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The performance of sequence symmetry analysis
as a tool for post-market surveillance of newly
marketed medicines: a simulation study
Nicole L Pratt1*, Jenni Ilomäki1, Chris Raymond2* and Elizabeth E Roughead1
Abstract

Background: Sequence symmetry analysis (SSA) is a potential tool for rapid detection of adverse drug events
(ADRs) associated with newly marketed medicines utilizing computerized claims data. SSA is robust to patient
specific confounders but it is sensitive to the underlying utilization trends in the medicines of interest. Methods to
adjust for utilisation trends have been developed, however, there has been no systematic investigation to assess
the performance of SSA when variable prescribing trends occur. The objective of this study was to evaluate the
validity of SSA as a signal detection tool for newly marketed medicines.

Methods: Randomly simulated prescription supplies for a population of 1 million were generated for two medicines,
DrugA (medicine of interest) and DrugB (medicine indicative of an adverse event). Scenarios were created by varying
medicine utilization trends for a newly marketed medicine (DrugA). In addition, the magnitude of association between
DrugA and DrugB was varied. For each scenario 1000 simulations were generated. Average Adjusted Sequence Ratios
(ASR), bootstrapped 95% confidence intervals (CIs), percentage of CI's which covered the expected ASR and percent
relative bias were calculated.

Results: When no association was simulated between DrugA and DrugB, over 95% of SSA CI's covered the expected
ASR (ASR = 1) and relative bias was 1% or less irrespective of medicine utilization trends. In scenarios where DrugA and
DrugB were associated (ASR = 2), unadjusted SR's were underestimated by between 11.7 and 15.3%. After adjustment
for trend, ASR estimates were close to expected with relative bias less than 1%. Power was over 80% in all scenarios
except for one scenario in which medicine uptake was gradual and the effect of interest was weak (ASR = 1.2).

Conclusions: Adjustment for underlying medicine utilization patterns effectively overcomes potential under-
ascertainment bias in SSA analyses. SSA may be effectively applied as a safety signal detection tool for newly marketed
medicines where sufficiently large health claim data are available.
Background
Sequence Symmetry Analysis (SSA) has been suggested as
a tool to complement current systems of post-marketing
surveillance of medicines which use spontaneous report-
ing databases [1]. The method, developed by Hallas [2],
has been used increasingly with administrative claims data
to investigate adverse effects of medicines including
ace-inhibitor induced cough [3,4], inhaled corticosteroid
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induced oral candidiasis [5], non-steroidal anti-inflamma-
tory induced stroke [6], and isotretinoin and cardiovascular
medicine induced depression [2,7]. A validation study, using
known adverse drug reactions from randomized controlled
trials as the gold standard, demonstrated that SSA has high
sensitivity and moderate specificity for detecting safety
signals [1], and had similar sensitivity and specificity
to signal detection methods employed in spontaneous
reporting databases. An advantage of the SSA method is
its ease of application, computational speed and minimal
dataset requirements. The method utilizes existing health
claims datasets and due to the within person study design
does not require numerical adjustment for time invariant
patient specific confounders.
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Sequence Symmetry Analysis assesses the association
between two medicines in prescription claims data by
comparing the sequence of initiation of each medicine
during the study period or within a specified period of
time for an individual. One of the medicines (DrugA)
is the exposure medicine of interest and the other
medicine (DrugB) indicates a possible adverse event
for which a medicine may have been prescribed. In
practice, SSA works by determining the first use of
DrugA for an individual (ie the first supply date for
DrugA in the available dataset for each individual).
The same is done for DrugB. Then for each individual,
DrugA and DrugB initiations within a defined period
of time, for example 12 months, are selected and in-
cluded in the analysis [8]. The ratio of the number of
persons with DrugB initiated after DrugA is compared
to the number of persons with DrugB initiated before
DrugA. This ratio is described as the crude sequence
ratio (CSR). If there is no association between the
medicines the CSR will be approximately unity. If there is
asymmetry in the distribution of initiation of DrugB
after DrugA compared to before DrugA, it may imply an
association between the medicines. The sequence ratio is
an estimate the incidence rate ratio of the outcome event
in exposed compared to non-exposed person time [2].
The within person study design ensures that the analysis
is robust towards patient specific confounders that are
stable over time, however, the analysis is sensitive to
prescribing trends over time [2]. For example, if DrugA
is decreasing in use but there is no trend in the
utilization of DrugB over time it is likely that there will
be more people starting DrugB after DrugA just by
chance, even if the medicines are not associated. This
may lead to an incorrect positive association between the
medicines. Alternatively, an increase in DrugA over time
will create an excess of patients with DrugA prescribed
second and therefore an underestimate the association
between DrugA and DrugB if one really exists. This latter
scenario may happen, for example, when a new medicine
enters the market. The implication of not allowing for
prescribing trends would likely be an underestimate of
a potential adverse event of a medicine. In order to adjust
for such temporal trends, a null-effect sequence ratio is
calculated. The null-effect sequence ratio is the sequence
ratio that would be expected in the absence of a causal
association, given the trend in incident medicine use in
the background population [8]. The crude sequence ratio
is adjusted for temporal trends in medicine use over time
by dividing by the calculated null-effect sequence ratio.
While the validity of SSA has been assessed using known

adverse drug reactions as the gold standard [1], the validity
of the method has not been assessed systematically using
simulations studies where a known association is injected
into the study population under varying scenarios of
medicine utilisation. The advantage of simulation studies is
that the validity of the sequence ratio can be determined in
the presence of varying trends in incident medicine use and
the validity of the null-effect sequence ratio in adjusting for
temporal trends in prescribing can be assessed.
The aim of this study was to evaluate the performance

of SSA in scenarios which varied 1) the magnitude of
the associations between the medicines using simulated
prescription orders and 2) the trend in incident medicine
use of a medicine new to market.
Methods
Sequence symmetry analysis was used to examine the as-
sociation between DrugA and DrugB. The crude sequence
ratio (CSR) was calculated as the ratio of the number of
persons with DrugB after DrugA to the number of persons
with the DrugB before DrugA. The null-effect sequence
ratio (NSR) was calculated using the method described in
Tsiropolous [9]. The adjusted sequence ratio (ASR) was
calculated as the crude sequence ratio divided by the
null-effect sequence ratio. We performed SSA on 1000
simulations of each of the scenarios. Average ASR with
bootstrapped 95% confidence intervals (CI) (500 replicates),
the proportion of simulations in which 95% CI included
the expected ASR (coverage probability), the proportion
of simulations in which 95% CI did not include 1.00
(power) and average relative bias (difference between the
estimated sequence ratio and the expected sequence ratio)
were calculated.
Simulated data
For a population of 1 million we randomly simulated
prescription supplies independently for two medicines,
DrugA and DrugB. For the population of 1 million, 20%
of patients were randomly selected to initiate drugA and
20% of patients to initiate DrugB during the study
period. This meant that by chance 4% of patients would
be initiated on both DrugA and DrugB. Since medicine
supply dates were randomly generated, the number of
patients prescribed DrugA then DrugB should be similar
to the number of patients who were prescribed DrugB
then DrugA. In this scenario the expected sequence ratio
would be 1.0, that is, no asymmetry in prescription
supplies.
In order to generate the trend in medicine utilization,

DrugA supply dates were randomly generated using the
following distribution functions; uniform distribution
for no trend, the log-normal distribution for a rapidly
increasing trend, weibull distribution for a constant
increasing trend and gamma distribution to simulate a
gradual increasing trend in DrugA (Figure 1). In all sce-
narios DrugB supply dates were randomly generated
using the uniform distribution.
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Figure 1 Simulated trends for incident use of DrugA and DrugB.
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We also simulated six scenarios in which the magni-
tude of the associations between DrugA and DrugB were
varied. In the first scenario, there was no association
between the medicines and the expected sequence ratio
was 1.00. In the other scenarios the expected sequence
ratios were 0.6, 0.8, 1.20, 1.50, 2.00 and 3.00. The associ-
ations were induced by forcing a percentage of patients
who were not initiated on either medicine to be allo-
cated a DrugA then a DrugB supply, in that order. SSA
was restricted to sequences of medicine initiations
within 12 months of each other as, when used in prac-
tice, this is likely to limit the effect of age and other
potential time-varying covariates on the probability of
exposure and outcome. Sensitivity analyses were performed
in which we reduced the prevalence of medicine use to 5%.
SAS Version 9.4 was used for all simulations and

analyses.

Results
Table 1 presents the simulation results of each medicine
utilization scenario for the different effect sizes.

Expected ASR = 1.00
When the expected sequence ratio was 1.0, corresponding
to no asymmetry in the order of prescriptions supplied,
Type 1 error was identified in less than 2.2% of simula-
tions for all medicine utilization scenarios. When no trend
was simulated the crude and adjusted sequence ratios
were similar and relative bias was 0.38%. The crude
sequence ratios were underestimated by 13.9%, 15.3% and
11.7% when the simulated trend was gradual, constant
and rapid respectively. After adjustment for trend using
the null sequence ratio relative bias was reduced to 1%
or less.

Expected ASR = 1.2
In the scenario where there was no trend in medicine
utilization, 94.7% of CI’s covered the expected ASR
(ASR = 1.2) and power was 100%. When DrugA utilization
was varied the CSR’s were under-estimated by 11.9% to
15.5%. After adjustment for trend, the mean ASR was 1.2,
with over 94% of CIs containing the expected sequence
ratio. In the case of a gradually increasing trend, power
was only 66.4% compared to 96.0% and 96.8% when there
was a constant or rapid increasing trend respectively.
Relative bias was reduced to less than 1.5% in all scenarios
after adjustment for trend.

Expected ASR = 1.5, 2.0 and 3.0
When there was no trend in medicine utilization, approxi-
mately 95% of CI’s covered the expected ASR and power
was 100%. When DrugA was simulated to increase over
time ASRs were close to the expected with relative bias
1% or less.

Expected ASR = 0.8 and 0.6
When there was no trend in medicine utilization and the
expected ASR was 0.6, 94% of CI’s covered the expected
ASR and power was 100%. When DrugA was simulated
to increase over time ASRs were close to expected with
relative bias 0.13 to 0.24%. Power was 86.3% when the
expected ASR was 0.8 and the uptake in DrugA was
gradual. Power was 99.9% for all other scenarios where
the expected ASR was 0.8.



Table 1 Sequence symmetry results of the 1000 simulations for different scenarios of medicine utilisation trends and effect sizes, for a population size of 1
million and 20% population prevalence of use of each drug

Crude sequence ratio Adjusted sequence ratio

Medicine utilisation scenario Pairs (N) Null SR Crude SR (95% CI) Cover-age (%) Power* (%) Relative bias (%) Adjusted SR (95% CI) Cover-age (%) Power* (%) Relative bias (%)

Expected ASR = 1.0

No trend 3597 1.00 1.00 (0.94-1.07) 95.5 2.2 0.38 1.00 (0.94-1.07) 95.6 2.1 0.38

Gradual 656 0.85 0.86 (0.73-1.00) 47.6 0.0 −13.85 1.00 (0.85-1.17) 94.4 2.1 1.02

Constant 1604 0.84 0.84 (0.76-0.93) 7.3 0.0 −15.34 1.00 (0.90-1.11) 95.2 1.9 0.46

Rapid 1811 0.88 0.88 (0.80-0.97) 22.4 0.0 −11.71 1.00 (0.91-1.10) 96.1 2.2 0.46

Expected ASR = 1.2

No trend 3956 1.00 1.20 (1.13-1.28) 94.2 100.0 0.35 1.20 (1.13-1.28) 94.7 100.0 0.36

Gradual 717 0.85 1.03 (0.88-1.19) 42.8 5.1.0 −13.51 1.21 (1.03-1.40) 94.6 66.4 1.43

Constant 1754 0.84 1.01 (0.92-1.11) 4.8 2.9 −15.52 1.20 (1.09-1.32) 94.8 96.0 0.23

Rapid 1983 0.88 1.05 (0.96-1.15) 18.9 19.8 −11.85 1.20 (1.09-1.31) 94.2 96.8 0.31

Expected ASR = 1.5

No trend 4498 1.00 1.50 (1.41-1.59) 95.2 100.0 0.19 1.50 (1.41-1.59) 95.6 100.0 0.18

Gradual 806 0.85 1.29 (1.11-1.48) 41.0 92.2 −13.82 1.51 (1.30-1.73) 95.6 100.0 1.07

Constant 1973 0.84 1.27 (1.15-1.39) 3.9 100.0 −15.29 1.50 (1.37-1.65) 96.0 100.0 0.50

Rapid 2238 0.88 1.32 (1.21-1.44) 16.6 100.0 −11.67 1.50 (1.38-1.64) 95.6 100.0 0.50

Expected ASR = 2.0

No trend 5395 1.00 2.00 (1.90-2.12) 94.2 100.0 0.42 2.00 (1.90-2.12) 94.7 100.0 0.42

Gradual 957 0.85 1.72 (1.49-1.96) 36.7 100.0 −13.92 2.01 (1.74-2.29) 95.2 100.0 0.95

Constant 2338 0.84 1.69 (1.55-1.84) 2.4 100.0 −15.29 2.00 (1.83-2.19) 95.7 100.0 0.50

Rapid 2660 0.88 1.76 (1.62-1.91) 11.2 100.0 −11.69 2.00 (1.85-2.17) 96.1 100.0 0.48

Expected ASR = 3.0

No trend 7197 1.00 3.00 (2.85-3.17) 95.1 100.0 0.26 3.00 (2.85-3.17) 95.1 100.0 0.27

Gradual 1260 0.85 2.57 (2.26-2.90) 29.2 100.0 −13.92 3.01 (2.65-3.41) 95.8 100.0 0.98

Constant 3074 0.84 2.54 (2.35-2.75) 0.9 100.0 −15.00 3.01 (2.79-3.26) 95.4 100.0 0.82

Rapid 3510 0.88 2.63 (2.45-2.84) 8.6 100.0 −11.72 3.00 (2.79-3.24) 93.5 100.0 0.44

Expected ASR = 0.6

No trend 4799 1.00 0.60 (0.56-0.64) 94.0 100.0 −0.03 0.60 (0.56-0.64) 94.0 100.0 −0.03

Gradual 893 0.85 0.51 (0.44-0.58) 32.6 100.0 −14.61 0.60 (0.52-0.68) 95.7 100.0 0.13

Constant 2187 0.84 0.51 (0.46-0.55) 23 100.0 −15.54 0.60 (0.55-0.66) 96.3 100.0 0.21

Rapid 2456 0.88 0.53 (0.48-0.57) 12.1 100.0 −11.90 0.60 (0.55-0.65) 96.3 100.0 0.24
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Table 1 Sequence symmetry results of the 1000 simulations for different scenarios of medicine utilisation trends and effect sizes, for a population size of 1
million and 20% population prevalence of use of each drug (Continued)

Expected ASR =0.80

No trend 4048 1.00 0.80 (0.75-0.85) 95.7 100.0 0.11 0.80 (0.75-0.85) 95.7 100.0 0.10

Gradual 745 0.85 0.68 (0.58-0.79) 39.4 100.0 −14.30 0.80 (0.68-0.92) 95.5 86.3 0.51

Constant 1823 0.84 0.68 (0.61-0.74) 4.8 100.0 −15.49 0.80 (0.73-0.88) 95.0 99.9 0.27

Rapid 2054 0.88 0.70 (0.64-0.77) 15.8 100.0 −12.17 0.80 (0.73-0.87) 95.6 99.9 −0.07

*Note: When the expected Sequence ratio =1, Power is the type I error.
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Table 2 Sequence symmetry results of the 1000 simulations for different scenarios of medicine utilisation trends and different effect sizes, for a population
size of 1 million and 5% incidence of use of each drug in the population

Crude sequence ratio Adjusted sequence ratio

Medicine utilisation scenario Pairs (N) Null SR Crude SR (95% CI) Cover-age (%) Power* (%) Relative bias (%) Adjusted SR (95% CI) Cover-age (%) Power* (%) Relative bias (%)

Expected ASR = 1.0

No trend 225 1.00 1.01 (0.75-1.30) 94.3 1.8 2.42 1.01 (0.75-1.30) 94.5 1.6 2.42

Gradual 41 0.85 0.90 (0.31-1.60) 86.8 0.0 −4.33 1.06 (0.37-1.88) 94.5 0.1 12.18

Constant 100 0.84 0.85 (0.52-1.23) 81.1 0.1 −12.58 1.01 (0.61-1.46) 94.7 0.2 3.73

Rapid 113 0.88 0.90 (0.57-1.27) 87.3 0.0 −7.75 1.03 (0.65-1.45) 95.2 1.3 4.97

Expected ASR = 1.2

No trend 247 1.00 1.21 (0.91-1.55) 95.9 20.7 2.84 1.21 (0.91-1.55) 95.7 20.8 2.84

Gradual 44 0.85 1.08 (0.40-1.91) 90.6 0.0 −3.73 1.27 (0.47-2.24) 96.9 0.5 12.90

Constant 110 0.84 1.04 (0.65-1.47) 81.5 1.3 −11.45 1.23 (0.77-1.75) 94.9 7.9 5.05

Rapid 124 0.88 1.07 (0.70-1.49) 87.4 1.4 −8.70 1.22 (0.79-1.70) 95.8 7.8 3.90

Expected ASR = 1.5

No trend 280 1.00 1.51 (1.15-1.92) 95.6 85.5 2.54 1.51 (1.15-1.92) 95.4 85.8 2.52

Gradual 50 0.85 1.36 (0.56-2.33) 86.7 0.6 −3.58 1.59 (0.66-2.74) 95.6 5.6 13.10

Constant 124 0.84 1.29 (0.84-1.82) 81.1 13.3 −11.39 1.54 (1.00-2.16) 96.2 45.4 5.12

Rapid 139 0.88 1.35 (0.90-1.87) 86.9 24.6 −7.53 1.54 (1.03-2.13) 95.9 52.3 5.20

Expected ASR = 2.0

No trend 337 1.00 2.03 (1.57-2.55) 96.1 100.0 2.91 2.03 (1.57-2.55) 96.2 100.0 2.89

Gradual 60 0.85 1.79 (0.81-3.01) 87.7 17.7 −4.59 2.10 (0.95-3.53) 95.6 40.6 11.87

Constant 146 0.84 1.72 (1.15-2.39) 80.6 76.1 −11.44 2.04 (1.37-2.84) 96.1 97.0 5.08

Rapid 166 0.88 1.79 (1.23-2.45) 87.5 90.7 −7.96 2.04 (1.40-2.79) 97.0 98.7 4.71

Expected ASR = 3.0

No trend 450 1.00 3.03 (2.40-3.77) 96.4 100.0 2.84 3.03 (2.40-3.77) 96.2 100.0 2.85

Gradual 78 0.85 2.67 (1.30-4.47) 87.8 90.8 −3.94 3.14 (1.52-5.24) 96.3 97.9 12.66

Constant 192 0.84 2.59 (1.79-3.55) 80.5 100.0 −11.16 3.07 (2.12-4.21) 97.5 100.0 5.39

Rapid 219 0.88 2.67 (1.90-3.59) 83.4 100.0 −8.50 3.03 (2.16-4.09) 96.0 100.0 4.12

Expected ASR = 0.6

No trend 300 1.00 0.61 (0.46-0.76) 95.6 99.0 1.66 0.61 (0.46-0.76) 95.6 99.0 1.68

Gradual 56 0.85 0.53 (0.23-0.85) 86.8 77.9 −9.71 0.62 (0.27-1.00) 95.2 57.0 5.92

Constant 136 0.84 0.51 (0.33-0.70) 79.2 98.2 −14.48 0.61 (0.39-0.83) 94.9 90.0 1.46

Rapid 154 0.88 0.53 (0.35-0.71) 83.7 98.6 −11.09 0.60 (0.40-0.81) 94.5 91.1 1.14
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Table 2 Sequence symmetry results of the 1000 simulations for different scenarios of medicine utilisation trends and different effect sizes, for a population
size of 1 million and 5% incidence of use of each drug in the population (Continued)

Expected ASR = 0.8

No trend 254 1.00 0.81 (0.61-1.03) 95.4 44.5 2.09 0.81 (0.61-1.03) 95.7 44.5 2.10

Gradual 46 0.85 0.72 (0.28-1.21) 89.1 32.7 −6.68 0.84 (0.33-1.42) 95.9 16.6 9.43

Constant 114 0.84 0.69 (0.43-0.97) 79.5 60.4 −13.09 0.82 (0.50-1.15) 95.0 29.1 3.14

Rapid 129 0.88 0.71 (0.46-0.98) 83.2 55.8 −9.95 0.81 (0.52-1.12) 94.1 30.9 2.47

*Note: When the expected Sequence ratio =1, Power is the type I error.
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Sensitivity analyses variation in medicine utilization
prevalence
The results of the analysis in which the population pro-
portion of drug use was changed to 5% is summarised in
Table 2. When the expected SR was 1.0, type 1 error was
between 0.1 and 1.6% and relative bias was between 2.4
and 12.2%. For an expected ASR of 1.2, power was
20.8% when there was no trend in A, 8% when there was
a constant or rapid trend and relative bias was between
2.8% and 12.9%. For effect sizes 1.5, 2.0 and 3.0 when no
trend was simulated, power was over 85%. For an effect
size of 1.5, insufficient power was found for all trends.
For an effect size of 2.0, power was less than 80% only
for a gradual trend in DrugA.

Discussion
We tested SSA in different realistic scenarios for the
underlying trend in uptake of a newly marketed medi-
cine over time [9] for different effect sizes and a fixed
population size of 1 million people. In all simulations
adjustment for trends in prescribing using the null-effect
sequence ratio appeared to effectively overcome under-
ascertainment bias. When trends in medicine use were
present, the crude sequence ratio underestimated the true
association by 12-16%. After adjustment for underlying
medicine utilisation patterns relative bias was 1 to 2%.
SSA analyses had high statistical power in all simula-

tions with effect sizes greater than or equal to 1.5 regard-
less of the medicine uptake trend. For an effect size of
1.2 and a gradual uptake of the medicine, SSA had only
66% power. This is most likely a consequence of smaller
numbers of patients available for analysis in the early years
of a gradual medicine uptake rate. However, under the
gradual medicine uptake utilization scenario, effect sizes
of 1.5 and 2.0 both had nearly 100% power. Estimates
of relative bias, however, were largely unaffected by
sample size. These results suggest that SSA analyses may
be a reliable method to identify adverse events associated
with a newly marketed medicine in a sufficiently large
population, particularly if the uptake of the medicine
is rapid.
In all simulations coverage probability was high as

was the power. Coverage and power are measures that are
dependent on the sample size. In a sensitivity analysis
the impact of the prevalence of the medicine use on the
performance of PSSA was explored by reducing the
percentage of patients initiating the medicines to 5%. In
general, the lower use of medicines reduced the power
of SSA but increased the coverage probability margin-
ally. This is most likely due to the increased variability
and hence the width of the confidence intervals. The
performance of SSA in terms of estimating the true
estimated effect was slightly affected, as relative bias
of the estimates increased marginally. These results
suggest that the power calculations are dependent on
the percentage of use and consequently the number of
pairs generated.
In practice, SSA has been shown to be robust to varying

utilization patterns of medicine use [10]. An application of
SSA to the investigation of the association between anti-
psychotics and hyperglycaemia across six countries found
a consistent positive association despite varying patterns
of utilization in the different populations. The significance
of the association was dependent on the number of pairs
generated in each country [10]. In this study we have
explored how varying trends in medicine utilization
may impact on the validity of SSA, however, there may
be other biases to consider when implementing SSA in
practice including confounding by contra-indication and
protopathic bias [2].
In this simulation study we fixed the population size at

1 million and only considered a limited number of trends
of medicine uptake in DrugA. In this analysis we only
varied DrugA, however, in practice trends may occur in
either or both DrugA and DrugB. Additionally, we only
simulated scenarios where no association between DrugA
and DrugB were present and where associations exist
from 20% increased risk up to a tripling of risk and nega-
tive associations where the expected ASR was 0.6 or 0.8.
Future work will be required to determine the validity of
SSA under conditions different to those explored here,
such as varying population sizes, rates of initiation of both
DrugA and DrugB and for more extreme associations. In
particular, further studies will be required to determine
the performance of SSA in situations where very rare but
serious adverse events may be expected. In this simulation
we have employed the method of adjustment as described
by Tsiropolous [8]. This method is an amendment from
the original technique first described by Hallas [2]. The
rationale for this amendment was described in the paper
by Tsiropolous to account for limited time intervals
allowed between the exposure medicine of interest and
the adverse drug event. This is relevant to the situation
simulated in this analysis in which acute adverse events
are of interest. In general the method of adjustment is
dependent on the situation at hand and it may be more
reasonable to use the method as originally described by
Hallas. In a sensitivity analysis, the method as described
by Hallas [2] was implemented and similar results were
found (data not shown).
A limitation of the SSA approach in practice is that it

can only be applied to post-market surveillance issues
where medicines are prescribed to treat the adverse event
or where the outcome of interest may be identified as an
admission to hospital. Examples of studies which have
investigated medicine initiation as a proxy for an adverse
medicine event include, insulin initiation as a proxy for
acute hyperglycaemia associated with olanzapine initiation
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[10], and antitussive medicine initiation as a proxy for
cough associated with ACE inhibitors [3,4]. Results of
SSA, like all observational study designs, must be inter-
preted with appropriate consideration given to the sen-
sitivity and specificity of the proxy medicine or adverse
event hospital diagnosis as a measure of the adverse
event of interest.

Conclusions
The results of this simulation study suggest that in practice,
SSA may be a reliable tool to detect frequent adverse drug
reactions when medicine uptake trends are variable. Use
of SSA as a signal detection tool will help to ensure that
adverse events associated with medicines are identified
early and excess harm avoided. In the scenarios considered
in this study, adjustment for underlying medicine utilization
trends in a newly market medicine effectively over-
comes under-ascertainment bias. The method identified
an increased risk of one medicine, indicative of an adverse
event, being prescribed after another in scenarios where a
true association existed. These results suggest that SSA
may be effectively applied as a safety signal detection tool
for newly marketed medicines where sufficiently large
health claim data are available.
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