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Abstract

Background: Chemotherapy is expected to reduce cancer deaths (CD), while possibly being harmful in terms of
non-cancer deaths (NCD) because of toxicity. Peto’s log-rank test is popular in the medical literature, but its operating
characteristics are barely known. We compared this test to the most common ones in the statistical literature: the
cause-specific hazard test and Gray's test on the hazard of the subdistribution. We investigated for the first time the
impact of reclassifications of causes of death (CoD) after recurrences, and of misclassification of CoD.

Methods: We present a simulation study in which we varied the censoring rate and the correlation between CD and
NCD times, we generated recurrence times to study the role of the reclassification of CoD, and we added 20%
misclassified CoD. We considered four scenarios for the treatment effect: none; none for CD and negative for NCD;
positive for CD and none for NCD; positive for CD and negative for NCD. We applied the three tests to a randomized
clinical trial evaluating adjuvant chemotherapy in 1,867 patients with non-small-cell lung cancer.

Results: Most often the three tests well preserved their nominal size, Gray's test did not when the treatment had an
effect on the competing CoD. With a high rate of misclassified CoD, Gray's and the cause-specific tests lost much of
their power, whereas the Peto’s test had the highest power. The cause-specific test had inflated size for NCD when the
treatment was beneficial for CD with many misclassified CoD, but had the highest power for NCD when the treatment
had no effect on CD, and had similar power to Peto's test for CD when the treatment had no effect on NCD. Gray's test
performed best when the effect on the two CoD was opposite. The higher the censoring, the lower the rejection
probabilities of all the tests and the smaller their differences.

Conclusions: In this first head-to-head comparison of the three tests, the cause-specific test often proved to be the
most reliable. Comparing results with and without misclassification of the CoD, Peto’s test was the least influenced by
the presence of such misclassification.

Keywords: Competing risks, Peto’s test, Cause of death, Cancer death, Cumulative incidence function, Cause-specific

hazard, Gray's test

Background

The analysis of survival data in the presence of competing
risks has been a widely debated topic for many decades in
both the statistical [1-5] and the medical literature [6-11].
Interest in the subject gained momentum in the 1990s,
when two main approaches emerged: an approach based
on the cause-specific hazard function and another based
on the cumulative incidence function and its associated
hazard of the subdistribution. For a detailed discussion
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see [12] for example. An issue of particular importance in
clinical research is testing the effect of covariates — typi-
cally the treatment — on competing causes of death. Dif-
ferent solutions have been proposed. The most common
ones in the statistical literature are the log-rank test for the
cause-specific hazard [1,13] and nonparametric and semi-
parametric tests for the cumulative incidence function
(CIF) [14,15]. However, Peto and the Early Breast Cancer
Trialists’ Collaborative Group proposed the log-rank sub-
traction method in the context of oncology [16-19], which
is quite popular in the clinical literature and especially in
meta-analyses: see for instance references [20-24]. This
test imputes deaths to the cancer whenever the cause is
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unknown or when they occur after a recurrence, whatever
the recorded cause. It calculates cause-specific mortal-
ity as the difference between overall mortality and that
attributable to other causes. The authors assert that this
approach makes the test unbiased for the assessment of
the effect on cancer mortality.

The comparison of different methods from a theoret-
ical point of view and via simulation studies is being
considered with increasing interest in the literature. Put-
ter et al. [3] offered a detailed and insightful review of
competing risks methodology. Dignam et al. [10] and
Dignam and Kocherginsky [25] focused on point estima-
tion of the treatment effect according to different model-
ing approaches. Pintilie [26] provided a simulation study,
with independent variables of the times to death by cause,
showing that the tests based on the cause-specific haz-
ard — Wald, score and likelihood-ratio — have the correct
size and power, in the absence of any effect on the com-
peting event. Using simulations, Freidlin and Korn [27]
compared the cause-specific log-rank test to Gray’s non-
parametric test [14] for the CIF. They concluded that the
former preserves its nominal size better and has greater
power than the latter, even with positively correlated event
times. Williamson et al. [28] extended these results show-
ing that Gray’s test has greater power in the case of very
different degrees of negative correlation between compet-
ing event times in the two treatment arms. Ruan and Gray
[29] studied Peto’s test both analytically and in simula-
tions with independent survival times. They proved that
it has good properties when the rates of competing events
are similar, whereas it has an inflated size and poor power
otherwise.

For the first time we present in this article a sim-
ulation study to compare head-to-head Peto’s log-rank
subtraction test to the log-rank test on the cause-specific
hazard, and to Gray’s test based on the CIF in a broad
set of clinical scenarios. In order to investigate the effect
of different classifications of the cause of death estab-
lished by Peto’s test, we used a simulation method that
allows relapse times to be generated in addition to cancer-
death (CD) and non-cancer-death (NCD) times. We sim-
ulated data with negative, null, and positive correlations,
thereby covering an exhaustive range of dependence
assumptions. This study is the first which investigates the
impact of censoring and, most importantly, of misclas-
sification of causes of death on the behaviour of these
tests.

The clinical problem motivating this study was the
evaluation of the efficacy of adjuvant chemotherapy for
patients with non-small-cell lung cancer in the Interna-
tional Adjuvant Lung Cancer Trial (IALT) [30,31]. Its
interest is to test whether chemotherapy has a beneficial
effect on the occurrence of CD, taking into account the fact
that patients can meanwhile die of other causes, and that
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an increased risk of NCD is possible in the treatment arm,
due to chemotherapy toxicity.

In the next section, we present the test statistics of inter-
est. Then, we provide details on the simulation study and
its results. Finally, we present the IALT study and the
results of the tests for CD and NCD.

Methods

Tests for competing causes of death

There are different approaches to dealing with duration
data in the presence of competing events, such as cause-
specific death and death from other causes. In a latent
failure time perspective, there is a random variable T;
for the time to each possible event, but only the time
to the first event can be recorded. The hazard function
of the marginal distribution of each 7; is usually called
the cause-specific hazard. Testing the treatment effect on
the cause-specific hazard allows one to evaluate the net
effect of covariates on each event; even though quite intu-
itive, this strategy has been criticized because it compares
the treatment arms in terms of the risk of each event
type while ignoring all the others. Gray [14] proposed an
alternative approach, based on the CIF, which takes into
account all types of events. As the hazard of the CIF incor-
porates information on all the competing risks, testing the
effect of the treatment on the incidence of each type of
event also reflects its effect on all the others. As variations
of the risk of each event reverberate on the hazards of
competitors, it is advised to consider their results in com-
bination with the analysis of all cause-specific hazards [4].
Moreover, due to its mathematical definition, the hazard
of the CIF requires that patients who experience an event
remain in the risk sets of the other types of event. For a
detailed discussion of this topic, we refer to Section 3 of
[3] and Chapters 4 to 6 of [12].

Consequently, there are also several approaches for test-
ing the effect of a treatment on competing events. We
restricted ourselves to considering three of the most pop-
ular ones: the cause-specific and the Gray tests, which
receive most of the attention through methodological
research, and the Peto test, which is quite common in the
medical literature. We aim to compare them in several
clinically relevant situations.

Peto (Pe)

The log-rank subtraction test proposed and further
described by Peto [16,17] consists in a piecewise (with
respect to time) version of the log-rank test, performed
separately by cause of death. It is said to be a subtraction
method because the quantities used to compute the test
statistic are first calculated for overall mortality and for
NCD. Those concerning CD are then obtained by taking
the difference between the former two. Another relevant
peculiarity of this approach is that all deaths due to an
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unknown cause and all those occurring after a relapse are
ascribed to the cancer, even if explicitly declared as due to
another cause.

Cause-specific (CS)

Historically, the simplest and most naive approach
adopted reflects the idea of considering only the relevant
events for each cause of death, while treating all the com-
peting events as independent censoring. This leads to the
use of the log-rank test on the cause-specific hazard [1,13],
which is approximately equivalent to the score test of the
cause-specific Cox model which itself is asymptotically
equivalent to the Wald and likelihood-ratio tests in the
same model.

Gray (Gr)

Another popular approach in the context of competing
risks is the one based on the CIF, for which the assumption
of independence of the competing events is not required.
The hazard associated with the CIF, called the hazard
of the subdistribution, also takes into account the occur-
rence of competing events. In particular, when a subject
experiences a competing event, his/her time to the rele-
vant event is not censored and he/she remains in the risk
set. Gray’s nonparametric test [14], used in our study, is
asymptotically equivalent to the Wald test on the regres-
sion parameter in the Cox model of the hazard of the
subdistribution [15] when there is no censoring.

Plots

In the example presented later on, we will show the cumu-
lative risk and incidence curves for all, non-cancer and
cancer deaths by treatment arm. They will be plotted
by means of three methods corresponding to the three
tests for the treatment effect. The first, corresponding to
the cause-specific test, is the Nelson—Aalen method for
the (cause-specific) cumulative risk [32,33]. In the case of
cause-specific risks, only deaths declared due to the cause
of interest are considered as events by the Nelson—Aalen
estimator, while all other deaths are censored (assuming
non informative censoring). The plots in the second group
are the Peto estimator of the (cause-specific) cumulative
yearly rates; in these plots all deaths following a recur-
rence are classified as CD, as well as those of an unknown
cause. NCDs preceded by a recurrence are censored when
a recurrence occurs. According to the Peto method, first
the survival probability is computed per year for the 2
arms combined. Then the survival probability for each
arm is obtained by adding to it or subtracting from it a
quantity which depends on the logarithm of the yearly risk
ratio [16,17]. Finally, the Aalen—Johansen estimates of the
CIFs [34], corresponding to the Gray test, are plotted. It is
noteworthy that, in the case of overall survival, one minus
the CIF corresponds to the Kaplan—Meier estimate.
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Simulation study

Testing the efficacy of the therapy on the time to CD and
NCD is the focus of the researcher’s interest. Sometimes,
the classification of causes of deaths implicitly requires the
occurrence of a recurrence (Rec). Although the treatment
evaluation is done directly on times to CD and NCD, the
tests differ in the manner of classifying causes of death. In
particular, the Peto test requires information on the times
to recurrence.

We first considered the times to CD and NCD (Figure 1).
We generated them by using two exponential distribu-
tions, possibly with positive or negative dependence. We
obtained them in two steps. First, a bivariate normal ran-
dom variable Z = (Z1,2Z)7 was generated with unit
means, unit variances and correlation p. Then, the times
to death were computed as Tcp = — log(®(Z1))/Acp and
Tneop = —log(®(Z2))/Ancp, where ®(¢) is the standard
normal distribution function [27]. Thus, Tcp ~ Exp(Acp)
and Tnep ~ Exp(Ancp)- In the control group of the IALT
trial, which we describe below, we estimated that the CD
rate is about five-fold higher than the NCD rate. There-
fore, we set Acp = /5 =~ 2.24 and Ancp = 1/4/5 =~
0.45. The time to death for each subject is then Tp =
min(Tcp, Tnep). Finally, we assumed that, conditional on
the time to CD, the time to recurrence Tg. follows a uni-
form distribution between 0 and T¢p. Hence, a recurrence
is observed whenever Tg,, < Tp and is censored only
when Trec > Tncp- This method allowed us to study the
effect of the reclassification done by Peto: in our simula-
tions about half of the NCD were preceded by a recurrence.
We did not consider the case of unknown causes of death,
which were very marginal in our real dataset.

Here we present different scenarios concerning the
treatment effect. Figure A.1 in the Additional file 1 shows,
for the first scenario, the correlations obtained between

CD

NED TRec

Tnep

NCD

Figure 1 Event history structure used for data simulation. T: time
to different events. NED: no evidence of disease after initial treatment.
Rec: recurrence; CD: cancer death; NCD: non-cancer death.
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the event times, depending on p, the correlation of
the underlying normal random variables: the relation is
roughly linear and setting the parameter p can be consid-
ered almost equivalent to setting the correlation between
CD and NCD times. On the other hand, this does not
affect the correlation between CD and recurrence times,
which can be shown to be constantly \/3/5 = 0.77.
In this respect, no difference exists between the scenar-
ios. In order to investigate the properties of the tests
in a wide range of situations, we chose five values for
p, covering very negative and very positive dependence,
passing through weak and no dependence: —0.75, —0.375,
0, 0.375, 0.75.

We examined four clinical situations for the effect of
the treatment on the occurrence of death from cancer and
from other causes:

1. a null effect on both CD and NCD
(HRcp = HRnep = 1),

2. anull effect on CD (HRcp = 1) and an increased NCD
risk (HRnep = 1.25),

3. areduction of the risk of CD (HRcp = 0.8) and a null
effect on NCD (HRncp = 1),

4. areduction of the risk of CD (HRcp = 0.8) and an
increased NCD risk (HRncp = 1.25).

The first scenario is the complete null scenario, i.e. the
one in which both the null hypotheses of no treatment
effect are true. The second is the most pessimistic, where
the treatment is toxic and ineffective. The third scenario
is the ideal target for a treatment in oncology, which just
reduces the risk of CD. Finally, the fourth one is a sce-
nario that could occur for chemotherapy and radiotherapy
regimens in oncology, as their efficacy against CD implies
a cost in terms of an increased NCD hazard. The haz-
ard ratios for the treatment effect in the four scenarios
are illustrated in Figure 2. In addition to the situation
with complete data, we replicated simulations with 25%
and 50% of censored observations. Censoring times were
generated from uniform random variables between zero
and a given bound. For each scenario, the choice of this
upper bound was made numerically in order to attain the
desired proportion of censored times to death. As in clin-
ical practice the causes of death can be misrecorded, we
also reperformed all the tests after inverting the cause (CD
vs. NCD) of 20% of deaths.

The International Adjuvant Lung Cancer Trial

The IALT recruited 1,867 patients who underwent com-
plete surgical resection of non-small-cell lung cancers.
They were randomly assigned to cisplatin-based adju-
vant chemotherapy (932) or the control (935) group and
were followed up for 10 years (median: 7.5 years). The
International Adjuvant Lung Cancer Trial Collaborative
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Figure 2 Hazard ratios in the simulation study. Hazard ratios for
cancer death and non-cancer death in the four scenarios used for the
simulation study.

Group [30] and Arriagada et al. [31] showed that adjuvant
chemotherapy provides a benefit in terms of both overall
and disease-free survival at 5 years. As shown in Table 1,
1,168 (62.6%) out of 1,867 patients died during follow-
up, 578 in the experimental and 590 in the control arm.
Among all the recorded deaths, 918 (78.6%) were ascribed
to lung cancer, 179 (15.3%) to other causes, and 71 (6.1%)
to unknown causes. Among the 197 patients who died of
non-cancer causes, 71 had a recurrence recorded; among
the 71 patients who died of unknown causes, 26 had a
recurrence recorded. In total, 97 deaths that occurred
after a recurrence and declared due to non-cancer or
unknown causes were reclassified as due to the cancer by
the Peto method.

The Ethics Committee of Kremlin-Bicétre hospital in
France France (Comité de Protection des Personnes Ile-
de-France VII) approved the protocol on January 9, 1995.
When the study began in 1995, informed consent was

Table 1 Causes of deaths by treatment arm in the IALT
study

Chemotherapy Control Total
Cancer Deaths 438 480 918
Non-Dancer 107 72 179  (Of which 71
Deaths after a relapse)
Deaths from 33 38 71 (Of which 26
unknown cause after a relapse)
All Deaths 578 590 1168
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obtained from each patient according to the regulations
of the participating country; in 1999, all participants were
required to give written informed consent.

Results and discussion

As described above, we considered four scenarios for
the treatment effect, five possible degrees of dependence
between the times to CD and NCD, three possible propor-
tions of censoring, and presence or absence of misclassifi-
cation of the cause of death. For each of these 4 x 5 x 3 x
2 = 120 situations, 10 000 data sets of size 1000 were gen-
erated. The three tests were performed for each of them
and the empirical rejection probabilities at a 5% nominal
size were computed across the 10000 replications. The
null hypothesis of no treatment effect holds in scenarios
1 and 2 for CD and in scenarios 1 and 3 for NCD. In these
cases the empirical rejection probabilities stand for the
empirical size of the tests. On the contrary, in all the other
situations, the hypothesis does not hold and the rejection
probabilities represent the empirical power of the tests. Of
note, the rate of miclassified causes of death (20%) is quite
high with respect to clinical real life, but it is useful in this
context to study its role in a somehow extreme situation.

In the null scenario, i.e. in the absence of any treatment
effect on both causes of death, all the tests have empirical
rejection probabilities that are very close to the nominal
size of 5% (range: 0.04—0.06; Additional file 1: Table A.1
and Figure A.2) and their use is equivalent. Furthermore,
none of censoring, correlation between causes of death,
and misclassification of causes of death (Additional file 1:
Table A.2 and Figure A.3) affect the results.

In the second scenario, we considered the case where
the therapy is not effective for reducing CD, but it is
harmful in terms of NCD, because of toxicity. Figure 3
shows the main results with complete data, whereas full
details with 25% and 50% censored observations are pro-
vided in Additional file 1: Table A.3 and Figure A.4. Let’s
first consider the results when there is no misclassifica-
tion of the cause of death. Under these conditions results
show that for complete data Gr (Gray test) has an over-
inflated size for CD (0.10 < « < 0.19, complete data),
whereas the other two tests have better empirical sizes
in general (0.04 < « < 0.12 for Pe [Peto test] and
0.05 < o < 0.08 for CS [Cause-Specific test], complete
data). Due to the set-up of our simulation study with a
CD rate about 5-fold higher than a NCD rate, the three
tests have moderate power for detecting an effect for NCD
(012 < 1 — B < 041, complete data), with CS out-
performing its two competitors and Pe being the least
powerful (1 — 8 < 0.23). As censoring increases, all the
rejection probabilities decrease in general and get closer
and closer to each other, so that the differences between
them become less and less pronounced. CS seems to be the
most reliable choice in this context. In the case that 20% of
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the causes of death are misrecorded (see also Additional
file 1: Figure A.5 and Table A.4), the size of Gr is more cor-
rect (@ €[0.06,0.08], complete data) and the three tests
loose power for detecting the effect on NCD, notably CS
(1—B<0.26)and Gr (1 — B < 0.13).

Scenario 3 represents the target situation for a cancer
treatment that is just effective on CD, without any effect
on NCD. Under these conditions and without misclassified
causes of death, the results in Figure 4 (see also Additional
file 1: Figure A.6 and Table A.5) suggest that Gr has the
lowest power for CD (0.54 < 1 — B8 < 0.93 for Gr, while
0.86 < 1— g for Pe and CS; complete data) and often by far
the highest size for NCD (0.16 < «; complete data). CS and
Pe are largely equivalent for CD. Either CS or Pe is prefer-
able for NCD (0.05 < « < 0.17 for CS, 0.05 < a < 0.11 for
Pe; complete data), depending on the correlation. Again,
censoring causes a contraction of the empirical rejection
probabilities, irrespective of whether the null hypothe-
sis holds or not. In this scenario Pe and CS are broadly
equivalent, whereas Gr should not be preferred. When
introducing miclassification of the cause of 20% of deaths
(see also Additional file 1: Figure A.7 and Table A.6), CS
is less powerful for CD (0.77 < 1 — 8; complete data) and
has very inflated size for NCD (0.10 < o < 0.33); Gr has
very poor power for CD (1 — 8 < 0.37, complete data) but
is more correct for NCD (0.04 < « < 0.09); again, Pe is
less sensitive to misclassification as it reclassifies at least
some of the deaths as due to the cancer when a recurrence
occurs, irrespective of the declared cause.

Finally, Figure 5 (see also Additional file 1: Figure A.8
and Table A.7) provides empirical powers if the treatment
has a beneficial effect on the risk of CD, but at a cost
of a harm in terms of NCD hazard. Gr is uniformly the
most powerful in this scenario. In particular, for NCD it
is in general 35-40% more powerful than its competitors
(0.62 < 1—B < 0.89for Gr,0.16 < 1— < 0.74 for CS and
0.22 < 1 — B < 0.40 for Pe; complete data). The rejection
probabilities are far more similar for CD, with high power
ranging from 0.73 to 1.00 for all tests (complete data). In
all the scenarios, the tests are generally more powerful
for CD than for NCD because the baseline hazard for CD
is considerably higher than for NCD (Acp = 5 X AncD)-
Even though censoring attenuates differences between the
three tests, Gr is undoubtedly preferable under these con-
ditions. On the other hand, Gr has the highest loss of
power due to misclassification of the cause of death (see
also Additional file 1: Figure A.9 and Table A.8) notably
for CD (1 — B < 0.57, complete data); for NCD the widest
power loss is for CS (1 — 8 < 0.09).

In the International Adjuvant Lung Cancer Trial,
the separate evaluation of the chemotherapy effect
on the risks of CD and NCD is of primary interest. Plots
on the first line of Figure 6 show the Nelson—Aalen esti-
mate of the cumulative risk (a), the cumulative yearly rates
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Figure 3 Empirical size and power of the tests in scenario 2. Empirical size (&) and power (1 — B) of the tests for CD and NCD in scenario 2
(HRcp = 1, HRnep = 1.25). The data are simulated without censored observations. The plots on the first line concern CD, those on the second line
NCD. The plots on the left are for data with correct causes of death (P(misclass) = 0%), those on the right for data with 20% of misclassified causes
of death (P(misclass) = 20%). The bold grey horizontal line corresponds to the 0.05 level and p to the correlation.

estimated by the Peto method (b), and the cumulative inci-
dence function (c), respectively, for overall mortality by
treatment arm. Note that, as no competing event exists
for overall survival, plot 6(c) corresponds to one minus
the Kaplan-Meier estimate. Chemotherapy seems to pro-
vide a benefit up to five years after randomization, and
then the two curves overlap. Under a proportional haz-
ards assumption, the estimated hazard ratio between the
chemotherapy and the control groups is 0.95 (95% CI:
0.84 — 1.06) and the log-rank test has a p-value equal to
0.34. Note that, for the sake of simplicity, we did not adjust
for any of the prognostic factors used in previous publi-
cations about the IALT study. The desired and expected
action of cisplatin-based chemotherapy is to reduce the
risk of CD, while having no effect or moderately increasing
the risk of NCD. Figures 6(g)—6(i) show the same quantities
as (a)—(c) but only for CD; you can see that risk and inci-
dence are constantly less in the chemotherapy group than
in the control group. On the other hand, Figures 6(d)—6(f)
show that the two treatment arms are overall equiva-
lent with respect to non-cancer mortality; an increased
NCD rate and incidence are observed for the experimental

group after five years. Then, we compared the results
of testing the effect of chemotherapy on the competing
causes of death by means of the three test statistics con-
sidered thus far: Pe, CS and Gr (Table 2). The increase
observed in NCD in the treatment arm (see Figure 6(d)) is
significant according to the three tests: p = 0.029 for Pe,
p = 0.041 for CS and p = 0.015 for Gr. One should keep
in mind that the Pe reclassifies as CD a total of 97 deaths:
26 NCDs — which could attenuate the differences between
treatment arms — and 71 deaths from an unknown cause.
These deaths from an unknown cause are censored for
both causes of death by CS, whilst they make up a third
group according to Gr.

The difference in survival in favor of the treatment arm,
which is non-significant for overall survival, is significant
or borderline for CD, with p-values ranging from 0.033 to
0.064. This suggests that the effects on the risks of CD and
NCD are in opposite directions, and that they compen-
sate each other, at least partially, when all deaths due to
any cause are considered together. Gr, based on the CIF,
detects a statistically significant difference at a 5% level
(p = 0.033), whereas the other two are borderline but not
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(HRcp = 0.8, HRnep = 1). The data are simulated without censored observations. The plots on the first line concern CD, those on the second line
NCD. The plots on the left are for data with correct causes of death (P(misclass) = 0%), those on the right for data with 20% of misclassified causes
of death (P(misclass) = 20%). The bold grey horizontal line corresponds to the 0.05 level and p to the correlation.

significant (p = 0.054 for Pe, p = 0.064 for CS). Most
likely, the net increase (i.e. in the cause-specific hazard) in
the risk of NCD in the chemotherapy arm contributes to
reducing the incidence of CD in that group, amplifying the
reduction in the risk of CD when measured in terms of the
CIF, although the differences between the test statistics
are small.

Both the CS and the Pe tests treat death from other
causes as independent censoring, which is not realistic
in most practical situations. Gr does not require such an
assumption but on the other hand its estimated effect on
each competing event reflects also the effect on the others.
Thus, both the approaches have a possible drawback, but
none of the two prevailed clearly in the simulation study:
assuming independent censoring can be a serious issue in
the case of strong correlation, whereas using the hazard of
the subdistribution can be misleading whenever the treat-
ment changes the hazard of only one of the competing
events.

The main innovation and the motivation of the present
work was to study the operating characteristics of the test
by Peto, which is largely used in the medical literature,

though almost absent in statistical publications. We aimed
at comparing the test by Peto to the most common ones in
the statistical literature, i.e. the test on the cause-specific
hazard and the test on the hazard of the subdistribution by
Gray. These two tests have already been compared head
to head previously (see notably [27] and [28]). The main
reason for this is that, despite the fact that these two tests
address different questions, these are closely linked to
each other and in our experience the interest of physicians
in a clinical trial is somewhere in-between. Furthermore,
to the best of our knowledge, the behavior of these tests
in presence of misclassification of the cause of death had
never been studied before; we think that the knowledge of
such an aspect for the three tests is of primary importance
for their practical use.

As our aim was to compare the tests across objec-
tively characterized scenarios, we also investigated how
the power and level of the tests could depend on the cor-
relation between times to death from different causes,
which has a precise clinical meaning. For example, posi-
tive correlation corresponds to comorbidity, which is quite
common in advanced diseases. Negative correlation, too,
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Figure 5 Empirical power of the tests in scenario 4. Empirical power (1 — B) of the tests for CD and NCD in scenario 4 (HRcp = 0.8, HRncp = 1.25).
The data are simulated without censored observations. The plots on the first line concern CD, those on the second line NCD. The plots on the left are
for data with correct causes of death (P(misclass) = 0%), those on the right for data with 20% of misclassified causes of death (P(misclass) = 20%).

is interesting as this could correspond to the effect of a
standard of care therapy with different modalities that
impact both disease control and toxicity. In the adju-
vant context for lung cancer, for instance, all patients
undergo surgery, either segmentectomy, or lobectomy or
pneumonectomy: the greater the portion of lung resected,
the lower the risk of relapses (and then of CD) but the
higher the risk of pulmonary complications (and then
of NCD).

Conclusions

Testing the treatment effect on the cause-specific death
rate requires paying attention to the effect on the com-
peting events. We considered three popular tests among
several existing ones: a test based on recurrence data pro-
posed by Peto, the cause-specific test and the cumulative
incidence test proposed by Gray.

We performed a simulation study in four clinically rel-
evant scenarios, with negatively correlated, uncorrelated
and positively correlated event times, and with two cen-
soring proportions in addition to complete data. We also
generated recurrence times in order to bring to the fore
the effects of classifying the cause of death in different

ways. The recurrence times, conditional on the time to
cancer deaths, followed a uniform distribution, which we
considered a reasonable hypothesis. Further, we compared
results to those obtained in the case of a high rate of
misclassified causes of death.

All the three tests adequately preserved their nominal
size when the treatment was completely ineffective. Gr
seemed to be the most reliable in the situation of a ther-
apy that reduced the risk of CD and increased that of NCD,
provided that causes of death are correctly recorded; oth-
erwise, it performed substantially worse and Pe should
be recommended. In all the other situations Gr had the
poorest performances, both in terms of the preservation
of the nominal size and in terms of power. CS should
be preferred whenever the treatment is expected to be
ineffective against the risk of CD and possibly harmful in
terms of NCD. A cancer treatment is required to be effec-
tive against the risk of CD but not against that of NCD.
In that case, Pe was comparable to CS, except that CS
had very high size for NCD in the presence of a high rate
of misrecorded causes of death. In our study, Pe did not
outperform its competitors in any situation in which the
causes of death were correctly classified, whereas it was
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Figure 6 Overall and cause-specific mortality for control and treatment arms in the IALT trial. First column ((a), (d), (g)): Nelson-Aalen
estimates of the cumulative hazards. Second column ((b), (e), (h)): Peto estimates of the cumulative yearly rates. Third column ((c), (f), (i)):
Aalen-Johansen estimates of the cumulative incidence functions. First line ((a)-(c)): overall mortality. Second line ((d)-(f)): non-cancer mortality.
Third line ((g)-(i)): cancer mortality.

Table 2 Results of the three tests for the treatment effect
on CD and NCD, in the IALT study

cb NCD
X2 (p-val) X2 (p-val)
Pe 372 (0.054) 4.77 (0.029)
cS 344 (0.064) 4.19 (0.041)
Gr 4.52 (0.033) 5.89 (0.015)

The values of the test statistics (X2) are provided together with the associated
p-values (p-val).

often the most reliable when the misclassification rate was
high.

No clear pattern linked to the dependence between
time variables emerged from our study. Censoring always
reduces the rejection probabilities of all the tests, notably
under the alternative hypothesis. Consequently, the tests
are less and less powerful as censoring increases and their
differences are less and less pronounced as well.

In the IALT study, the three tests suggested possible
harm due to toxicity; Gr was firmly in favor of a benefit
versus the risk of CD, whereas CS and Pe were borderline.
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We showed how the natural graphical representations
for the three tests are the Nelson—Aalen estimate of the
cumulative cause-specific hazard, the cumulative yearly
rates as estimated by Peto, and the Aalen—Johansen esti-
mate of the cumulative incidence function.

This study is the first to compare the operating char-
acteristics of the log-rank test by Peto to those of the
two best established tests in the statistical literature. The
method used to simulate the data is innovative in that
it takes into account the occurrence of recurrences and,
at the same time, it is capable of generating both neg-
atively and positively dependent times. This allowed us
to study the effect of the reclassification of the causes
of death proposed by Peto, without the requirement of
assuming independence between CD and NCD. To keep
things simple, we chose not to generate times to death
from unknown causes. In such cases, multiple imputa-
tions or inverse probability weighting techniques exist (see
for instance [35]).

Additional file

Additional file 1: Figures A.1to A.9 and Tables A.1 to A.8. Detailed
results of the simulation study: Correlation between the simulated event
times (Figure A1) and empirical rejection probabilities of the tests in the
four scenarios, with and without misclassified causes of death (Figures
A2-A9 and Tables A1-A8).
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