-
tor can (and in some instances should) be defined differ-
ently. For an in-depth discussion of Bayesian methods and
principles see reference [21].
Figure 1 depicts Bayes factor as a function of the ob-

served effect size, where the observed effect size is
expressed as fractions of ‘1.0’. When Bayes factor is 1.0,
the likelihoods of the null hypothesis and the alternative
hypothesis are the same, i.e., the observed effect size is
exactly half way between null effect and the hypothe-
sised effect size. When Bayes factor is less than 1.0, the
trial results are more compatible with the alternative hy-
pothesis than the null hypothesis. When Bayes factor is
larger than 1.0, the trial results are more compatible
with the null hypothesis than the alternative hypothesis.
Confidence intervals not containing 1.0 for binary out-

comes (and hazard ratios) or 0.0 for continuous outcomes
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Figure 1 A figure showing how Bayes factor will change according to different observed effects. The red left vertical line represents the
null hypothesis (an effect of null), the right green vertical line represents an alternative hypothesis to the null hypothesis with an effect of 1.0. The
black curve shows that Bayes factor will be 1.0 when the observed effect size if exactly half of the effect size of the alternative hypothesis; and
the curve shows that Bayes factor will decease with increasing observed effect sizes.
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and low exact P-values do not necessarily correspond to a
low Bayes factor — and confidence intervals and P-values
may in some circumstances misleadingly indicate evidence
for an intervention effect [19,21]. A low Bayes factor (e.g.,
less than 0.1) together with a low P value (e.g., less than
0.05) will correspond to a high probability of an interven-
tion effect similar to or even greater than the hypothesised
intervention effect used in the sample size calculation
(Figure 1) (Additional file 1: Table S1).
The intervention effect hypothesised in the sample size

calculation should be based on what prior evidence indi-
cates provided prior evidence exists. By calculating Bayes
factor as above, new trial results will be related to
former evidence. If a new trial result demonstrates an
intervention effect closer to zero than prior evidence in-
dicates, a high Bayes factor will demonstrate that there
is a low probability that the intervention effect indicated
by prior evidence is compatible with the new trial result.
On the other hand, the validity of a trial result will in-
crease if a new trial result including a low Bayes factor
shows intervention effects similar to (or larger) what
prior evidence has indicated, i.e., that the new trial result
is compatible with the intervention effect indicated by
prior evidence.
If no former trials have been conducted, an anticipated

intervention effect cannot be estimated based on empir-
ical high quality data. Anticipated realistic intervention
effect may still be chosen based on knowledge about
other analogous interventions’ effects on the same dis-
ease or condition [23,24], but the uncertainty related to
the choice of an anticipated intervention effect prior to
the trial conduct and the subsequent estimation of a suf-
ficient sample size remain a problem. The possibility to
adjust the hypothesised intervention effect to get low
values of Bayes factor makes Bayes factor sensitive to
biased post hoc analyses. When Bayes factor is to be cal-
culated, it is therefore essential to define the interven-
tion effect hypothesised in the sample size calculation a
priori so biased post hoc analyses can be avoided.
Trialists might be tempted to perform a sample size

calculation based on unrealistically large anticipated
intervention effects in order to reduce the necessary
number of participants in a trial (relatively few patients
are needed to demonstrate or discard large intervention
effects) [25,26]. However, sample size estimations based
on unrealistically large anticipated intervention effects
increase the risk of erroneous estimation of intervention
effects — as trials with too small sample sizes (relative
to the actual effect) have been shown to have an in-
creased risk of either overestimating or underestimating
both effect size and variability [27]. This also means that
the calculation of Bayes factor before a realistic sample
size has been reached will also be relatively unreliable,
because the observed effect size used to calculate Bayes
factor might be erroneous (Additional file 1: Table S1).
Bayes factor assessed after the sample size has been
reached will increase if the trial results show an inter-
vention effect smaller than the intervention effect
hypothesised in the sample size calculation. The use of
Bayes factor might, therefore, be an incentive for a more
realistic and smaller estimation of anticipated interven-
tion effects, leading to more trials with sufficient power
and less trials either overestimating or underestimating
intervention effects. However, if trial results confirm un-
realistically large anticipated intervention effects by ‘play
of chance’ there is evidently a great risk of misleading



Jakobsen et al. BMC Medical Research Methodology 2014, 14:34 Page 4 of 12
http://www.biomedcentral.com/1471-2288/14/34
trial results. Intervention effects hypothesised in sample
size calculations should therefore preferably be based on
results from systematic reviews of randomised clinical
trials with low risk of bias, which to some extent will en-
sure that realistic hypothesised intervention effects are
used in the sample size calculation. If the intervention
effect hypothesised in the sample size calculation is not
based on results from systematic reviews of randomised
clinical trials, then we recommend to calculate an add-
itional Bayes factor using a smaller (‘sceptical’) hypothe-
sised intervention effect, e.g., a relative risk halfway
between the intervention effect hypothesised in the sam-
ple size calculation and 1.0.
Adaptive trial design has been proposed to account for

the uncertainty of estimating a sample size [28]. An
adaptive trial design enables sample size re-estimation at
interim analyses time points during the trial [29]. At
these time points the sample size can either be increased
or decreased. The adaptive trial design is complex and is
probably less efficient compared to the sequential design
including a predefined realistic sample size [29]. Further-
more, to implement an adaptive design it should be pos-
sible, practically and financially, to expand the originally
estimated sample size, which is rarely occurring in trials
not financed by the industry.
Assurance is another valid method that has been pro-

posed to estimate a sample size to achieve a desired
power (assurance), rather than to achieve a desired
power conditional on an assumed treatment effect [30].

Adjustment of the confidence interval and the P-value
when a trial is stopped before reaching the planned
sample size
The majority of randomised clinical trials have difficul-
ties in obtaining the stipulated sample size [10,31,32]. A
trial that is stopped prematurely with an effect that is
significant (e.g., P < 5%) may reach this significance level
because the estimated difference in effect between the
compared trial interventions is larger than anticipated or
because the estimated variance is lower than anticipated —
or both (see Section 2 about sample size estimation)
[27,29,33]. Deviations of intervention effects far from
the anticipated values should a priori be regarded as un-
likely and this is one reason for using a lower statistical
threshold to stop a trial before the planned sample size
has been reached [33]. If, e.g., a sample size calculation
has shown that a total of 500 patients are needed in a
trial and the trial is stopped after only 250 participants
are included, it might be necessary to use 1‰ instead of
5% as statistical threshold for significance in order to
avoid undue declarations of statistical significance due to
early random high intervention effects or low variance
[34]. As mentioned, trials with too small sample sizes
often show intervention effect sizes far from the effect
sizes shown in larger trials and systematic reviews with
meta-analyses [27,35]. As pointed out by Lindley, the ap-
parent paradox of small trials seemingly contributing
with evidence of large intervention effects while large
trials tend to rule out smaller intervention effects and
thereby also larger intervention effects, is bound to con-
fuse the average clinical researcher and reader [36]. If
trialists are allowed to assess statistical significance con-
tinuously during a trial (i.e., to conduct interim ana-
lyses) and stop at different time points without
adjusting the level of statistical significance, this will in-
evitably increase the risk of falsely negating the null hy-
pothesis [37]. This is due to sparse data and due to
repetitive testing on accumulating data both leading to
increased risks of random errors. Therefore, the thresh-
old of statistical significance should be related to the
fraction of the pre-planned number of participants ran-
domised and the number of tests conducted (see also
Problems with multiplicity due to multiple outcome
comparisons) [38-40] — and a number of different
methods have been developed for this purpose [41-44].
One example is the [41,42] O’Brien-Fleming boundaries
(and the corresponding adjusted thresholds of the confi-
dence intervals and the P-values), which show the ad-
justed thresholds for significance if a sample size has
not been reached [41,45].
Any outcome should only be assessed using the

thresholds used in the sample size calculation if there
are sufficient data, i.e., that a sample size based on
proper acceptable risks of type I and type II errors has
been reached. It is, therefore, necessary to perform
power calculations for all secondary outcomes (based on
an anticipated intervention effect, a variance, and a risk
of type I error) before randomisation begins. If an ana-
lysis of a secondary outcome has a power of less than
80%, then either the secondary outcome should be clas-
sified as an exploratory outcome or the confidence inter-
val and the P-value thresholds for significance should be
adjusted just as the thresholds are adjusted if a sample
size has not been reached.
In conclusion, it is imperative to estimate a sufficient

sample size before a trial is conducted, and proper ad-
justments of the thresholds for significance should be
performed if a trial is stopped early or if interim analyses
are conducted [17,34].

Problems with multiplicity due to multiple outcome
comparisons
If a randomised clinical trial assesses more than one out-
come, compares more than two intervention groups, or
assesses an outcome at more than one time point, then
the overall risk of falsely rejecting the null hypothesis for
at least one of the outcomes (e.g., family wise error less
than 5%) may increase with the number of outcome
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comparisons [39]. Problems with multiplicity has major
implications for the interpretation of the confidence inter-
val and the P-value and this is one reason why it should
be mandatory to report a predefined outcome hierarchy
including a clear definition of a primary outcome before
conducting a randomised clinical trial [17,40,46]. The con-
clusion about trial intervention effects should always be
related to the result on the primary outcome (or out-
comes) limiting the risk of falsely declaring a trial inter-
vention for being effective. The outcome hierarchy and a
specific, detailed description of every other relevant aspect
of the trial methodology should be described in a protocol,
which should be registered (e.g., at www.clinicaltrials.gov)
and published in a journal preferably before randomisation
begins [17,40,46].
How adjustment for multiplicity is done should depend

on the design of the trial, i.e., the chosen outcomes and
their relative importance, etc. — and different statistical
methods have been proposed to adjust the observed confi-
dence intervals and P-values to obtain strong control
[47,48] of this risk of type 1 error when multiple outcome
comparisons are used. Under weak control the type 1
error rate is controlled only under the global null hypoth-
esis that all null hypotheses are true. Under strong control,
which should be required in a clinical trial, the type 1
error rate is controlled under any partial configuration of
true and false null hypotheses [47,48]. Most methods (see
paragraph below) have focused on threshold adjustments
and adjustments of the P-value, but adjusted confidence
intervals can often be calculated based on an adjusted
P-value and an effect estimate, as well as adjusted P-values
can often be calculated based on adjusted confidence in-
tervals and an effect estimate [14,49].
Adjustments of the P-value due to multiplicity can be

obtained using Bonferroni adjustment. This simple
method multiplies the P-value with the number of out-
come comparisons when only one out of the chosen out-
come comparisons must be significant in order to reject
the overall null hypothesis, i.e., to declare that the trial
intervention is effective [50]. The Bonferroni procedure
tends to be rather conservative if the number of tests is
large or if the outcomes are positively correlated. As most
outcomes are dependent (e.g., incidence of cancer mortal-
ity and mortality in the same sample of participants are
evidently positively correlated outcomes) Bonferroni ad-
justment is obviously too conservative a method to ac-
count for multiple testing and corresponding methods
that are more powerful are available [51]. Hommel’s
method deals with all of the chosen outcomes as a group
using a data-driven adjustment of the P-values [52]. An al-
ternative method (the fixed sequence procedure) is to spe-
cify the sequence of the hypothesis testing (primary
outcome, first secondary, second secondary, etc.) [53].
Then each test will be done at the chosen level of
significance in the specified order (here both the confi-
dence interval and the P-value can be used to demonstrate
the threshold), but as soon as a test is non-significant then
the remaining null hypotheses are accepted. A fourth ap-
proach is the so-called ‘fall back procedure’ where the
fixed hypothesis testing sequence is also used [54]. How-
ever, if a test is insignificant using the ‘fall back procedure’
then the procedure does not stop but the next hypothesis
is tested at a reduced threshold for significance. This pro-
cedure also allows one to weight the hypotheses according
to their importance and likelihood of being rejected. Other
more complex methods taking correlation of the P-values
into account are also available [55,56]. It might not be ne-
cessary to include P-value adjustments for outcomes pre-
specified as exploratory or hypothesis generating — but
such P-values must always be interpreted conservatively.
Analysing results from interim analyses, it may still be

unknown how stable a low Bayes factor is, i.e., how often a
Bayes factor once it is low will increase after additional pa-
tients have been randomised and change from below to
above a certain threshold (e.g., 0.1). Full Bayesian statistics
may be able to account for problems of multiplicity due to
interim analyses, multiple outcomes, or comparisons of
the same outcome at multiple times [57-59]. However, this
may imply integration of fairly complicated models and
software in the final analyses of the trial results [57-59].

Statistical significance and clinical significance
When surrogate outcomes or continuous outcomes are
used to assess intervention effects, it is often unclear if a
given statistical significant effect has any patient relevant
clinical significance. Moreover, if a large number of trial
participants are assessed, small and clinically irrelevant
intervention effects may achieve statistical significance
leading to rejection of the null hypothesis [60,61]. Statins
have, e.g., been widely accepted as evidence-based treat-
ment for high cholesterol levels in the blood [62], but it
has recently been shown that decades of intake of statins
may only prolong life with an average of a few months
[63]. For clinically relevant outcomes such as mortality,
it is difficult to delineate a ‘minimal relevant clinical dif-
ference’ (Section 2). Any prevention, whatever small, of
patient-important outcomes may seem relevant. Never-
theless, the significance of the clinical benefit of statins
may be questioned taking adverse effects and other costs
of the statins into consideration [63,64].
In spite of a statistical significant effect with even very

low P-values and corresponding narrow confidence in-
tervals, clinical significance can often be questioned. Re-
lating trial results to the ‘minimal relevant clinical
difference’ used to calculate the predefined sample size
as well as calculating Bayes factor based on this ‘minimal
relevant clinical difference’, provide indications about the
clinical significance of intervention effects (see Sample
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size estimation, the alternative hypothesis to the null
hypothesis, and Bayes factor). However, to assess the
clinical significance of intervention effects it is important
to perform a thorough overall assessment of the balance
between beneficial and harmful effects [65,66]. Even rare
serious adverse effects may rule out the rational use of
an otherwise beneficial intervention [67].
It has been suggested that the ‘minimal relevant clin-

ical difference’ should be defined as what patients per-
ceive as important [69]. However, patients tend to
regard even the smallest effect sizes as clinically import-
ant [70]. We therefore suggest that clinical researchers
in close cooperation with patients and relatives must
somehow consent on the quantification of the ‘minimal
relevant clinical differences’ as well as the relevant out-
comes to be assessed. The latter work is dealt with by
research groups within The Cochrane Collaboration,
The James Lind Alliance, and the COMET Initiative
[14,68,71-73].
Ideally the ‘threshold’ effect size delimiting clinical sig-

nificance from lack of clinical significance should, as the
rest of the trial methodology, be predefined [68]. To avoid
erroneous interpretations, assessment of clinical signifi-
cance should only be assessed if statistical significance and
a Bayes factor of less than 0.1 have been obtained.

Discussion
The five-step procedure described aims to improve the
validity of results from randomised clinical trials. The
five-step procedure has the strength that is based on
well-established methodology and provides a ratio of the
probability that a trial result is compatible with the null
hypothesis divided by the probability that the result is
compatible with the intervention effect hypothesised in
the sample size calculation. Our procedure adjusts for
problems with multiplicity and also forces investigators
and consumers of clinical research to judge clinical sig-
nificance. A potential drawback of Bayesian statistical
analyses is that it can be difficult to verify modelling as-
sumptions, e.g., if assumed distributions in the analysis
are appropriate or not [74]. A strength of our simplified
approach is that if the assumptions behind the initial
analysis methods (e.g., logistic regression or survival ana-
lysis) are fulfilled then our five-point assessment can be
used validly without further testing.
The five-step procedure has limitations. First, we have

provided our recommendations for understanding the re-
sults of a single randomised clinical trial in the light of
usually sparse prior evidence. It has been shown that it is
often unwise to base diagnostic, prognostic, preventive, or
therapeutic interventions on data from one or few trials
[1,9,10,26,75], and our recommendations do not in any
way change this. Our aim is to introduce a simple assess-
ment procedure which we believe will improve the validity
of the assessment of results from a single randomised clin-
ical trial, but our procedure does not solve all problems.
Clinical decision-making should primarily be based on
systematic reviews of all randomised clinical trials with
low risk of bias including meta-analyses, trial sequential
analyses, and obtained consensus of clinical significance
[9,45,68,76-78]. Also in a scenario of a systematic review,
calculation of Bayes factor and assessment of clinical sig-
nificance may become pivotal. We will address these is-
sues in a forthcoming article.
Second, our recommended methodology as well as our

definition of Bayes factor is simplified. Alternatively, Bayes
factors could be based on the ratio of the probability that
the trial result is compatible with the null hypothesis di-
vided by the probability that the result is compatible with
a range of realistic alternative hypotheses. A full Bayesian
analysis could also be used to analyse trial results, which
focuses on the calculation of the posterior odds that an al-
ternative hypothesis to the null hypothesis is true, given
the observed data and any available prior information
[2,74,79]. There are a number of major methodological ad-
vantages using full Bayesian statistics compared to fre-
quentistic statistics [19,80] and results from a full Bayesian
analysis might in some circumstances reliably show a low
posterior probability for the alternative hypothesis while a
low Bayes factor wrongly indicates the opposite. However,
Bayesian statistical analyses increases the methodological
complexity [19,80]; can make research results sensitive to
apparently innocuous assumptions which hinder taking
possible trial results into account [80,81]; and will, in es-
sence, require a methodological paradigm shift including
use of detailed Bayesian statistical analyses plans and
Bayesian statistical software such as WinBUGS [82].
Third, it is necessary to define some kind of alternative

hypothesis to the null hypothesis calculating the Bayes
factor. The definition of the alternative hypothesis often
involves an element of subjectivity, and it is for this rea-
son that many trialists do not use the Bayesian approach
[2,79]. It has been suggested that the alternative hypoth-
esis might be defined as ‘uniformly most powerful Bayes-
ian tests’ where the alternative hypothesis is defined as
an average value of any hypothetical intervention effect
resulting in a Bayes factor below a given threshold
[2,79]. This procedure is appealing because no subjective
assumptions have to be made about the alternative hy-
pothesis — but it is a problem that potentially important
information about intervention effects showed in former
randomised trials or systematic reviews of such trials
cannot be included in the definition of the alternative
hypothesis. Furthermore, the method is primarily for
one-parameter exponential family models and has, in es-
sence, no methodological advantages compared to only
using the P-value as a threshold for significance [2,79].
The researcher behind the ‘uniformly most powerful



Table 1 Our suggestions for a more valid assessment of
intervention effects in a randomised clinical superiority trial

1 Calculate and report the confidence intervals and the exact P-values
for each pre-specified outcome.

2 Calculate and report the Bayes factor (see Additional file 1: Table S1
for calculations) for the primary outcome. A Bayes factor less than 0.1
may be chosen as threshold for significance.

3 If the a priori estimated sample size has not been reached or if
interim analyses have been conducted, then adjust the confidence
intervals and the P-values accordingly.

4 If more than one outcome is used, if more than two intervention
groups are compared, or if the primary outcome is assessed multiple
times (and just one of these outcome comparisons must be
significant to reject the overall null hypothesis), then the confidence
intervals and the P-values should be adjusted accordingly.

5 If statistical significance has been obtained according to all of the first
four points above then assess clinical significance of the trial results.

A low Bayes factor (e.g., less than 0.1) together with a low P-value (e.g., less
than 0.05) will correspond to a high probability of an intervention effect
similar to or greater than the hypothesised intervention effect used in the
sample size calculation.
All of these aspects should be prospectively planned and published in a public
protocol for the randomised clinical trial before inclusion of the first participant.
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Bayesian tests’ suggests to use lower P-value thresholds
(0.005 or 0.001) to avoid false positive significant results
[2], which clearly seems to be a valid alternative to our
calculation and use of Bayes factor. We have chosen the
intervention effect hypothesised in the sample size calcula-
tion as the alternative hypothesis firmly relating the pre-
planned trial design to the interpretation of the trial result.
Most trials already include a predetermined sample size
calculation, which includes estimation of an anticipated
intervention effect. New assumptions are therefore, in es-
sence, not needed to calculate Bayes factor. However, it is
still a clear limitation that Bayes factor can be influenced
by post-hoc adjustments and erroneous quantifications of
the alternative hypothesis.
Fourth, our procedure is based on already well-established

methodology. However, there is no empirical evidence so far
assessing the validity of the procedure. We will also address
this issue in a forthcoming article.

Conclusions
To assess the statistical significance and the clinical sig-
nificance of results from randomised clinical superiority
trials, we propose a five-step procedure: (1) Calculate
and report the confidence intervals and the exact P-
values for all pre-specified outcome comparisons. A P-
value less than 0.05 may be chosen as threshold for
statistical significance for the primary outcome, only if
0.05 has been used as the acceptable risk of type I error
in the sample size calculation and the sample size has
been reached. (2) Calculate and report the Bayes factor
for the primary outcome (or outcomes) based on the
hypothesised intervention effect used in the sample size
estimation. If the intervention effect hypothesised in the
sample size calculation is not based on results from sys-
tematic reviews or randomised clinical trials, then calcu-
late an additional sceptical Bayes factor using a smaller
hypothesised intervention effect, e.g., a relative risk half-
way between 1.0 and the intervention effect hypothe-
sized in the sample size calculation. A Bayes factor less
than 0.1, indicating a ten-fold higher likelihood of com-
patibility with the alternative hypothesis than the likeli-
hood of compatibility with the null hypothesis, may be
chosen as threshold for supporting the alternative hy-
pothesis. More research is needed to assess if this
threshold is optimal. (3) If the a priori estimated sample
size has not been reached or interim analyses have been
performed, then adjust the confidence intervals and the
P-values accordingly. (4) If more than one outcome is
used, if more than two intervention groups are com-
pared, or if the primary outcome is assessed at multiple
time points (and just one of these outcome comparisons
must be significant to reject the overall null hypothesis),
then the confidence intervals and the P-values should be
adjusted accordingly. (5) Assess and report clinical
significance of the results if all of the first four steps of the
five-point procedure have shown statistical significance.
Table 1 summarises our suggestions for a more valid

assessment of intervention effects in randomised clinical
superiority trials, and we have included three examples
of how the five-step assessment can be used to assess
statistical significance and clinical significance of results
from a randomised clinical trial (see Example 1, Example
2, Example 3). We have, for simplicity, only assessed the
primary outcome results in the three examples.

Example 1
A trial published in JAMA 2012 examined the effects of
multivitamins in the prevention of cancer [83]. The con-
clusion of the trial was that multivitamin supplementa-
tion significantly reduced the risk of total cancer (HR
0.92; 95% CI, 0.86 to 0.998; P = 0.04). We will use our
five-step procedure to assess the statistical and clinical
significance of the trial results:

1. Report the confidence interval and the exact P-value.

Our assessment: The hazard ratio, the 95% confidence
interval, and the exact P-value are reported in the
publication (HR 0.92; 95% CI, 0.86 to 0.998; P = 0.04).

2. Calculate and report the Bayes factor for the primary
outcome. A Bayes factor less than 0.1 may be chosen
as threshold for significance.
Our assessment: First, to calculate Bayes factor we
need to calculate log odds ratio and the standard
error of the log odds ratio of the trial result: odds
ratio 0.92, log odds ratio −0.08, and standard error
of the log odds ratio 0.04.
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Second, we need to calculate the log odds ratio of
the sample size calculation. The statistical power for
showing a 20% and a 30% reduction in the risk of
total cancer was calculated in the protocol [84]:
odds ratio 0.8 and log odds ratio −0.22.
Bayes factor = 53.10 if a risk reduction of 20% is
used as the anticipated intervention effect, which is
considerably greater than 0.1.
Bayes factor = 3,009,380,258 if a risk reduction of
30% is used as the anticipated intervention effect,
again considerably greater than 0.1.

3. If the a priori estimated sample size has not been
reached or if interim analyses have been performed,
then adjust the confidence intervals and the P-values
accordingly.
Our assessment: The sample size estimation is based
on a total of 15,000 participants, and 14,641
participants are randomised in the trial. The sample
size was almost sufficiently reached, so no
adjustment may be needed.

4. If more than one outcome is used, if more than two
intervention groups are compared, or if the primary
outcome is assessed multiple times (and just one of these
outcome comparisons must be significant to reject the
overall null hypothesis), then the confidence intervals
and the P-values should be adjusted accordingly.
Our assessment: In the published protocol [84] it is
reported that the trial is a randomised, double-blind,
placebo-controlled trial of the balance of benefits
and risks of beta-carotene, vitamin E, vitamin C, and
a multivitamin in the prevention of total and prostate
cancer, cardiovascular disease, and the age-related eye
diseases, cataract and macular degeneration. In the
protocol no clear definition of a primary outcome is
reported [84]. Five outcomes (total cancer, prostate
cancer, important cardiovascular events, age-related
macular degeneration, and cataract) are mentioned in
the protocol to assess all the included outcomes.
However, in the trial publication total cancer is men-
tioned as the primary outcome. The P-value of 0.04
should properly have been adjusted for multiplicity
due to the many outcome comparisons.

5. If statistical significance has been shown according to
all of the above points then assess clinical
significance of the trial results.
Our assessment: The assessment of statistical
significance was not adequately addressed and if it
had been it is highly unlikely if statistical significance
would have been attained. So it is not deemed
relevant to assess any clinical significance.
Interpretation: Our five-point assessment demon-
strates that the results from the randomised clinical
trial should be interpreted with great caution and
that the results from this single trial indicates that
the effect of multivitamins is 53 times more compat-
ible with the null hypothesis than the hypothesis of a
20% relative risk reduction of total cancer. Our five-
point assessment of this trial is in agreement with re-
sults from systematic reviews with meta-analysis and
trial sequential analysis on all-cause mortality, gastro-
intestinal cancers, and other cancers [85-87].
Example 2
A trial published in The Lancet 2010 examined the effects
of tranexamic acid versus placebo in trauma patients with
significant haemorrhage [88]. The conclusion of the trial
was that tranexamic acid significantly reduced all-cause
mortality. We will use our five-step procedure to assess
the statistical and clinical significance of the trial results:

1. Report the confidence interval and the exact P-value.

Our assessment: The authors reported a relative risk
0.91, 95% CI 0.85 to 0.97, and P = 0.0035

2. Calculate and report the Bayes factor for the primary
outcome. A Bayes factor less than 0.1 may be chosen
as threshold for significance.
Our assessment: First, to calculate Bayes factor we
need to calculate the log odds ratio and the standard
error of the log odds ratio of the trial result: odds
ratio 0.89, log odds ratio −0.12, and standard error
of the log odds ratio 0.04.
Second, we need to calculate the log odds ratio of the
intervention effect hypothesised in the sample size
calculation. The sample size calculation was based on
an assumed risk of death of 20% in the control group,
a relative risk of 0.90, and it was planned to randomise
2 × 10,000 participants. This corresponds to an odds
ratio of 0.89 and a log odds ratio of −0.11.

Bayes factor ¼
exp −

1
2� 0:042

−0:12ð Þ2
� �

exp −
1

2� 0:042
−0:12− −0:11ð Þð Þ2

� �

Bayes factor = 0.01 which is 10 times less than the

suggested threshold of 0.1. Accordingly, there seems
to be good support of the assessed postulated
intervention effect.

3. If the a priori estimated sample size has not been
reached or if interim analyses have been performed,
then adjust the confidence intervals and the exact
P-values accordingly
Our assessment: The sample size estimation is based
on a total of 20,000 participants, and 20,211 were
randomised in the trial. The sample size was
sufficiently reached.

4. If more than one outcome is used, if more than two
intervention groups are compared, or if the primary
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outcome is assessed multiple times (and just one of these
outcome comparisons must be significant to reject the
overall null hypothesis), then the confidence intervals
and the P-values should be adjusted accordingly.
Our assessment: Only one primary outcome is
reported in the published protocol (http://www.
thelancet.com/protocol-reviews/05PRT-1) and this
outcome is only assessed at one time point. There is
no need for an adjustment of the confidence interval
or the P-value.

5. If statistical significance has been shown according to
all of the above four points, then assess clinical
significance of the trial results.
Our assessment: Statistical significance was reached
according to all of the first four points of the five-
point assessment. Clinical significance for a dichot-
omous outcome can be assessed by calculating the
number-needed-to-treat to save one life. Number-
needed-to-treat is 35 participants, demonstrating a
relatively large clinical benefit of tranexamic acid. A
further assessment of the balance between beneficial
and harmful effects should also be performed.
Interpretation: Our five-point assessment demon-
strates that the results from the randomised clinical
trial are a 100 times more compatible with a 10%
relative risk reduction than the null effect of tranex-
amic acid on all-cause mortality. However, before
this promising treatment is introduced into clinical
practice, a systematic review of all randomised clin-
ical trials should assess the benefits and harms of
tranexamic acid. Such a review should include a
thorough bias risk assessment, meta-analyses, trial
sequential analyses, and reports on harm from ob-
servational studies [9,45,68,76-78].

Example 3
A trial published in The New England Journal of Medi-
cine in 2012 examined the effects of hydroxyethyl starch
versus Ringer’s acetate in severe sepsis [89]. The conclu-
sion of the trial was that the primary outcome, death or
dependence on dialysis at 90 days after randomisation,
occurred in 202 patients (51%) in the starch group as
compared with 173 patients (43%) in the Ringer’s acetate
group (relative risk, 1.17; 95% CI, 1.01 to 1.36; P = 0.03).
We will use our five-step procedure to assess the stat-

istical and clinical significant of the trial results:

1. Report the confidence interval and the exact P-value.

Our assessment: The confidence interval and the
P-value are reported in the publication (relative risk,
1.17; 95% CI, 1.01 to 1.36; P = 0.03).

2. Calculate and report the Bayes factor for the primary
outcome. A Bayes factor less than 0.1 may be chosen
as threshold for significance.
Our assessment: First, to calculate Bayes factor we
need to calculate the log odds ratio and the standard
error of the log odds ratio of the trial result: odds
ratio 1.35, log odds ratio 0.30, and standard error of
the log odds ratio 0.142.
Second, we need to calculate the log odds ratio of the
sample size calculation. The sample size calculation
reported in the published protocol showed that a total
of 800 participants was needed to show a 20% relative
risk reduction on either death or end-stage kidney
failure (primary outcome) assuming a 50% incidence
of either death or end-stage kidney failure in the
control group. This will correspond to an odds ratio
of 0.67 and a log odds ratio of −0.40.
Bayes factor = 20,306 which is considerably greater
than 0.1.
It must be noted that the trialists anticipated a
beneficial effect of hydroxyethyl starch, but found a
harmful effect compared with Ringer’s acetate. This
results in a large Bayes factor demonstrating that the
trial results show that it is far more probable that
the results are compatible with a null effect (or a
harmful effect) than the results are compatible with
a 20% relative risk reduction of mortality
hypothesised in the sample size calculation.

3. If the a priori estimated sample size has not been
reached or if interim analyses have been performed,
then adjust the confidence intervals and the exact
P-values accordingly.
Our assessment: The sample size estimation is based
on a total of 800 participants, and 804 participants
were randomised. The sample size was reached.

4. If more than one outcome is used, if more than two
intervention groups are compared, or if the primary
outcome is assessed multiple times (and just one of
these outcome comparisons must be significant to
reject the overall null hypothesis), then the confidence
intervals and the P-values should be adjusted
accordingly.
Our assessment: The same single primary outcome
(either death or end-stage kidney failure) was re-
ported in the published protocol [90] and in the trial
publication [89]. The primary outcome was only
planned to be analysed at one time point. There is
no need for any adjustment of the threshold for
significance.

5. If statistical significance has been shown according to
the above four points, then assess clinical significance
of the trial results.
Our assessment: The first four points of the five-point
assessment clearly showed that hydroxyethyl starch
does not seem to have a beneficial effect. Clinical
significance can for dichotomous outcomes be assessed
by calculating number-needed-to-treat or number-

http://www.thelancet.com/protocol-reviews/05PRT-1
http://www.thelancet.com/protocol-reviews/05PRT-1
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needed-to-harm. The number-needed-to-harm is 13,
i.e., after 13 patients with severe sepsis have been
treated with hydroxyethyl starch one extra patient will
die or develop end-stage renal disease because of being
treated with hydroxyethyl starch compared with being
treated with Ringer’s acetate. A further assessment of
the balance between beneficial and harmful effects
should also be performed but is irrelevant in this trial.
Interpretation: Our five-point assessment confirms
that hydroxyethyl starch compared with Ringer’s
acetate does not seem to have a beneficial effect in
the treatment of severe sepsis. Our five-point assess-
ment is in agreement with results from systematic
reviews with meta-analysis and trial sequential
analysis [91].
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