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Abstract

Background: Prevalence estimates of drug use, or of its consequences, are considered important in many contexts
and may have substantial influence over public policy. However, it is rarely possible to simply count the relevant
individuals, in particular when the defining characteristics might be illegal, as in the drug use case. Consequently
methods are needed to estimate the size of such partly ‘hidden’ populations, and many such methods have been
developed and used within epidemiology including studies of alcohol and drug use. Here we introduce a method
appropriate for estimating the size of human populations given a single source of data, for example entries in a
health-care registry.

Methods: The setup is the following: during a fixed time-period, e.g. a year, individuals belonging to the target
population have a non-zero probability of being “registered”. Each individual might be registered multiple times and
the time-points of the registrations are recorded. Assuming that the population is closed and that the probability of
being registered at least once is constant, we derive a family of maximum likelihood (ML) estimators of total
population size. We study the ML estimator using Monte Carlo simulations and delimit the range of cases where it is
useful. In particular we investigate the effect of making the population heterogeneous with respect to probability of
being registered.

Results: The new estimator is asymptotically unbiased and we show that high precision estimates can be obtained
for samples covering as little as 25% of the total population size. However, if the total population size is small (say in
the order of 500) a larger fraction needs to be sampled to achieve reliable estimates. Further we show that the
estimator give reliable estimates even when individuals differ in the probability of being registered. We also compare
the ML estimator to an estimator known as Chao’s estimator and show that the latter can have a substantial bias when
applied to epidemiological data.

Conclusions: The population size estimator suggested herein complements existing methods and is less sensitive to
certain types of dependencies typical in epidemiological data.
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Background
We consider the problem of estimating the size of an
incompletely sampled population. That is, given “informa-
tion” on some individuals from a more less well-defined
population we want to estimate the total number of indi-
viduals in this population. A typical example could be to
estimate the total prevalence of “problem drug use” from
known cases in health-care or judiciary records. This is a
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question of some priority both at national (e.g. [1,2]) and
international (e.g. [3]) levels.
There are two related approaches that have been pre-

viously applied to similar problems given epidemiological
data, including data on alcohol- and drug misuse (e.g.
[4,5]). In the first approach individual data from a number
of different sources are collected and matched. Preva-
lence estimates are then formed using so-called capture-
recapture techniques (e.g. [6]). The types of data sources
used obviously depend on the target population andmight
include records from: health care, treatment programs,
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needle exchange program, police, and prison system (e.g.
[7,8]).
In the second approach, data from only one source is

used and a probability model of the registration frequen-
cies is assumed. This probability model is typically a zero-
truncated distribution, for example truncated Poisson.
The zero frequency is estimated from data and an estimate
of the population size is then obtained [9-12].
Both these approaches rely on a number of assumptions

that may or may not hold in real situations (e.g. [4,13]).
The approach using multiple sources suffer from a non-
clear definition of the target population (e.g. do needle
exchange program and police records for drug offenses
really target the same population?) as well as general
problems of dependencies between samples. The second
approach, relying on a single source, avoids the first prob-
lem but might give strongly biased estimates unless a
reasonable model of the frequency distribution is chosen.
Here we suggest a novel approach to population size

estimation from a single source of data. This approach
is tailored to epidemiological data and relies on a mini-
mum of assumptions. We assume that all individuals in
the target population have a non-zero probability of being
registered during a given time interval. By using only the
time-points of first contact with the registry we avoid
effects of previous registrations. Given this setup, it is
straight forward to derive the maximum likelihood (ML)
estimator of the population size (N). We note that the
resulting approach is formally identical to the capture-
and-remove approach previously used in population
biology (cf. [14-16]).
We evaluate the ML estimator of N using extensive

Monte Carlo simulations and further compare its perfor-
mance to another estimator known as Chao’s estimator
[17]. The two estimators are also applied to health care
registry data in a case where the true N is known.

Methods
Outline and notation
We consider the following situation (see Figure 1 for
illustration): The target population (consisting of N indi-
viduals) is followed over time during a time interval of
total duration T. At each time-point a given individual
may or may not be registered. We use ‘registered’ in a gen-
eral sense here, it can for example refer to an instance of
care at a medical facility; an arrest by the police; the pur-
chase of a medically prescribed drug, etc. We assume that
each individual in the target population, if not previously
registered, has a fixed probability π of being registered at
each time-point. We will refer to π as registration proba-
bility in the following. A registration (independent of the
nature of the registry), must contain an identifier of the
person (PIN) and the time-point of registration. We note
that there might be a delay between the occurrence of

the event we would like to track, and the time point of
registration of this event. Consider for example an attempt
to estimate the prevalence of a certain disease in the pop-
ulation. If health care records are used to estimate this,
there might be a delay between the time of acquiring the
disease and the first contact with the health care system.
We will assume that such delays, if they occur, do not
introduce systematic errors in the analysis and hence can
be ignored.
Next we will detail how such register data can be

used to estimate the total size N of the population. First
we will describe the novel ML approach and then an
approach that has been previously used with data of this
type.

Maximum likelihood estimation of N
Here we describe how the data in the register can be used
to estimate N using ML (see Figure 1 for illustration).
First the observation interval is divided into M non-
overlapping epochs with equal duration d. That is, the j-th
epoch, Ij is given by Ij =[ t0 + d(j − 1), t0 + dj) where t0
denotes the time point when the observations start and
j = 1, 2, . . . ,M. We will assume that time is discrete and
that there are d opportunities to be registered in an inter-
val of duration d. For each of the M epochs we count the
number of new persons being registered in that epoch.
That is, we count the persons registered during epoch Ij
that were not registered in any of the previous epochs.
These numbers will be called n1, n2, . . . , nM and are used
in the following to represent both random variables and
samples of these random variables. It is n1, n2, . . . , nM that
constitute the data we will use to estimate the total num-
ber of persons in the population (i.e. N). The number of
intervals M > 1 is a parameter in the suggested method
and we will study how the estimate of N depend on M
below.
We proceed by deriving the ML estimator under rather

idealized conditions (a closed and homogeneous popula-
tion) but will later study numerically how the estimator
performs when we make the population heterogeneous.
Assuming that the target population does not change in
the time window during which we make the observa-
tions, and that each member of the population has the
same registration probability, π , it is straight-forward to
write down the probability distribution of the sample
n1, n2, . . . , nM. Indeed, the number of persons registered
in the first epoch, i.e. n1, is distributed as a Binomial ran-
dom variable with parameters N and p def= 1 − (1 − π)d.
Note that p depends on the duration of the epoch (through
d). In the next epoch there are N − n1 unregistered indi-
viduals in the population and conditionally on n1, the
random variable n2 is distributed as a Binomial variable
with parameters N − n1 and p. Continuing this argument
it follows that
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Figure 1 Illustration of estimation method. Raster represents person IDs (total 50 persons, N = 50) vs time (60 time-points). Black dots illustrates
presence in the register. Here a fixed registration probability of 0.025 was used (i.e. π = 0.025). Time is divided into three epochs (i.e.M = 3) of equal
duration (indicated by the shading). In each epoch the number of previously unregistered persons are counted: first epoch n1 = 19, second
n2 = 10, and third n3 = 8. These observed counts are used to estimate the total number of persons in the population. Estimation is done by
maximizing the likelihood of N and p given the data. For the example the data in the figure the estimate of N equals 49.

nj|n1, n2, . . . nj−1 ∼ Bin

⎛
⎝N −

j−1∑
i=1

ni, p

⎞
⎠ . (1)

The log-likelihood function of N and p given the data
n1, n2, . . . , nM is given by (e.g. [15])

LM = log(p)sM + N log(N)

+
M∑
i=1

⎛
⎝N −

i∑
j=1

nj

⎞
⎠ log(1 − p)

− (N − sM) log(N − sM) + C

(2)

Here sM denotes the sum of the observations:

sM
def=

M∑
i=1

nj,

and C is represent terms that do not depend on N or
p. To derive the likelihood equation (Eq. 2) the following
standard approximation, valid for large n, was used:

n!� n log(n) − n.

Given the log-likelihood function (Eq. 2) we take as our
estimate of population size the value of N that maximizes
that expression (henceforth denoted NML). Note that we
simultaneously estimate the registration probability p, but
since this is not the parameter of main interest, we will
focus on the estimator of N.
For the caseM = 2 themaximum of the likelihood func-

tion is given by NML2 = n21/(n1 − n2). However, in the

general case, the maximum likelihood estimates are eas-
iest found by maximizing Eq. 2 numerically, for example
using Newton’s method. It should be noted that the ML
estimator is not applicable for all samples. For the case
M = 2, for example, n1 must be greater than n2. General
conditions for when the ML estimator is applicable have
been derived before [18]. As we will show later, in cases
where theML estimator give good estimates ofN, it is very
unlikely to get a sample for which the ML estimator does
not exist.

Truncated poisson estimate ofN
Given a single source of data with possible multiple reg-
istrations per person there are alternative estimates of
populations size that can be (and have been) used. The
simplest of these estimates can be derived if one assumes
that the sampled data follow a zero-truncated Poisson
distribution (this is just a re-weighted standard Poisson
distribution in which the zero bin is not observed). We
note that if the probability π of being registered at each
time point is independent of previous registrations, and
there are T time points in total, then the number of reg-
istrations for each subject is distributed as a binomial
variable with parameters T and π . Given reasonable val-
ues of these parameters, the distribution of the number of
registrations will closely follow a Poisson distribution with
parameter λ

def= Tπ (e.g. [19]). Consider for example that
observations are made daily for a year, then T = 365, and
if the probability of being registered at least once in a year
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is 0.3 then π � 0.001 which gives λ � 0.36. These are val-
ues for which the Poisson approximation of the Binomial
distribution is very good and, consequently, a zero trun-
cated Poisson distribution is a natural choice to model the
distribution of the registrations.
To derive estimators from this distribution we may pro-

ceed as follows.With λ being the parameter in the Poisson
distribution (the rate), the probability mass function of the
untruncated distribution has the following form

f (k; λ) = Pr(X = k) def= λke−λ

k!
.

HereX denotes the random variable standing for the num-
ber of registrations made (for one person). Now, draw N
independent samples, Xi, i = 1, 2, . . .N following this dis-
tribution (here N is of course the (unknown) size of the
population) and let hj denote the count of cases where
Xi = j for j = 1, 2, . . .T . That is, h1 is the number of
observed cases that was registered exactly once, h2 the
number of cases observed exactly two times, etc. Note that
in applications h0 is not observed; it represents the “hid-
den” part of the population. The hjs are random variables
with the following expected values

E(h0) = Ne−λ, E(h1) = Nλe−λ,

E(h2) = Nλ2e−λ

2
.

From this it follows that

E(h0) = (E(h1))2

2E(h2)
. (3)

If we replace the expected values with the sample values
we get the following simple estimator of N :

NC =
T∑
i=1

hi + h21
2h2

. (4)

By the law of large numbers we know thatNC will be close
to N when N is large. We will investigate the convergence
further below. This estimator (NC) was first derived in
[17], using a more general formalism and we will refer to
NC also as Chao’s estimator.
An alternative estimator can be obtained by first esti-

mating λ, and then using that

N(1 − e−λ) = E
( T∑

i=1
hi

)
.

The parameter λ can, for example, be estimated as

λe = 2h2
h1

,

which leads to the following estimator of N

NZ =
∑T

i=1 hi

1 − e−2 h2
h1

.

This estimate was derived in [10] using a different
approach.

Monte Carlo simulations
To evaluate the performance of the estimators we per-
formed Monte Carlo simulations. In these simulations we
generated data for 512 ‘time steps’ (e.g. days) where each
of N individuals has a probability p of being registered.
Simulations where run for different values ofN and differ-
ent values of p (described in the Results). All simulation
results were based on 5000 realizations. For the ML esti-
mator the maximum of the likelihood (Eq. 2) was found
numerically (forM > 2) using Newtons method. In some
cases the method did not converge, something that often
was due to a failure of automatically specifying initial con-
ditions within the region of convergence. In such cases a
small change to the initial conditions is often sufficient
for convergence. Since there is an explicit expression for
the case M = 2, the corresponding estimate is a good
starting point for the algorithm. Although it is possible
(in particular for small samples) to get data for which the
ML estimator does not exists [18], for our purposes prob-
lems of convergence were very rare in all cases where the
estimator will be useful in practice (see Results). An indi-
cation that a sample is not suited for the ML estimator is
if n1 ≤ n2 (for the case ofM = 2), and if so other methods
of estimation must be used.
The ML estimator was derived assuming that all the

individuals in the population have the same registration
probability, something that translates to p in the simula-
tions is the same for individuals. To model the effect of
heterogeneity in the target population we run simulations
where we allowed p to vary from individual to individual.
In particular, the ps were randomly sampled from a nor-
mal distribution with a fixed mean value. The parameter
used to control population heterogeneity was the standard
deviation of the normal distribution. This way the effect
of increasing population heterogeneity can be studied sys-
tematically from a constant p (zero standard deviation) to
ps that vary a lot between individuals (large standard devi-
ation).We also run simulations where we sampled ps from
uniform distributions but the results were similar to those
obtained using a normal distribution and are therefore not
shown.

Empirical data
Apart from the evaluation done on simulated data, we
also wanted to use the suggested method on ‘real’ data.
Here it was deemed important to use a data set where
N could be assumed known, since then we can evaluate
how close to the true value the different estimates are.
We approached this by using as our target ‘population’ the
accidentally deceased opiate misusers (fatal overdoses) in
Sweden during 2006–2011. Most such cases occur outside
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of hospitals and the causes of death are therefore inves-
tigated in detailed forensic autopsies (including a toxico-
logical analysis). We can therefore use the central Swedish
Causes of Death registry held by The National Board of
Health and Welfare (Socialstyrelsen) to count these cases
and get a reasonably precise value of N.
To identify the deceased persons making up the target

population we proceeded as follows. We selected all per-
sons between 23 and 60 years of age at the time of death
who were listed in the causes of death registry with heroin
or methadone poisoning (ICD-10 codes T40.1 and T40.3)
as contributing cause of death. This choice of substances
should be obvious. However, there are also a substantial
number of cases with morphine poisoning (T40.2) but
these were not included as they were judged to constitute
a mixed group of individuals, where only some are opiate
misusers in the sense relevant here. The upper age limit
was to minimize the number of cases where methadone
had been medically prescribed and used in pain manage-
ment therapy. The lower age limit was to enable a search of
five year medical history for all individuals (we are tacitly
assuming that most younger persons in this population
had started their opiate misuse by the time they were 18
years old). We furthermore excluded all cases that were
judged to be suicides. After applying these criteria there
were 486 persons remaining who can be assumed to have
misused opiates on a regular basis and these 486 will con-
stitute our target population. To evaluate the population
size estimators we will now see how well we can estimate
the size of this population from another set of data. For
this we will use health care data as described next.
For each of the N = 486 individuals in the popula-

tion we extracted information on previous contacts with
the Swedish health care system by using the National
Patient Registry (held by The National Board of Health
and Welfare). This registry contains all instances of inpa-
tient care in Sweden with good coverage and contains the
main diagnosis (classified according to the WHO ICD-
10 classification system) and time points for care. For the
target population we extracted for all occurrences of inpa-
tient care under diagnoses indicative of substance misuse.
In particular, we used the following ICD-10 diagnoses:
F11-F16, F18, and F19 and restricted the search to five
years immediately preceding the time of death. During
these time intervals 262 of the 485 persons (54%) had
been receiving care under these diagnoses. We note that
this might be taken as support for the assumption that
the 485 persons constitute a relatively homogeneous pop-
ulation with respect to substance misuse. There were a
total of 1165 hospital records from these 262 persons and
most individuals had more than one care occasion. These
health-care records will be used below to estimate N.
Since the individuals were all deceased at the time

of project initiation, ethics committee approval was not

necessary according to the regional research ethics board
(Etikprövningsnä mnden i Stockholm).

Results
This section starts with a study of the ML estimator and
its performance under variations of total population size
and fraction of the populations actually sampled. We then
go on to study the effect of introducing variability (from
unit to unit) in the registration probability (i.e. we make
the population heterogeneous) and then the effect of the
number of epochs that the sampling interval is divided
into. Subsequently we will study Chao’s estimator and
describe when it will fail to provide good estimates. Finally
we apply the estimators to a real data set.

Variability and bias of the ML estimator
Ideally, an estimator of population size should always give
the right answer. However, since the estimator is com-
puted from data (assumed to be random) it will both be
variable (i.e. will give different results for different real-
izations) and it might have a bias (i.e. the expected value
of the estimator might differ from the true value). In this
section we study how the variance and bias of the estima-
tor depend on total population size (N) and the fraction of
N that is sampled (observed).
To study the variability and bias of the estimator we

made Monte Carlo simulations for N = 500, 1000, 5000,
and 50000 and for each N we varied the fraction of
observed units from 0.1 to 0.8 in steps of 0.05. To char-
acterize the variability we used the estimated coefficient
of variation (CV) (sample standard deviation divided by
sample mean). Results are shown in Figure 2A. For all Ns
the CV starts with a high value and then decreases as the
fraction sampled increases.
To investigate the bias of the estimator we divided

the sample means from the simulations with their cor-
responding theoretical value (i.e. with the corresponding
Ns). The resulting measure will be referred to as relative
bias. Note that a relative bias of one means that the esti-
mator is unbiased. Figure 2B shows the relative bias for
the parameter values investigated. For sufficiently large
fraction of sampled units, the bias goes to zero indepen-
dently of population sizeN. However, for smaller fractions
sampled, the bias can be substantial and for the two small-
est populations (N = 500 and N = 1000) the bias is
a non-monotonous function of sample size; it starts of
with a substantial negative bias that later becomes positive
before going to zero (relative bias going to one).
If we consider these bias and variance results together

they show that whether the ML estimator is useful or
not depends strongly on both N and the sample size. For
example, if the trueN is in the order of 50000 then already
with a sampled fraction of about 15% (i.e. a sample size of
7500) very good estimates are typically obtained. If, on the
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Figure 2 Variability and bias of the estimator. A) Coefficient of variation (CV) of population size estimator as estimated from simulated data for
four different population sizes. The dotted line indicates a CV of 0.3 which might represent an acceptable level of variability in practice. B) Bias of
population size estimator as estimated from simulated data. The curves show sample mean divided by the nominal population size (relative bias) for
four different population sizes.

other hand, the true N is around 500 the sampled fraction
should not be less than 55% (sample size of 275) for the
estimator to be reasonably accurate.

Population heterogeneity
So far we have assumed that the population is homoge-
neous with respect to the probability of being registered in
each time interval (at least before being registered the first
time). This translates to a constant p for all ‘subjects’ in
the simulations. In the real world this assumption is obvi-
ously unrealistic and in this section we study the effects of
relaxing it (see Methods).
Figure 3 shows the effect of making the units differ-

ent with respect to the probability of being registered.
Over the range studied, the heterogeneity does not influ-
ence the performance of the estimator greatly. Indeed, as
shown in the inset in Figure 3B, the variability in regis-
tration probability between individuals can be substantial
without leading to detrimental performance. Of course,
if the variability in p (between units) become sufficiently
large the performance will eventually break down. In par-
ticular, when many units start having zero probability of
being registered the estimator will be biased.

ChoosingM
In applications of the capture-and-removemethod in pop-
ulation biology the number of observation occasions (cap-
tures) might often be determined by the design of the
study. In epidemiology, on the other hand, we typically
have a certain freedom to choose the number of ‘obser-
vation occasions’ (epochs, denotedM herein). Indeed, we

might have access to daily registrations for a year or more
and it is therefore of interest to see how dividing the total
time interval into epochs of different length will influence
the performance of the estimator. We investigated this by
running Monte Carlo simulations for different values of
M. We used M = 2, 4, 8, 16, 32, and since the total time
interval consisted in 512 observation units (‘days’) we used
exactly the same data in all these five cases. Note that the
case M = 2 is special in that a closed-form expression
exists whereas forM > 2 the ML estimate has to be found
iteratively.
We found that when the fraction of the total popula-

tion sampled was large enough to give a relative variability
(coefficient of variation) of 0.3 or smaller then the esti-
mates obtained forM ≥ 8were virtually identical (correla-
tion coefficients between estimates obtained for different
values ofM were ≥ 0.98). However, compared to the case
of M = 2, estimates differed and even if the correlation
coefficient was relatively high (around 0.8) the estimates
withM = 2 had slightly larger coefficients of variation and
a larger bias. Indeed, Figure 4 shows the simulation results
for N = 1000 and compares the performance of the esti-
mator withM = 2 to that withM = 16. It is clear that the
size of the effects ofM are rather small but that in general
an estimator withM ≥ 8 should be used.
For smaller fractions of the population size the differ-

ent estimators have less regular behavior, and correlation
between different estimates might be as low as 0.35. Vary-
ingM and comparing the resulting estimates might there-
fore constitute a check that a sufficient fraction of the total
population has been sampled.
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Figure 3 Effects of heterogeneity on population size estimator. A) Coefficient of variation of population size estimator as estimated from
simulated data as a function of population heterogeneity for two different population sizes. The registration rate parameter p was randomly varied
from unit to unit according to a normal distribution. The population heterogeneity was taken as the standard deviation of this normal distribution
(x-axis). B) Bias of population size estimator as estimated from simulated data for different levels of population heterogeneity. The inset shows a
histogram illustrating the distribution of rate parameter p corresponding to a heterogeneity of 0.25 (the ps have been scaled by 1000 to improve
readability). All simulations in this figure were run with a sample size of 50% of the total population size.

Truncated poisson estimation
A simple alternative to the estimator we are suggesting
when having data from one source is to assume that the
samples come from a zero-truncated distribution and use
all, or parts of the data to estimate the unobserved zero

0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

C
V

A
M=2
M=16

0.5 0.6 0.7 0.8
0.95

1

1.05

1.1

fraction of population observed

re
la

tiv
e 

bi
as

B

Figure 4 Performance as a function ofM. A) Coefficient of
variation of two ML estimators corresponding toM = 2 andM = 16
as determined from simulated data for a population if N = 1000. B)
Relative bias of the two ML estimators as estimated from simulated
data.

bin (e.g. [10]). For the type of data considered here a
powerful and often used estimator goes under the name
of Chao’s estimator. For the truncated Poisson distribu-
tion this estimator is easy to derive (Methods) but it was
originally derived in a more general setting [17]. In this
section we investigate the performance of this estima-
tor (NC) and will see how it fails when we introduce
simple dependencies between the probabilities of being
registered.
We note that there are alternative ‘truncated Poisson’

estimators and one that has been applied was suggested
in [10] and is also derived in the Methods. We made
extensive tests using also this estimator and on our simu-
lated data it behaved very similar to NC but had a slightly
larger variance. We will therefore focus on NC in the
following.

Variability and bias of Chao’s estimator
The variability and bias of Chao’s estimator was deter-
mined analogously to that of the ML estimator. The
results are shown in Figure 5. It is clear that when the
Poisson assumption is fulfilled, Chao’s estimator outper-
forms the ML estimator. This is in particular the case
when only a small fraction of the population is sam-
pled. For the case N = 500, for example, Chao’s esti-
mator gives reasonably reliable estimates already when
the sample size is around 125. However, when the
assumptions are violated, Chao’s estimator can have
a substantial bias, even when the fraction sampled is
large.
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Figure 5 Variability and bias of the truncated Poisson estimator. A) Coefficient of variation of Chao’s estimator as determined from simulated
data for three different population sizes. B) Bias of Chao’s estimator as estimated from simulated data. The curves show sample mean divided by the
nominal population size (relative bias) for three different population sizes.

Systematic error in Chao’s estimator
One crucial assumption for any estimator relying on a
truncated Poisson distribution is that the probability of
being registered at any time is independent of previous
registrations. In epidemiological data in general, and in
health care records in particular, it is unlikely that this
assumption holds. We will investigate this in an example
data set below.
Here we will study the behavior of Chao’s estimator

when the probability of being registered two or more
times is different from the probability of being registered
once. In the Monte Carlo simulations we started with all

first-time registration probabilities (p1) equal and then
once a unit was registered we changed (or not) the future
registration probability p2. The effect of this will be that
the distribution of the registrations no longer follow a
Poisson distribution. As shown in Figure 6 the effect on
Chao’s estimate of violating the Poisson assumption can
be substantial. When a registered unit is less likely to
become registered again, Chao’s estimator has a large pos-
itive bias, and this even for large sample sizes. When the
probability of being registered more than once is larger
than the probability of first registration, the estimator has
a strong negative bias.
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Figure 6 Bias of the truncated Poisson estimator when p2 �= p1. Relative bias (sample mean divided by nominal population size) of Chao’s
estimator as estimated from simulated data when the probability of being registered more than one time was varied. The nominal population size
was 1000.



Ledberg and Wennberg BMCMedical ResearchMethodology 2014, 14:58 Page 9 of 11
http://www.biomedcentral.com/1471-2288/14/58

The reason for this large bias can be seen from the fol-
lowing considerations. Assume that that p2 = p1/k, where
k is an integer parameter. Then ifN is large and p1 is small

E(h1)2

E(h2)
� kN ,

which implies that Chao’s estimator will have an arbitrarily
large positive bias.

Application to real data
We next apply NML and NC to a real data set. We wanted
to use the estimators on a population where we already
knew (or at least had a very good approximation of) the
size from other sources. This can be viewed as an attempt
to validate the methods using real data; only by knowing
the true size can we determine which of the methods that
give the best estimate. As explained in Methods, the cases
of fatal opiate overdoses in Sweden from 2006 to 2011 is a
candidate for such a population. We took the total size of
this population to be number of deceased as reported by
The National Board of Health and Welfare. It totaled 486
persons. Now we will now see how well we can ‘estimate’
this number from the available health care records from
the deceased persons. There were 262 of these individu-
als that had received inpatient care under the diagnoses of
interest (see Methods) during this time.

Application ofNML
To estimate the number of cases using the ML estimator
we need to keep track of the date of the first care instance
for each of the 262 persons. Then we divide the five years
into a number (M) of epochs. As shown above, given this
sample size we should expect about the same performance
for M = 2 as for higher values of M. When applied to the
data we got the following estimate for M = 2: 462, which
is in reasonable agreement with the true N. Increasing M
had relatively small effects on the estimate: (NML:5 = 461;
NML:10 = 431; NML:20 = 435).

Application ofNC
To use NC to estimate the population size we used all the
1156 observations from the health care registry. We count
how many persons that received care 1 and 2 times and
then use the formula stated in the Methods (Eq. 4). Doing
this showed that 75 persons had been in care one time
only and 55 persons had been in care twice. This lead to
an estimate of NC = 313, i.e. a substantial underestimate.
Next we try to understand the reason for this underes-

timate. For Poisson data we know that the ratio of zero to
one observations should equal half the ratio of one to two
observations or in other words that

h0
h1

= h1
2h2

.

For the data from the opiate overdose cases we get that
h0
h1 = 2.49 and h1

2h2 = 0.68 which can be interpreted
that once a person has been registered (in care for sub-
stance misuse) the probability of being registered again is
substantially increased.

Discussion
We have studied the performance of a novel (in this
context) population size estimator and delimited the sit-
uations when it might be useful. The method is tailored
to epidemiological data and can, for example, be used
to track the prevalence of drug misuse. It relies on two
assumptions: first that the population is closed, i.e. that
individuals do not enter or exit the population during the
time of study. Second, that the probability of being reg-
istered at least once is constant among the members of
the population. We showed that reasonable violations of
the second assumption does not invalidate the estimator
(Figure 3).
The first assumption is unlikely to hold exactly in real

cases but can be partly circumvented by restricting the
analysis to a short period of time. Assume for example
that it is of interest to estimate the number of problem
drug users in a region. Now, clearly this population is
not closed, someone can be a problem drug user for a
given time period and then quit, whereas new individu-
als can enter at any time point. Still, if we restrict the time
horizon to a few years the population flux presumably
becomes much smaller. Also, whether the closed pop-
ulation assumption is reasonable or not depend on the
temporal stability of the feature of interest, and on the
total size of the population. If the population size is small
and the conditions for being in the population are variable,
it might be better to use other methods of estimation.
We also studied a different population size estimator

(Chao’s estimator) and under the assumption that the
registrations follow a zero-truncated Poisson distribution
this method outperforms the ML estimator (Figure 5).
In other words, when there are good reasons to believe
that the registrations follow the Poisson assumption, one
should use Chao’s estimator. We also note that in this
case the performance of this estimator was slightly supe-
rior (smaller variance) to an alternative estimate also
derived from truncated Poisson data (Zelterman’s esti-
mator). However, and importantly, we also showed that
Chao’s estimator can have a substantial bias (systematic
error) when the Poisson assumption is violated (Figure 6).
In the real data set we analyzed, Chao’s estimate was
a substantial underestimation of the true value. This is
a strong indication of that having had contact with the
health care system changes the propensity for future con-
tacts. As this could certainly be a general feature of similar
data it questions the use of Chao’s estimator in such
situations.
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In practice it might be difficult to investigate if the
probability of being registered is dependent on previous
registrations or not. However, an indication of this can
be obtained by analyzing parts of the data separately.
Assume that registrations are followed over a period of
time. Since estimates obtained by Chao’s estimator should
not strongly depend on the duration of the time period
used, similar estimates should be obtained if the first half
of the time period is used compared to if the whole time
period is used. Of course, as the sample size increase the
estimates become more precise, but large dependencies
on the time period is a clear indication of that trun-
cated Poisson estimators might have a substantial bias and
should preferably not be used.
There are generalizations of the zero-truncated distri-

bution approach that might fare better under the pertur-
bations we introduced and that are better suited to the
type of data we have in mind. More generally, one can
divide the observation interval into epochs (as we have
done) and model observations in each epoch and overlaps
between the different epochs, for example using general-
ized linear models. This would be similar in spirit to the
standard capture-recapture approach [6]. However, such
approaches rely on more knowledge of the data generat-
ing process, knowledge that often might not be available.
Alternatively, more parameters must be estimated from
data and it is therefore unclear what would be gained in
terms of power.We therefore believe that it is important to
use estimators that depend on as few assumptions as pos-
sible, such as the ML estimator we have studied here. Of
course, in practice, and depending on the data available,
it typically would make sense to use different estimators
of population size. If results differ wildly in unexplain-
able ways one should perhaps use completely different
methods to estimate the population size.
We end with some practical notes. The input to the ML

estimator should be the time point of first registration (e.g.
care under a certain diagnosis). But since it will often be
necessary to limit the time period used in the analysis, it
might be important to make sure that the registrations in
the first epoch actually reflect the first time of registration
(and not the first time of registration within the time win-
dow of the study). For example, in the data we analyzed
here we used registrations in a time interval of five years
preceding time of death. However, any registration during
the first epoch could in fact be the n-th registration, where
the previous n − 1 fell outside the five year interval. One
way of circumventing this is to not use the data from the
first half year or so. That way we can make sure that the
first registrations used in the estimation are at least not
part of a high frequency sequence of visits. In fact, when
we excluded the first six month of data in our applica-
tion of the method, the ML estimator gave a slightly more
accurate result (e.g. NML20 = 509).

Another practical issue relates to the choice ofM. Given
data acquired on a daily basis it is up to the user to choose
a reasonable value for this parameter. When the observed
sample constitute a substantial fraction of the total pop-
ulation the estimate does depend strongly on M and we
showed that a value of M around 8 would be enough to
get a close to optimal performance. However, it is still
instructive to try different values of this parameter since a
substantial dependence onM indicates that the estimated
values should not be trusted.

Conclusion
The population size estimator we have introduce here
complements existing methods and is less sensitive to
certain types of dependencies that might be typical in epi-
demiological data. When given a single source of data it
should therefore be considered the method of choice.
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