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Abstract

Background: Heatwaves could cause the population excess death numbers to be ranged from tens to thousands
within a couple of weeks in a local area. An excess mortality due to a special event (e.g., a heatwave or an
epidemic outbreak) is estimated by subtracting the mortality figure under ‘normal’ conditions from the historical
daily mortality records. The calculation of the excess mortality is a scientific challenge because of the stochastic
temporal pattern of the daily mortality data which is characterised by (a) the long-term changing mean levels (i.e.,
non-stationarity); (b) the non-linear temperature-mortality association. The Hilbert-Huang Transform (HHT) algorithm
is a novel method originally developed for analysing the non-linear and non-stationary time series data in the field
of signal processing, however, it has not been applied in public health research. This paper aimed to demonstrate
the applicability and strength of the HHT algorithm in analysing health data.

Methods: Special R functions were developed to implement the HHT algorithm to decompose the daily mortality
time series into trend and non-trend components in terms of the underlying physical mechanism. The excess
mortality is calculated directly from the resulting non-trend component series.

Results: The Brisbane (Queensland, Australia) and the Chicago (United States) daily mortality time series data were
utilized for calculating the excess mortality associated with heatwaves. The HHT algorithm estimated 62 excess
deaths related to the February 2004 Brisbane heatwave. To calculate the excess mortality associated with the July
1995 Chicago heatwave, the HHT algorithm needed to handle the mode mixing issue. The HHT algorithm estimated
510 excess deaths for the 1995 Chicago heatwave event. To exemplify potential applications, the HHT decomposition
results were used as the input data for a subsequent regression analysis, using the Brisbane data, to investigate the
association between excess mortality and different risk factors.

Conclusions: The HHT algorithm is a novel and powerful analytical tool in time series data analysis. It has a
real potential to have a wide range of applications in public health research because of its ability to
decompose a nonlinear and non-stationary time series into trend and non-trend components consistently
and efficiently.
Background
Historical records showed that heatwaves could cause
the population excess death numbers to be ranged from
tens to thousands within a couple of weeks in a local
area [1]. For example, 465 heat-related deaths were re-
corded during the July 1995 Chicago (17-day) heatwave
period [2] and the August 2003 heatwave caused more
than 20000 excess deaths in Southern Europe counties
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[1]. Therefore, heatwaves can have big impacts on public
health. An excess mortality due to a special event (e.g., a
heatwave or an epidemic outbreak) is estimated by sub-
tracting the expected mortality (i.e., the mortality figure
under ‘normal’ conditions) from the historical daily mor-
tality time series records. The calculation of the excess
mortality is a scientific challenge because of the stochas-
tic temporal pattern of the daily mortality time series
data which is characterised by (a) the long-term chan-
ging mean levels (i.e., non-stationary); (b) the non-linear
temperature-mortality association.
A consistent and efficient algorithm is essential to de-

compose a daily mortality time series into different trend
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series (i.e., the long-term trend, seasonal variation, and
other unknown trends) and non-trend series (i.e., the
short term fluctuations, or excess/deficit death counts
due to extreme events). However, commonly accepted al-
gorithms for time series decomposition in public health
studies suffer the weakness of an arbitrary choice of
smoothing parameters and/or are poor in adapting to
local features [3,4]. For example, moving average, differ-
encing, and various smoothing splines are widely used to
analyse daily mortality time series data [1]. These existing
algorithms are either shackled by spurious harmonics
(signal processing approach) or weakened by subjective
choice of smoothing parameter (statistical approach) [3-5].
These algorithms always put the mathematical correct-
ness and tractability before the true representation of
the underlying physical mechanisms. The Hilbert-Huang
Transform (HHT) algorithm was introduced to analyse
daily mortality time series data as HHT is probably the best
available tool for analysing nonlinear and non-stationary
time series [4,5].
The HHT algorithm was originally designed in 1995,

under the name of EMD and HSA (Empirical Mode
Decomposition and Hilbert Spectral Analysis), specific-
ally to study water surface wave evolution [6]. Huang
et al. [5] is commonly known as the original HHT algo-
rithm article. The HHT algorithm is unique and different
from other existing algorithms, because it is truly an
adaptive time-frequency analysis. HHT reveals the true
physical meanings in many of time series analyses [4,7].
It has been successfully used in various fields particularly
in engineering and geophysical studies [4,6]. However,
HHT is relatively new and has not been included as a
standard statistical data analysis tool. To our knowledge,
the HHT algorithm has not been applied in public health
research.
This paper aimed to demonstrate the applicability

and strength of the HHT algorithm in public health
research. To illustrate the utilization of the HHT algo-
rithm, the Brisbane daily mortality data [8] and the
Chicago daily mortality data from the National Morbidity,
Mortality, and Air Pollution Study (NMMAPS) were
used to calculate the excess mortality due to heatwaves.
The HHT decomposition results were further used as
the input data for a subsequent regression analysis to
investigate the association between excess mortality and
different risk factors such as temperature, ozone, and
particulate matter. Through the application examples,
the procedure of applying HHT to decompose the daily
mortality series was explained step by step. The HHT
applications in this paper were implemented using spe-
cial R functions [9] developed from the latest HHT re-
search results. More technical details about the HHT
algorithm and the R codes are provided in the Additional
file 1.
Methods
Example data
As mentioned above, two data sets were employed in
this study: 1) the Brisbane daily mortality and meteoro-
logical data; 2) the Chicago daily mortality data.
The Brisbane data set had been used to calculate ex-

cess deaths during the February 2004 heatwave by Tong
et al. in 2010 [8]. Daily time series data on non-external
deaths were obtained from the period 01/07/1996 to 30/
06/2004. The two identified heatwave events were in
2000 and 2004 summer seasons, respectively. Previous
research showed that daily maximum temperature is one
of the best predictors of daily mortality [10], and was
therefore used as the primary risk factor to perform the
regression analysis. Air pollution data for the same
period were also used and included daily average con-
centrations of PM10 (particulate matter with equivalent
diameters less than 10 μm) and O3 (ozone).
The Chicago daily mortality data were extracted from

the well-known NMMAPS dataset for the period 01/01/
1995 to 30/06/2000. There were 4780 classified heat-
related deaths in the U.S. over the period 1979 to 2002,
among which 465 deaths were recorded due to the 1995
Chicago heatwave (11–27 July) [2,11]. This formed a ref-
erence for comparison of the HHT algorithm result with
previous findings.

HHT algorithm
The key part of the HHT algorithm is the Empirical Model
Decomposition (EMD) process with which any complex
time series data set can be decomposed into a finite and
often small number of components, called Intrinsic Mode
Function (IMF). A time series is called an IMF if it satisfies
the following two criteria: (1) The number of local extreme
values (maxima or minima) of the time series and the num-
ber of its zero-crossings must either be equal or differ by at
most one; (2) At any time, the mean value of the upper en-
velope determined by the local maxima and the lower enve-
lope determined by the local minima is zero [4]. In the real
world, IMFs can lead to physically meaningful definitions of
instantaneous frequency and instantaneous amplitude. In
this sense, HHT provides a more physically meaningful
time-frequency-energy description of the original time
series. Technically, the IMFs are generated through a sifting
process. Interested readers may refer to the references
[4–6,12] and the Additional file 1 for more details.
Denote a time series by X(t). By applying the EMD

process, the original time series can be decomposed as

X tð Þ ¼
XN

j¼1

cj þ rN ; ð1Þ

where cj is the jth IMF and rN is the residual series after
N IMFs are extracted.
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Once the IMFs are generated, a significance test can
be applied to identify the trend components (i.e., which
IMFs should be treated as trend components) from those
non-trend components. There are two approaches to con-
struct the significance tests: one is developed by Wu and
Huang using Matlab programs [7,13,14], following an ana-
lytic approach resorting to the central limit theorem; the
other is based on research conducted by Flandrin et al.
[15], following a Monte Carlo simulation approach. Both
approaches were consistent in the tested results [13]. This
study followed Flandrin's approach and developed the sig-
nificant test procedure as detailed below.
In general, the non-trend components (or noise/

random components as usually termed in signal pro-
cessing study) are found among the low-order (i.e., high-
frequency) IMFs, which are intuitively clear as shown in
Figure 1 (row 2 to row 9). Let Ek denote the energy level
for the kth IMF generated from the EMD process. Accord-
ing to the method developed by Wu and Huang [13] and
Flandrin et al. [15], the observed/estimated IMF energy
level can be calculated by

Ê k ¼
Xn

i¼1

dk ið Þ½ �2; k ¼ 1; 2;…;N ; ð2Þ
Figure 1 IMFs decomposed from Brisbane daily mortality time series
where dk(i) is the ith element value of the kth IMF; n is
the data length or sample size of the original time series;
and N is the total number of IMFs, e.g., N = 9 in Figure 1.
Because of the Hilbert transform, the squared ampli-
tudes (i.e., [dk(i)]²) represent the energy levels of each
IMF series [5,6].
For signals involving Gaussian white noise, the ener-

gies of the non-trend component IMFs can be approxi-
mated as [15]

Ŵ H k½ � ¼ Ê1

0:719
� 2:01−k ; k ¼ 2; 3;…;N ; ð3Þ

where Ê1 can be obtained from Equation (2). As a re-
sult, the IMF energies, Ŵ H k½ � , for each order k, should
decrease linearly when displayed on a semi-log plot, e.g.,
log2 Ŵ H k½ �� �

versus k as shown by the solid straight
line (connecting circle points) in Figure 2. Any IMFs
with which their log2 Ê k

� �
values deviate significantly

from the white noise (decreasing straight) energy line
towards the top-right corner should be identified as trend
IMFs [7,15].
In the case that the non-trend IMFs have significant

serial correlations, the significance test can be generalized
as follows: if a well-fitted least-square line is obtained from
(eight years period).



Figure 2 Significance test to separate the trend IMFs from
non-trend IMFs (Brisbane data). The solid line connecting the
circle points represents the white noise energy levels for each IMF; solid
line segments connecting star points is the observed IMF energy level
curve. Dotted line is the approximate 95% confidence band (upper
limit); dashed line is the 99% confidence band (upper limit).
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the first few low order IMFs and this line is extrapolated to
the full range of the order index, any higher order (i.e.,
lower frequency) IMFs which significantly deviate from this
line towards the top-right corner should be identified as
trend IMFs. Those lower order (i.e., high-frequency) IMFs
from which the well-fitted least-square line is formed are
the non-trend IMFs [15].
As shown in Figure 2, the approximate 95% (dotted

lines) and 99% (dashed lines) confidence bands can be
obtained for the Gaussian white noise series energy line.
For the 95% confidence band, the plotting ordinates,
upper95, are given by [15]

upper95 k½ � ¼ log2 Ŵ H k½ �� �þ 20:474k−2:449;

for k = 2, 3, …, N. For the 99% confidence band, the plot-
ting ordinates, upper99, are given by [15]

upper99 k½ � ¼ log2 Ŵ H k½ �� �þ 20:460k−1:919;

for k = 2, 3, …, N. Therefore, based on the significance test
result, the original time series X(t) can be decompose as

X tð Þ ¼
Xm

i¼1

ci þ
XN

j¼mþ1

cj þ rN ; ð4Þ

(for 1 <m <N) where
Xm

i¼1

ci is the ‘detail’ or the non-

trend components of X(t) and
XN

j¼mþ1

cj þ rN is the trend

components of X(t).
If a significant serial correlation exists in the identified
non-trend series, the upper95[k] and upper99[k] will
shift up (if positively correlated) or down (if negatively
correlated) characterised by the best-fit least square line
as shown in Figure 3 (middle-left plot). This is the frac-
tional Gaussian noise series case which includes the
Gaussian white noise series as a special case [15].
The ‘detail’ part of the X(t) is needed for calculating

the excess mortality while the trend part is needed for
calculating the relative risk in a regression analysis.
If needed, the instantaneous frequencies can be calcu-

lated for each IMF as shown in Figure 4. The definition of
the instantaneous frequencies of a time series and detailed
calculations may be found in the references [4,5,7].
The EMD process can fail with the presence of a

‘mode mixing’ issue. The ‘mode mixing’ issue is defined
as a single IMF either consisting signals of widely dispar-
ate scales, or a signal of a similar scale residing in differ-
ent IMF series. Mode mixing is often a consequence of
signal intermittency [16]. The analysis of the Chicago
data encountered the mode mixing issue, as shown in
the left column plots of Figure 3. Using the ensemble
EMD (EEMD) process is the solution to a mode mixing
issue. The principle of the EEMD process is that the
added white noise would populate the whole time-
frequency space uniformly with the constituting compo-
nents of different scales. The EEMD process defines the
true IMFs as the mean of an ensemble of trials, each
consisting of the signal plus a white noise of finite amp-
litude (usually we choose 0.1 standard deviation of the
original time series) [4,13,16]. For example, the EEMD
process can be applied by running 100 times of EMD
decomposition processes with an added white noise of
0.1 standard deviation of the original time series. The
average of the 100 EMD results is then taken as the final
decomposition results of an EEMD process.
The significance tests are applied to the IMFs gener-

ated from the EMD and EEMD processes, respectively.
If they agree, such as the case of Brisbane data analysis
(plots in the right column of Figure 3), the EMD process
is sufficient for generating IMFs; otherwise, the EEMD
process is needed.
Once the original time series is decomposed into trend

and non-trend IMFs, calculation of the excess mortality
or other data analysis procedures (e.g., a subsequent re-
gression analysis) can be performed using the resulting
IMFs as the input.

Results
Brisbane data analysis
The EMD process was applied to decompose the
Brisbane daily mortality data and the results were shown in
Figure 1. The top plot showed the original time series,
followed by the IMF series (IMF 1 to IMF 9), and the



Figure 3 Significance test to separate trend IMFs from non-trend IMFs and standard autocorrelation function (ACF) plot. The solid line without
circle points (middle-left plot) is the fractional white noise energy level line. The dashed lines in the ACF plots (bottom row) are the approximate 95%
confidence bands. Dotted line is the approximate 95% confidence band (upper limit); dashed line is the 99% confidence band (upper limit).

Figure 4 Instantaneous frequency plots for each IMFs.
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bottom plot represented the ‘residual’ series. Since the re-
sidual series was obtained by removing all the higher fre-
quency components (IMFs) from the original time series, it
was always one of the trend components. The x-axis mea-
sured the time in days starting from 01/07/1996 and
the y-axis measured the total or decomposed daily mor-
tality. The (element wise) sum of the series of IMFs 1
to 9 and the ‘residual’ series recovered the original
series (top plot) as defined by Equation (1).
Based on Figure 2 and the significance test rule specified

in the previous section, IMFs 1 to 5 were identified to
form the non-trend part of the daily mortality time series.
The non-trend series provided the excess mortality esti-
mates for each day of the observation period. Therefore, if
07/02/2004 to 26/02/2004 (20 days) was specified as the
heatwave period, the excess mortality due to this heatwave
was simply the sum of the resulting non-trend series over
this 20-day period. The estimated excess mortality total
was 62 (rounded to integer). Tong et al. [8] obtained a
95% confidence interval estimation (11, 138) of the excess
deaths from a fitted Generalised Additive Model (GAM)
[17]. Based on Table 1, it was trivial to find out that it was
those peak heatwave days made the dominant excess
mortality contribution, that was, 52 deaths in six days.
In Table 1, notation MaxT represented the daily max-
imum temperature; those ExcessDeath values were ob-
tained directly from the resulting non-trend series.
The strength of the HHT algorithm is that the decom-

posed IMFs capture the local features of a time series
(i.e., the instantaneous frequency and instantaneous
amplitude) better than any other available algorithms
[4,5]. Figure 4 showed the instantaneous frequency plots
for all nine IMFs. For comparison, those IMFs identified
as non-trend components (i.e., IMFs 1 to 5) were dis-
played in the left column; trend component IMFs were
displayed on the right. The y-axis represented the in-
stantaneous frequency in terms of cycles per day. There-
fore, the instantaneous cycle length (i.e., periodic pattern)
could be calculated by taking the inverse of the instant-
aneous frequency. This detailed frequency pattern infor-
mation is important because it helps us to understand
the underlying physical processes better.
For estimation of the average period (i.e., the average

cycle length in days for daily time series data), as pro-
posed in [13], the calculation formula is given as

average period kð Þ ¼ n=number of peaks kð Þ;
Table 1 Excess mortality over the period 18–23 February,
2004, Brisbane

Date 18 19 20 21 22 23

MaxT (°C) 30.5 32.1 32.0 35.2 40.2 31.6 Sum

ExcessDeath 5.7 6.7 7.6 −0.4 20.6 11.6 51.8
where the average period(k) is the average period in
days of the kth IMF; n is the data length or sample
size of the original time series; number of peaks(k) is
the number of the local maxima points of the kth IMF for
k = 1, 2, …, N. With the Brisbane data, we had n = 2922
and N = 9. Table 2 showed the estimated average period in
days for each IMF of the Brisbane data. Note that, since
the EMD process is essentially a dyadic filter bank, it de-
composes the original time series in a manner that the
average periods are approximately doubling the neigh-
bouring IMFs [4,6].

Chicago data analysis
We applied the EMD process to the Chicago data
(graphic output not shown) and performed the signifi-
cance test as shown in the top-left plot of Figure 3. The
plot indicated that only IMFs 1 and 2 should be treated
as the non-trend components. In the original time series
plot (not shown), a huge spike appeared around July
1995 which may cause the mode mixing problem. We
then applied EEMD to the Chicago data and performed
the significance test accordingly. The result was shown
in the middle-left plot of Figure 3. Comparing the results
obtained from EMD and EEMD (i.e., top-left plot versus
middle-left plot), we concluded that the mode mixing
issue could not be ignored and the EEMD process was
necessary. By applying the generalized significance test
rule, the IMFs 1 to 5 were identified as the non-trend
components (middle-left plot). In Figure 3, the signifi-
cance test results for the Brisbane data (plots in the right
column) were included for comparison: both the EMD
and EEMD generated IMFs test results (top and middle
plots in the right column of Figure 3) seemed to be in
agreement with each other. Therefore, the EMD decom-
position was sufficient for Brisbane data.
With the Chicago data, the non-trend components en-

ergy line was deviated (upwards) from the white noise
energy line due to its significant serial correlation. The
bottom row plots compared the autocorrelation function
curves of the Chicago data with the Brisbane data. The
Chicago data (bottom-left plot) exhibited a significant
serial correlation – lags 1 and 2 serial correlations were
well beyond the 95% confidence band. This explained
the mismatch between the Chicago data IMF energy line
and the white noise energy line.
Once the non-trend IMFs were determined, given a

specified heatwave period, the calculation of the excess
mortality of the Chicago data became straightforward.
The HHT algorithm estimated the excess mortality over
Table 2 Average period of each IMF (in days)

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

2.9 6.2 12.8 25.6 54.1 146.1 292.2 487.0 730.5



Table 3 Regression analysis result (I)

Model Coefficient of maxT
or maxT(non-trend)

p-value Adjusted R2 2004
(period)

1 0.06553 0.0248 0.208 Heatwave
(20 days)

2 0.06223 0.0390 0.172 Heatwave
(20 days)

3 0.05705 <0.001 0.127 Summer
(91 days)

4 0.05652 <0.001 0.165 Summer
(91 days)
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the period 11–18 July 1995 to be 510. According to the
Mortality and Morbidity Weekly Report (MMWR), a
total of 465 deaths were identified as heat-related in
Chicago during 11–27 July [2]. The MMWR is the official
source to publish the heat-related death figures reported
by the Cook County Medical Examiner’s Office (CCMEO)
during heatwaves [2].

More on Brisbane data analysis
Relative risk in natural logarithm scale, denoted by loge
(RR), was used as the health outcome variable for the re-
gression analysis. The log relative risk was calculated as
(following the notation defined in Equation (4))

loge RRð Þ ¼ loge
Pexposed

Pnon−exposed
¼ loge

X tð Þ
X9

i¼6
ci þ r9

;

ð5Þ

where X(t) was the original daily mortality series and

X9

i¼6

ci þ r9 was the trend series obtained from the EMD

process in the ‘Brisbane data analysis’ subsection. The
trend series represented the daily mortality under ‘nor-
mal’ conditions.
Similar to the decomposition of the daily mortality

data, the EMD process was applied to the daily max-
imum temperature series, denoted by maxT, to generate
the IMFs. The maximum daily temperature data IMFs 1
to 5 were grouped to form the ‘non-trend’ part as it had
the same frequency structure as the identified non-trend
daily mortality series. The non-trend part of the daily
maximum temperature, denoted by maxT(non-trend), rep-
resented the daily maximum temperature anomaly. The
association between the daily mortality and the max-
imum temperature was then investigated by fitting the
simple ordinary linear regression models with the fol-
lowing settings. The fitted models were specified using
the R code notation as given below:

Model 1 (heatwave period): lm(loge(RR) ~maxT(non-trend))
Model 2 (heatwave period): lm(loge(RR) ~maxT)
Model 3 (summer season): lm(loge(RR) ~maxT(non-trend))
Model 4 (summer season): lm(loge(RR) ~maxT)

where the ‘heatwave period’ referred to the 20-day
period 7–26 July, 2004; the ‘summer season’ referred to
the 91-day period from 01/12/2003 to 29/02/2004. The
regression analysis results were given in Table 3.
Table 3 showed that all four models were statistically

significant at 0.05 level. For the association between the
excess mortality and daily maximum temperature, the
heatwave period had a stronger positive correlation
(larger positive coefficient and higher adjusted R2 value)
than the summer season period. Models 1 and 3 measured
the association of excess mortality with the excess max-
imum temperature (i.e., anomaly) but models 2 and 4
measured the association of the excess mortality and
maximum temperature (i.e., absolute temperature level).
We found that it was the impact (R2: 0.208 versus 0.127) of
the maxT anomaly that differed more than the impact (R2:
0.172 versus 0.165) of maxT itself between the heatwave
period and the summer season as a whole.
Finally, we investigated the associations between

loge(RR) and maxT, O3, and PM10 for summer seasons
of 2000 and 2004. The summer season of 2000 was
defined as a 91-day period from 01/12/1999 to 29/02/
2000. We decided to compare these two summer seasons
because there was a similar heatwave in Brisbane in 2000
as it was in 2004. We specified six models in R code format
as given below among which models 1 to 4 referred to the
year 2000 summer season and models 5 and 6 referred to
year 2004 summer season. The regression analysis results
for each model were given in Table 4.

Model 1 (2000 summer): lm(loge(RR) ~maxT)
Model 2 (2000 summer): lm(loge(RR) ~maxT + PM10)
Model 3 (2000 summer): lm(loge(RR) ~maxT +O3)
Model 4 (2000 summer): lm(loge(RR) ~ maxT +
PM10 + O3)
Model 5 (2004 summer): lm(loge(RR) ~maxT)
Model 6 (2004 summer): lm(loge(RR) ~maxT + PM10)

After testing different regression models, the following
association relationships were found. For year 2000 sum-
mer season, PM10 had a very strong impact on the ex-
cess daily mortality, and therefore the daily maximum
temperature became a less important risk factor in terms
of the adjusted R2. Furthermore, there was a high correl-
ation (Pearson correlation coefficient is 0.501) between
PM10 and O3 during the year 2000 summer season. A
further inclusion of O3 (i.e., Model 3 and Model 4) did not
make a statistically significant difference. For year 2004
summer season, however, neither PM10 nor O3 had a



Table 4 Regression analysis result (II)

Model Coef. of maxT Coef. of PM10 Coef. of O3 p-value Adjusted R2 Year (91 days)

1 0.04766 - - 0.0034 0.082 2000 (summer)

2 0.02315 0.03016 - <0.001 0.215 2000 (summer)

3 0.03391 - 0.01567 0.0022 0.110 2000 (summer)

4 0.02094 0.02852 0.00404 <0.001 0.208 2000 (summer)

5 0.05652 - - <0.001 0.165 2004 (summer)

6 0.05225 0.00712 - <0.001 0.166 2004 (summer)
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significant impact on the excess mortality, i.e., maxT was
the only significant risk factor among these three factors.

Discussion
In the Chicago data analysis we encountered the mode
mixing issue and the EEMD process was employed to gen-
erate IMFs. Unfortunately, the EEMD decomposition does
not generate exact IMFs (hence Hilbert transform may not
be applicable) and we need to perform the post processing
treatment [16]. Wu and Huang proposed a general post
processing procedure for EEMD generated IMF-like series.
Details can be found on page 29 of the reference [16]. In
the Chicago data analysis, a special R function postEEMD
was developed to perform the post processing treatment.
Because EEMD is a noise assisted method, the added white
noise causes some random fluctuation of the decomposed
results. To minimise the random fluctuation effect, we
have run a batch of 20 EEMD and post treatment pro-
cesses on the data. Ultimately, 20 sets of post processed
EEMD IMFs were generated and we took the averages as
the final IMFs for the Chicago data analysis. For the repeat-
ability of the analysis results, we initiated the decompos-
ition process by setting the random seed to 101 in R and
the resulting estimated excess mortality total during the
1995 Chicago heatwave was 510.
Another concern is the stoppage rule. Different stopping

rule can produce similar but not exactly the same IMFs. By
setting the number of iterations of the sifting process to 10,
recent researches suggested this stoppage rule to be the
most optimal and it ensures the uniqueness of the gener-
ated IMFs [12,16]. As the founder of the EEMD process,
Wu prepared a full set of Matlab programs [14] to imple-
ment HHT algorithm which are free available in [7]. These
Matlab programs can perform the major HHT algorithm
functions such as EMD, EEMD, generation of instantan-
eous frequency series, and significance testing. Our special
R functions prepared for this study were essentially a trans-
lation of Wu's Matlab programs except for the significance
test function which is our original work. The EEMD post
processing functionality was also added in our R programs
as mentioned before. The Additional file 1 contains more
details of the functionalities, usage and discussions on our
special R functions of the HHTalgorithm.
Figure 5 compared the standard time series decompos-
ition with the HHT decomposition using the Brisbane
daily mortality data. The standard time series decompos-
ition employed the moving average (frequency = 365) al-
gorithm to identify the trend series (bottom-left plot).
The ‘seasonal’ series was defined as the average annual
pattern of the sample data. Therefore, it showed a regu-
lar repeating cyclic pattern for each year (middle-left
plot). After removing the ‘trend’ and ‘seasonal’ patterns
from the original data, we obtained the ‘random’ series
(top-left plot). Because of the end-point-effect of the
moving average process, the information loss on both
ends of the ‘trend’ and ‘random’ series was clearly seen
(bottom-left and top-left plots). For the HHT decompos-
ition, the ‘trend’ series (bottom-right plot) was obtained
from the ‘residual series’ in Figure 1. The ‘seasonal’ series
(middle-right plot) was the element-wise sum of IMFs 6
to 9 in Figure 1. The ‘random’ series (top-right plot) was
obtained by summing up the IMFs 1 to 5 (Figure 1) as
explained in the ‘Brisbane data analysis’ subsection.
Figure 5 showed that the mean levels (dotted horizon-

tal lines) of the corresponding series were the same for
both algorithms. However, the frequency and amplitude
modulations differed significantly. As we argued in the
previous sections, the random part of the daily mortality
(i.e., the non-trend series) contained all the excess mor-
tality information. In the top row plots of Figure 5, both
algorithms identified the highest (positive) spike for the
year 2000 summer. A big positive spike represented the
extraordinary magnitude of the excess mortality at a par-
ticular time point. Note that no information was avail-
able for the year 2004 summer from the standard time
series algorithm (top-left plot), while the HHT algorithm
clearly showed the second highest spike occurred in the
year 2004 summer (top-right plot). Thus, the standard
time series decomposition results could not be used for
calculating the excess mortality related to the 2004 heat-
wave because of the end-effect information loss. Sec-
ondly, a repeating regular seasonal pattern was certainly
too far from a true representation of the actual seasonal
fluctuation pattern which was better represented by
the HHT results. In the seasonal patterns (middle row
plots), although both algorithms had identified nine peaks
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(corresponding to nine winter periods), the HHTalgorithm
(middle-right plot) revealed more local features, e.g., a big
peak for the 1996 winter (we may want to investigate why).
By comparison, the standard time series decomposed cyclic
patterns (middle-left plot) failed to distinguish these local
variations. Finally, the ‘trend’ pattern obtained from the
standard time series decomposition (bottom-left plot) con-
tained far less information (almost a horizontal line since
that most local features were evened out by the moving av-
erages) than that in the counterpart HHT plot. Through
the qualitative comparison, Figure 5 showed us a typical
example of the advantages of the HHT decomposition over
the standard time series decomposition.
Depending on different research aims, researchers may

give different interpretations to the same HHT decom-
position result, hence may find different applications.
For example, from the signal processing perspective,
researchers may focus on the identified trend IMFs and
consider these IMFs contain the ‘true’ signals of the
underlying physical process; hence, the non-trend series
is termed as ‘noise’ for containing no useful information.
By contrast, in the calculation of excess mortality, we fo-
cused on the non-trend IMFs which contained exactly
the information of our concerns. As with any other ana-
lysis algorithm, to its best, HHT can only fully reveal the
information contained in the data. External information
or expertise and subject knowledge are needed to bet-
ter or correctly interpret and utilize the HHT analysis
results.

Conclusions
The HHT algorithm provides a useful and novel ap-
proach to analyse time series data in public health area.
In this paper, we demonstrated how to use the HHT al-
gorithm to calculate the excess mortality during heat-
wave days. It is obvious that these applications can be
repeated for any special events which have significant
impacts on the daily mortality or morbidity, e.g., the
SARS outbreak in 2003 and the H1N1 bird-flu event in
2009 [18,19]. We have focused on illustrating the applic-
ability and power of the HHT algorithm as a new
analytical tool in public health research. We believe
that public health researchers will find different and
better ways to exploit the potential of the HHT algo-
rithm. For example, the possible combination of the
General Additive Model [17] with the HHT algorithm
may produce more physically meaningful or robust
forecasting results. The 2-dimension EMD algorithm,
which is still at its development stage, provides the poten-
tial for spatial-temporal modelling applications in public
health studies [4]. We will investigate these issues in our
future research.
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Additional file

Additional file 1: This document gives the details of functionalities,
usage and discussions on our special R functions for
implementation of the HHT algorithm.
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