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Abstract

Background: Scientists often use a paired comparison of the areas under the receiver operating characteristic curves
to decide which continuous cancer screening test has the best diagnostic accuracy. In the paired design, all
participants are screened with both tests. Participants with suspicious results or signs and symptoms of disease
receive the reference standard test. The remaining participants are classified as non-cases, even though some may
have occult disease. The standard analysis includes all study participants, which can create bias in the estimates of
diagnostic accuracy since not all participants receive disease status verification. We propose a weighted maximum
likelihood bias correction method to reduce decision errors.

Methods: Using Monte Carlo simulations, we assessed the method’s ability to reduce decision errors across a range
of disease prevalences, correlations between screening test scores, rates of interval cases and proportions of
participants who received the reference standard test.

Results: The performance of the method depends on characteristics of the screening tests and the disease and on
the percentage of participants who receive the reference standard test. In studies with a large amount of bias in the
difference in the full areas under the curves, the bias correction method reduces the Type I error rate and improves
power for the correct decision. We demonstrate the method with an application to a hypothetical oral cancer
screening study.

Conclusion: The bias correction method reduces decision errors for some paired screening trials. In order to
determine if bias correction is needed for a specific screening trial, we recommend the investigator conduct a
simulation study using our software.

Keywords: Cancer screening, Differential verification bias, Area under the curve, Type I error, Power, Paired screening
trial, Receiver operating characteristic analysis

Background
Paired screening trials are common in cancer screen-
ing. For instance, one of the designs considered for a
planned oral cancer screening study was a paired compar-
ison of the visual and tactile oral exam with the VELscope
imaging device [1]. Two recent breast cancer screening

*Correspondence: bringham@ucla.edu
1Center for Cancer Prevention and Control Research, University of California,
Los Angeles, 650 Charles Young Drive South, Room A2-125 CHS, Los Angeles
CA 90095, USA
Full list of author information is available at the end of the article

studies used a paired design to compare film and digital
mammography [2,3].
In paired cancer screening trials, investigators screen

all participants with both screening tests. The screening
tests may measure a participant’s disease status with error.
To ascertain participants’ disease states more definitively,
the study investigator tests each participant with a sec-
ond, more accurate procedure. We refer to the definitive
procedure as a reference standard test. In cancer screen-
ing, the most accurate reference standard test is biopsy
followed by pathological confirmation of disease. Biopsy
is painful and invasive and can only be performed on
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individuals with a visible lesion. Thus, the study inves-
tigator determines participants’ disease states as follows.
Participants with unremarkable screening test scores on
both screening tests enter a follow-up period. Partici-
pants with suspicious screening test scores or who show
signs and symptoms of disease during follow-up undergo
further workup leading to a reference standard test. Par-
ticipants who do not show signs and symptoms of disease
during follow-up are assumed to be disease-free. Follow-
up can be thought of as an imperfect reference standard.
The reference standard is imperfect because, in truth,
some participants may have occult disease.
In the trial by Lewin et al. [2], the investigators used

a standard analysis to compare the full areas under the
receiver operating characteristic curves. The standard
analysis includes all participants, even those whose dis-
ease status is not verified with the reference standard test.
Because some cases may be misclassified, the estimates
of diagnostic accuracy may be biased, causing decision
errors [4]. If the bias is severe enough, investigators can
detect a difference between screening tests when there
is none, or conclude incorrectly that the inferior test is
superior. Choosing the inferior test can delay diagnosis,
increasing morbidity and mortality.
Screening trials are subject to different biases depend-

ing on the choice of reference standard and analysis plan
[5-8]. Paired screening trial bias [4], the focus of our
research, is a special case of differential verification bias.
Differential verification bias occurs when 1) a reference
standard is used for some participants and an imperfect
reference standard is used for the remaining participants,
2) the decision to use the reference standard depends on
the screening test results and 3) data from all partici-
pants are included in the analysis [7]. Paired screening
trial bias occurs in paired studies when the screening tests
are subject to differential verification bias and refer differ-
ent proportions of participants to the reference standard
test [4].
We propose a bias-correction method to reduce deci-

sion errors in paired cancer screening trials. Under the
assumption that the screening test scores follow a bivari-
ate Gaussian distribution, conditional on disease status,
we use an iterative, maximum likelihood approach to
reduce the bias in the estimates of the mean, variance
and correlation. The resulting estimates are then used to
reduce bias in the estimates of the diagnostic accuracy of
the screening tests.
In the following sections, we describe the bias correc-

tion method and evaluate its performance by simulation.
In the Methods section, we explain the study design of
interest, outline the assumptions and notation, delineate
the bias correction algorithm and describe the design of
the simulation studies. In the Results section, we report
the results of the simulation studies and demonstrate

the utility of the method using a hypothetical oral can-
cer screening study. Finally, in the Discussion section,
we discuss the implications of the results and provide
recommendations.

Methods
Study design
The study design of interest is a paired study of two con-
tinuous cancer screening tests. A flowchart of the study
design is shown in Figure 1.
We consider the screening study from two points of

view [9]. The first viewpoint is that of the omniscient
observer who knows the true disease status of each partic-
ipant. The second viewpoint is that of the study investiga-
tor, who can only know the disease status observed in the
study.
The study investigator determines a participant’s

observed disease status as follows. Any score that exceeds
the threshold of suspicion defined for each screening test
triggers the use of a reference standard test. Cases identi-
fied due to remarkable screening test scores are referred
to as screen-detected cases. Participants with unremark-
able screening test scores on both screening tests enter a
follow-up period. Some participants may show signs and
symptoms of disease during the follow-up period, leading
to a reference standard test and pathological confirmation
of disease. These participants are referred to as interval
cases. We refer to the collection of screen-detected cases
and interval cases as the observed cases. Participants with
unremarkable screening test scores who do not show signs
and symptoms of disease during the follow-up period are
assumed to be disease-free, or observed non-cases.
Under the assumption that the reference standard test

is 100% sensitive and specific, the study design described
above will correctly identify all non-cases. However, the
design may cause some cases to be misclassified as non-
cases. Misclassified cases occur when study participants
who actually have disease receive unremarkable screening
test scores and show no signs or symptoms of disease.
We present a graph of a hypothetical dataset of screen-

ing test scores (Figure 2) to illustrate how the study inves-
tigator observes disease status. The axes represent the
thresholds of suspicion for each screening test. We can
identify the misclassified cases because we present this
graph from an omniscient point of view.

Standard analysis
In the standard analysis, the study investigator compares
the diagnostic accuracy of the two screening tests, mea-
sured by the full area under the receiver operating char-
acteristic curve. The goal of the analysis is to choose the
screening test with superior diagnostic accuracy.
The receiver operating characteristic curves are calcu-

lated using data from all cases and non-cases observed in
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Figure 1 Flowchart of a paired trial of two continuous screening tests. The flowchart culminates in the study investigator’s observation of the
disease status of the participant.
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Figure 2 Hypothetical data for a paired screening trial. Data in
partition A (gray) are the set of true cases where at least one
screening test score falls above the threshold for that screening test.
Data in partition B (white) are the set of true cases where the scores
on both screening tests fall below their respective thresholds.

the study. When cases are misclassified, the denomina-
tor of the sensitivity decreases while both the numerator
and denominator of the specificity increase. As a result,
the study investigator overestimates both the sensitivity
and specificity of the screening test. The error in sen-
sitivity and specificity causes concomitant errors in the
area under the curve. Thus, the observed area under the
curve can be biased. Paired screening trial bias occurs
when the observed areas under the curves are differen-
tially biased, causing the difference between the observed
areas to be either larger or smaller than the true state of
nature.
The proposed bias correction method only corrects the

estimation of the sensitivity and does not correct speci-
ficity. For screening trials using the study design and
standard analysis described above, the error in sensitiv-
ity may be large [4]. The error in specificity, however, is
typically negligible. The large number of non-cases makes
the specificity robust to small deviations in the number of
observed cases. In scenarios with a higher disease preva-
lence, the error in the uncorrected specificity may affect
the performance of the method.

Assumptions, definitions and notation
We make a series of assumptions. Let n be the total num-
ber of study participants and π the prevalence of disease
in the population. Assuming simple random sampling,
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the number of participants with disease is M, and is
distributed

M ∼ Binomial(n,π). (1)

Let i index participants, j index the screening test and
k indicate the true presence (k = 1) or absence (k = 0)
of disease. The pair of screening test scores, Xi1k and
Xi2k , are independently and identically distributed bivari-
ate Gaussian random variables with means μjk , variances
σ 2
jk , and correlation ρk .
Let aj be the threshold of suspicion for screening test

j. All scores above the threshold will trigger the use of a
reference standard test. For screening test j, the percent
ascertainment is 100 times the number of participants
with disease who score above the threshold on screening
test j, divided by the total number of participants observed
to have disease.
Let I be the event that a participant shows signs and

symptoms of disease and P(I|k = 1) = ψ . Because partic-
ipants without the target disease are unlikely to show signs
and symptoms of that disease, we assume that P(I|k =
0) = 0. In practice, however, the clinician must respond
to any signs and symptoms with further testing, even if
those signs and symptoms may not, in fact, be caused
by the target disease. Thus, participants who show signs
and symptoms of disease during the follow-up period will
still receive the reference standard test and subsequent
pathological confirmation.

Bias correction algorithm
We describe an algorithm to reduce bias in estimates of
diagnostic accuracy. The algorithm corrects the maxi-
mum likelihood estimates of the parameters of the distri-
bution of case screening test scores. The algorithm then
uses a weighting scheme to reduce the variance of the
estimates. The corrected maximum likelihood estimates
are used to calculate corrected estimates of the diagnostic
accuracy of the screening tests.
The algorithm requires four steps.

Step 1. Partition
The cases can be stratified into two sets, shown in
Figure 2. Let A (data in the gray area) be the set of true
cases with at least one screening test score above its
respective threshold. Let B (data in the white area) be the
set of true cases where the scores on both screening tests
fall below their respective thresholds. The percentages of
participants observed to have the disease in sets A and B
differ: all cases in set A are observed, but only a fraction
of cases are observed in set B. The estimation for each set
is handled separately in Step 2. Then, in Step 3, the esti-
mates are combined using weighting proportional to the
sampling fraction ([10], p. 81, Equation 3.3.1).

Step 2. Maximum likelihood estimation
We obtain maximum likelihood estimates of the bivariate
Gaussian parameters for the cases. The estimation process
follows the iterative method suggested by Nath [11]. The
method allows unbiased estimation of bivariate Gaussian
parameters from singly truncated convex sample spaces.
To obtain singly truncated convex sets, we further parti-
tion the sample space into quadrants Ql ∈ {1, 2, 3, 4}, as
shown in Table 1.
The starting values for the iteration are the sample

statistics for the observed cases in each quadrant. Using
the Nath method for each set of starting values results
in four sets of quadrant specific maximum likelihood
estimates. From the four quadrant specific estimates, we
choose the set that maximizes the log likelihood of the full
bivariate Gaussian distribution. We refer to that set as the
Nath estimates, denoted by μ̂11,N , μ̂21,N , σ̂ 2

11,N , σ̂
2
21,N and

ρ̂1,N .
We require the sample variance as a starting value for

the Nath algorithm. Thus, quadrant specific estimates are
not calculated for quadrants containing less than two data
points.

Step 3.Weighting
The Nath estimates are based on only one quadrant of
data. We use the process described below to calculate
weighted estimates which incorporate data from all quad-
rants, thereby lowering the variance.
First, the Nath estimates are used as inputs for calcu-

lating the sampling fraction for sets A and B. Define the
estimated probability of A as

λ̂ = 1 − �

(
a1 − μ̂11,N

σ̂11,N
,
a2 − μ̂21,N

σ̂21,N
, ρ̂1,N

)
. (2)

Second, the observed data are used to calculate the
observed sample statistics for sets A and B. The observed
sample statistics are defined as follows. Let k′ = 1 if a par-
ticipant is observed to have disease and k′ = 0 otherwise.
For set s ∈ {A,B}, screening test j and observed disease
status k′, let X̄jk′,s be the sample mean, Sjk′,s be the sam-
ple standard deviation and rk′,s be the sample correlation
between the screening tests.
Finally, the weighted estimates are calculated as a func-

tion of the sampling fraction (Equation 2) and the observed

Table 1 Quadrant definitions

Quadrant Definition

Q1 {xi1k ≥ a1; xi2k ≥ a2}
Q2 {xi1k ≥ a1; xi2k < a2}
Q3 {xi1k < a1; xi2k ≥ a2}
Q4 {xi1k < a1; xi2k < a2}
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sample statistics for sets A and B. We derived expres-
sions for the weighted estimates using the conditional
covariance formula ([12], p. 348, Proposition 5.2) and the
definition of the weighted mean ([10], p. 77, Equation
3.2.1). Let μ̂j1,W , σ̂ 2

j1,W and ρ̂1,W be the weighted estimates
of the mean, variance and correlation of the screening test
scores for the cases, respectively. We define the estimates
as follows:

μ̂11,W = λ̂X̄11,A + (1 − λ̂)X̄11,B, (3)

μ̂21,W = λ̂X̄21,A + (1 − λ̂)X̄21,B, (4)
σ̂ 2
11,W = G1 + H1 − μ̂2

11,W , (5)
σ̂ 2
21,W = G2 + H2 − μ̂2

21,W (6)

and

ρ̂1,W = σ̂−1
11,W σ̂−1

21,W (P + Q − μ̂11,W μ̂21,W ), (7)

where

Gj = λ̂
(
X̄2
j1,A + S2j1,A

)
, (8)

Hj = (1 − λ̂)
(
X̄2
j1,B + S2j1,B

)
, (9)

P = λ̂X̄11,AX̄21,A + λ̂S11,AS21,Ar1,A (10)

and

Q = (1 − λ̂)X̄11,BX̄21,B + (1 − λ̂)S11,BS21,Br1,B. (11)

The weighted estimates are the corrected estimates used
to calculate the corrected areas under the receiver operat-
ing characteristic curves. If either set A or set B contain
only one observation, we do not conduct the weight-
ing and instead use the Nath estimates as the corrected
estimates.
Software to implement the method is available at [13].

Evaluation of bias correction
We compared three methods of analysis: true, observed
and corrected. For the observed analysis, we used the
observed sample statistics to calculate estimates of diag-
nostic accuracy, replicating the standard analysis per-
formed by the study investigator of a cancer screening
trial. For the corrected analysis, we used the proposed bias
correction approach. Finally, both the observed and cor-
rected analyses were compared to the true analysis. In the
true analysis, we assumed that the study investigator knew
the true disease status of every participant.
For each analysis, we tested the null hypothesis that

there was no difference in the areas under the binor-
mal receiver operating characteristic curves. The areas
under the curves were calculated as described in ([14],
Equations 12 and 13). We then calculated the variance
of the difference in the areas under the curves and con-
ducted a two-sided hypothesis test using the method of
Obuchowski and McClish [15].

To assess screening test performance, we compared the
Type I error and power of the observed, corrected and true
analyses. Because the estimates of diagnostic accuracy
can be biased, the study investigator can correctly con-
clude that there is a difference between the two screening
tests but incorrectly choose to implement the screening
test with the lower diagnostic accuracy. To quantify this
decision error, we divided power into the correct rejec-
tion fraction and the wrong rejection fraction. The correct
rejection fraction is the probability that the hypothesis test
rejects and the screening test with the larger observed area
under the curve is the screening test with larger true area
under the curve. The wrong rejection fraction is the prob-
ability that the hypothesis test rejects but the screening
test with the larger observed area under the curve is the
screening test with the smaller true area under the curve.

Design of simulation studies under the Gaussian
assumption
Data were simulated per the assumptions listed in the
Assumptions, definitions and notation section. We con-
sidered two states of nature; one where the null hypothesis
holds and one where the alternative hypothesis holds.
Under the null, we fixed the true areas under the curves to
be 0.78. Under the alternative, we fixed the true area under
the curve to be 0.78 for Test 1 and 0.74 for Test 2 for a dif-
ference of 0.04. The sample size was fixed at 50, 000. The
diagnostic accuracy of the screening tests and the sam-
ple size were similar to those in the study by Pisano et al.
[3]. Except where noted, the correlation between screen-
ing test scores for both the cases and non-cases was set to
0.10. Also except where noted, a random sample of 10%
of the cases showed signs and symptoms of disease. Recall
that showing signs and symptoms of disease only changes
the decision to conduct a biopsy if the participant scored
negative on both screening tests. The threshold of suspi-
cion for Test 1 was set so that very few cases were referred
to the reference standard test. The threshold for Test 2 was
set so that nearly all cases were referred to the reference
standard test. Different levels of percent ascertainment for
each screening test can cause the estimates of diagnostic
accuracy to be biased by a different amount [4]. Under the
conditions of this simulation study, the differential bias
was extreme and, on average, caused the receiver operat-
ing characteristic curves to switch orientation relative to
the true state of nature.
The simulation studies varied four factors: the disease

prevalence, the proportion of cases that exhibited signs
and symptoms of disease during follow-up, the correla-
tion between Test 1 and 2 scores and the positions of the
thresholds that trigger a reference standard test. The four
factors changed the number of observed cases and the
amount of bias in the estimates of diagnostic accuracy.We
set the disease prevalence to 0.01, 0.14 or 0.24, reflecting
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cancer rates seen in published cancer studies and surveys
[2,3,16-18]. The rate of signs and symptoms was varied
across a clinically relevant range of 0 to 0.20 [2,17,19].
We examined a range of correlations between 0 and 1. To
assess the effects of smaller degrees of differential bias,
we set the thresholds of suspicion to result in 15, 50 and
80 percent ascertainment and examined each of the nine
possible pairings. Each pair varied the amount and source
of the bias (Test 1 or Test 2). Note that percentages are
approximate because the case numbers are discrete.
For each combination of parameter values, we simu-

lated paired screening test scores and a binary indicator of
true disease status. Based on the described study design
(Figure 1), we deduced the observed disease status. After
calculating the true, observed and corrected areas under
the curves, decision errors were assessed using themetrics
described in the Evaluation of bias correction section. We
used 10, 000 realizations of the simulated data to ensure
that the error in the estimation of probabilities occurred
in the second decimal place.

Design of non-Gaussian simulation studies
Although the bias correction method was developed
under an assumption that the data were bivariate Gaus-
sian, screening data may not follow the Gaussian distribu-
tion. We conducted a second set of simulation studies to
examine the performance of the bias correction method
for multinomial and zero-weighted data.
Multinomial and zero-weighted data occur often in

imaging studies. Readers may give the image a score of
zero to indicate that no disease is seen, resulting in a
dataset wheremultiple values are zero. Reader preferences
for a subset of scores can produce multinomial data. To
generate the zero-weighted data where the occurrence of
zeroes is correlated between the two screening tests, we
created two sets of Bernoulli random variables, one for
the cases and one for the non-cases, so that the probabil-
ity that the score on Test 1 is zero is p1k , the probability
that the score on Test 2 is zero is p2k and the probabil-
ity that both screening test scores are zero is qk . If the
Bernoulli random variable was one, we replaced the asso-
ciated screening test score with a zero. Otherwise, the
screening test score remained as it was. We set pjk equal
to a range of values between 0 and 0.90. The marginal
probabilities put constraints on the possible values for qk
[20]. We set qk to the median allowed agreement for each
pairing of pjk .
To generate multinomial data, we binned the bivariate

Gaussian data. Bin sizes ranged from 1/10 to 2 times the
standard deviation. Disease prevalence was 0.01, 0.14 and
0.24. All other parameter values were equivalent to those
in the Gaussian simulation studies. The performance of
the method was evaluated as described in the Evaluation
of bias correction section.

Results
Overview
When compared to the observed analysis, the bias correc-
tionmethod reduced decision errors across all experimen-
tal conditions where the percent ascertainment differed
between the two screening tests (Figures 3, 4, 5 and
Table 2, Rows 1-9). However, the Type I error rate for
the corrected analysis was still above nominal for many
experimental conditions (Table 2).
Variations in the disease prevalence, the case correla-

tion and the position of the thresholds of suspicion had
the largest effect on the Type I error rate and power of
the corrected analysis. The difference between the Type I
error rate and power of the corrected analysis compared to
the true analysis was only slightly modified by changes in
the rate of signs and symptoms (details given in Additional
file 1). The non-case correlation is not involved in the bias
correction calculations and, as expected, had no effect on
the performance of the method.
The bias correction method reduced decision errors

when screening test scores had a multinomial distribu-
tion with bin sizes up to 1/4 the standard deviation and
the disease prevalence was medium or high. However, the
Type I error rate was above nominal. The Nath algorithm
had high failure rates whenmore than 1% of screening test
scores were zero.

Effect of disease prevalence and case correlation
As shown in Figure 3, higher disease prevalence resulted
in higher Type I error rates for the true, observed and
corrected analyses. Type I error declined with increasing
case correlation. The Type I error rate of the corrected
analysis was below nominal at low disease prevalence and
decreased from 0.09 to below nominal at high prevalence.
The Type I error rate of the observed analysis had a high of
0.06 at low prevalence then decreased to below nominal.
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Figure 3 Effect of case correlation on the Type I error rate. The
nominal Type I error was fixed at 0.05 and is indicated by the red line.
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Figure 4 Effect of case correlation on the correct rejection fraction. The correct rejection fraction is the proportion of times the hypothesis test
rejects when the alternative is true and the choice of the superior screening test is aligned with the true state of nature.

At high prevalence, the Type I error rate of the observed
analysis decreased from 0.95 to 0.05.
In Figure 4, higher disease prevalence and case cor-

relation resulted in a higher correct rejection fraction.
The correct rejection fraction for the true analysis ranged
from 0.74 to 1.0 at low prevalence and was 1.0 at high
prevalence. The correct rejection fraction for the corrected
analysis ranged from 0.57 to 1.0 at low prevalence and 0.85
to 1.0 at high prevalence. The correct rejection fraction
of the observed analysis, however, was 0 except at correla-
tions greater than approximately 0.7 at low prevalence and
0.8 at high prevalence.

In Figure 5, the wrong rejection fraction was at or
near 0 for the corrected analysis across all experimen-
tal conditions. By contrast, the wrong rejection fraction
for the observed analysis was 1 at low and medium cor-
relation across all disease prevalences. At high correla-
tion, the wrong rejection fraction for all analyses went to
zero.

Effect of percent ascertainment
Table 2 shows the Type I error of the true, observed and
corrected analyses for nine pairs of percent ascertainment
levels. We do not discuss the power results since the Type

0.0 0.5 1.0

0.
0

0.
5

1.
0

0.0 0.5 1.0

True Observed Corrected

Prevalence = 0.01 Prevalence = 0.24

W
ro

ng
 R

ej
ec

ti
on

 F
ra

ct
io

n

Correlation Between Screening Test Scores for Cases

Figure 5 Effect of case correlation on the wrong rejection fraction. The wrong rejection fraction is the proportion of times the hypothesis test
rejects when the alternative is true and the choice of the superior screening test is opposite the true state of nature.
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Table 2 Effect of percent ascertainment on the Type I error rate

Paired screening Disease Percent ascertainment True Observed Corrected
trial bias prevalence (Test 1/Test 2)

0.01 15/50 0.01 0.89 0.36

0.01 15/80 0.02 0.95 0.25

0.01 50/80 0.01 0.23 0.12

0.14 15/50 0.02 1.00 0.82

Yes 0.14 15/80 0.02 1.00 0.60

0.14 50/80 0.02 1.00 0.20

0.24 15/50 0.02 1.00 0.95

0.24 15/80 0.02 1.00 0.91

0.24 50/80 0.02 1.00 0.40

0.01 15/15 0.01 0.02 0.23

0.01 50/50 0.01 0.02 0.12

0.01 80/80 0.02 0.02 0.18

0.14 15/15 0.02 0.02 0.26

No 0.14 50/50 0.02 0.02 0.14

0.14 80/80 0.02 0.02 0.03

0.24 15/15 0.02 0.02 0.26

0.24 50/50 0.02 0.02 0.14

0.24 80/80 0.02 0.02 0.04

Type I error rates are calculated over 10,000 realizations of the data for the hypothesis test of a difference in the full areas under the curves. The nominal Type I error is
fixed at 0.05.

I error of the observed analysis was so high and power is
bounded below by Type I error rate.
In general, when the study had some amount of paired

screening trial bias (as indicated by a difference in the per-
cent ascertainment), the Type I error rate of the observed
analysis was too high (0.23 to 1.0). The Type I error rate
of the corrected analysis was closer to nominal than that
of the observed analysis, but was also too high (0.12 to
0.95). For pairings with no paired screening trial bias, the
observed analysis had lower than nominal Type I error
rates while the corrected analysis had Type I error rates up
to 0.26.When both screening tests had high percent ascer-
tainment (80/80), the Type I error rate of the corrected
analysis was below nominal.

Robustness to non-Gaussian data
The results of the non-Gaussian simulation studies are
summarized below. A table of the main results is pre-
sented in Additional file 2.
At medium and high disease prevalence, the corrected

analysis had a lower Type I error rate than the observed
analysis for multinomial bin sizes 1/4 the standard devi-
ation or less. At low disease prevalence, the Type I error
rate for the corrected analysis was lower than the observed
analysis for multinomial bin sizes 1/10 the standard devi-
ation or less.

For the range of multinomial bin sizes considered in
the study, the Type I error rate of the true analysis
remained below nominal. The Type I error rate of the cor-
rected analysis, however, was above nominal for all disease
prevalences and bin sizes greater than 1/10 the standard
deviation. The observed analysis had an inflated Type I
error rate at medium and high disease prevalence. At low
disease prevalence, the Type I error rate of the observed
analysis was below nominal except at a multinomial bin
size of 2 times the standard deviation.
For zero-weighted data, the success rate of the Nath

algorithm decreased as the percentage of zero scores for
the cases increased. At low disease prevalence, when 1% of
the cases had zero scores, the Nath algorithm converged
for only 33% of the simulated trials. For zero-weights less
than 1%, the Type I error rate for all three analyses was
above nominal at medium and high disease prevalence.
However, the Type I error rate of both the true and cor-
rected analyses were closer to nominal than that of the
observed analysis.

Demonstration
Figure 6 shows the receiver operating characteristic
curves for a hypothetical oral cancer screening trial sim-
ilar to that considered by Lingen [1]. One of the designs
considered by Lingen was a paired trial comparing two
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Figure 6 Receiver operating characteristic curves for a hypothetical oral cancer screening study. The study is subject to paired screening
trial bias. The true areas under the curves for Test 1 and Test 2 are 0.77 and 0.71, respectively, for a true difference of 0.06. The observed difference is
−0.06, with the corrected difference at 0.06.

oral cancer screening modalities: 1) examination by a den-
tist using a visual and tactile oral examination, and referral
for biopsy only for frank cancers (Test 1); and 2) exam-
ination by a dentist using a visual and tactile oral exam,
a second look with the VELscope oral cancer screen-
ing device and stringent instructions to biopsy any lesion
detected during either examination (Test 2).
We could find no published oral cancer screening trials

of paired continuous tests. Instead, we chose parameter
values from a breast cancer screening study [3] and an
oral cancer screening demonstration study [17]. We fixed
the sample size at 50, 000 and the rate of visible lesions
at 0.1 [17, rate of suspicious oral cancer and precancer-
ous lesions reported in 28 studies between 1971 and 2002
ranges from 0.02 to 0.17, Table 6]. We approximated the
disease prevalence as 0.01 based on the number of Amer-
icans with cancer of the oral cavity and pharynx [18] and
the 2011 population estimate from the U.S. Census Bureau
[21]. For the purposes of the illustration, the true areas
under the curves for Test 1 and Test 2 were fixed at 0.77
and 0.71, respectively.
In the hypothetical oral cancer screening trial, we posit

that there would be a large difference in the percent
ascertainments for each screening modality. In the first
arm, the dentist only recommends biopsy for participants
with highly suspicious lesions. Thus, we fixed the per-
cent ascertainment to be very low, only 0.01% of the cases.
The oral pathologist recommends biopsy for almost any
lesion so we set the percent ascertainment at 97% of
the cases. The large difference in percent ascertainment
created extreme paired screening trial bias, causing the
receiver operating characteristic curves to switch orienta-
tion relative to the truth.
When there is an extreme amount of differential bias,

the method performs well (Figure 6). The true difference
in the areas under the curves was 0.06 (p = 0.001) and the
observed difference was -0.06 (p = 0.005). The corrected

analysis realigned the curves with the true state of nature,
adjusting the difference back to 0.06 (p = 0.001).
In reality, the study investigator would not know which

analysis had results closest to the truth. To validate our
choice of analysis, we simulated the hypothetical study
using the parameter values specified above. The simulated
Type I error rate of the corrected analysis was below nom-
inal at 0.03, while the Type I error rate of the observed
analysis was above nominal at 0.06. The correct rejec-
tion fraction of the corrected analysis was 0.58, while
that of the observed analysis was zero. In fact, using the
observed analysis, the study investigator would wrongly
conclude that Test 2 was superior to Test 1 86% of the
time. Based on this simulation, we would recommend the
study investigator use the results of the corrected analysis.

Discussion
We could find no other methods that attempted to ame-
liorate paired screening trial bias. Re-weighting, gen-
eralized estimating equations, imputation and Bayesian
approaches have been proposed to reduce the effect of
partial verification bias (e.g., [22-27]). Maximum likeli-
hood methods [28,29] and latent class models [30] have
been proposed to estimate diagnostic accuracy in the
presence of imperfect reference standard bias. These
methods, however, address problems that are quite differ-
ent than the one we describe. The proposed approach is
the only method that attempts to correct the differential
misclassification of disease states.
The bias correction algorithm is a maximum likelihood

method. Thus, the accuracy of the estimation depends
on the number of cases. We do not recommend using
the method for studies with a very small number of
cases (< 500) and interval cases (< 5). The perfor-
mance of the method improves as the disease prevalence
and rate of signs and symptoms increase because both
factors increase the amount of information (number of
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cases) used to form the corrected estimates. As the disease
prevalence becomes very large, however, the benefits of
the increased amount of case information is constrained
by the increasing number of non-cases. The non-case
parameter estimates are not corrected and add bias to the
estimates of diagnostic accuracy.
For the correlation simulation study, the performance of

the method depends upon the observed difference in the
areas under the curves. Under the conditions of the study,
the average difference in the observed areas under the
curves was zero at an approximate correlation of 0.7. At
higher correlations, the average observed difference was
underestimated but agreed with the true state of nature.
At lower correlations the bias was more severe: the aver-
age observed difference was overestimated and opposite
the true state of nature. The bias correction method per-
formed best under conditions with a large amount of
differential bias. Thus, at low correlations the corrected
analysis had lower Type I error rates and higher power for
the correct decision relative to the observed analysis.
The simulation studies demonstrated that the perfor-

mance of the bias correction method depends on the
amount of differential bias in the study. The amount of
bias, in turn, depends on fourteen factors: the means,
variances and correlations of the test scores, the disease
prevalence, the rate of signs and symptoms and the per-
cent ascertainment for each screening test. After analysis
of over 170, 000 combinations of the parameter values,
we were unable to determine a definitive pattern upon
which to base recommendations for using a standard
versus a bias-corrected approach. We can, however, pro-
vide recommendations for two special cases. We suggest
that observed study results be used if: 1) all participants
receive a reference standard test, or 2) the two screen-
ing tests under consideration ascertain approximately the
same percentage of cases. Both situations are plausible in
cancer screening. In a proposed oral cancer screening trial
[1], the investigators suggested biopsying all oral lesions,
under the argument that oral biopsy was minimally inva-
sive, and diagnosis was difficult without biopsy. The sec-
ond case occurred in studies comparing digital and film
mammography, which have similar recall rates [2,3].
In order to determine if bias correction is indicated for

a screening trial that is not a special case, we recom-
mend the investigator conduct a simulation study similar
to those described in the manuscript. The simulation soft-
ware, instruction manual and example code are available
at [13]. The software simulates Type I error rate and power
for both the standard and bias-corrected analyses in the
SAS/IML environment. In addition, the software can per-
form bias correction for a user-provided dataset should
the bias-corrected approach be deemed appropriate.
Under most circumstances, the study investigator

should choose the analysis that has the Type I error rate

closest to, but not greater than the nominal level, high-
est correct rejection fraction and lowest wrong rejection
fraction. In some contexts, one type of error may be more
important than the other. Controlling the Type I error
rate is a priority if there is only one study that is going
to be performed and patients could be put at harm if the
wrong screening test is selected. A small inflation of the
Type I error rate might be less important if there is prior
knowledge that the null is not true. For example, say a
researcher is designing the last study in a series of stud-
ies examining complimentary hypotheses. If all previous
studies rejected the null hypothesis, then the researcher
has prior knowledge that the phenomenon may show an
effect. In this situation, the researcher might prioritize the
analysis with a slightly higher than nominal Type I error
rate in favor of greater discriminatory power under the
alternative hypothesis.
Another limitation of the method is the assumption that

screening test scores are distributed bivariate Gaussian
conditional on disease status. The bivariate Gaussian dis-
tribution is the underlying assumption for the binormal
receiver operating characteristic curve, a popular form of
receiver operating characteristic analysis [31]. We evalu-
ated the robustness of the method to two common devi-
ations from normality: multinomial and zero-weighted
data. Based on our simulation studies, we cannot recom-
mend themethod for use with datasets where greater than
1% of test scores have zero values. In addition, the method
is not recommended for data with multinomial bin sizes
greater than 1/4 the standard deviation for medium or
high disease prevalence or 1/10 the standard deviation
for low prevalence. In future work, the bias correction
method could be expanded to handle alternative distribu-
tions for the test scores.
This paper provides two contributions to the litera-

ture. First, we describe a method to correct for paired
screening trial bias, a bias for which there is no other cor-
rection technique. Due to the increasing use of continuous
biomarkers for cancer detection (see, e.g., [32]), a growing
number of screening trials have the potential to be sub-
ject to paired screening trial bias. The proposed method
will counteract bias in the paired trials and allow inves-
tigators to compare screening tests with fewer decision
errors. Second, we introduce an importantmetric for eval-
uating the performance of bias correction techniques, that
of reducing decision errors. We recommend that any new
correction method be evaluated with a study of Type I
error and power.

Conclusions
The proposed bias correction method reduces decision
errors in the paired comparison of the full areas under
the curves of screening tests with Gaussian outcomes.
Because the performance of the bias correction method
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is affected by characteristics of the screening tests and
the disease being examined, we recommend conducting a
simulation study using our free software before choosing
a bias-corrected or standard analysis.

Additional files

Additional file 1: Effect of the rate of signs and symptoms. The file
contains results for the simulation study examining the effect of varying
the rate of signs and symptoms on the Type I error rate and power of the
true, observed and corrected analyses.

Additional file 2: Non-Gaussian simulation study. The file contains the
main results for the simulation study examining the robustness of the bias
correction method to deviations from the Gaussian assumption.
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