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Abstract

Background: Paired survival data are often used in clinical research to assess the prognostic effect of an exposure.
Matching generates correlated censored data expecting that the paired subjects just differ from the exposure.
Creating pairs when the exposure is an event occurring over time could be tricky. We applied a commonly used
method, Method 1, which creates pairs a posteriori and propose an alternative method, Method 2, which creates pairs
in “real-time”. We used two semi-parametric models devoted to correlated censored data to estimate the average
effect of the exposure HR(t): the Holt and Prentice (HP ), and the Lee Wei and Amato (LWA) models. Contrary to the
HP, the LWA allowed adjustment for the matching covariates (LWAa) and for an interaction (LWAi) between exposure
and covariates (assimilated to prognostic profiles). The aim of our study was to compare the performances of each
model according to the two matching methods.

Methods: Extensive simulations were conducted. We simulated cohort data sets on which we applied the two
matching methods, the HP and the LWA. We used our conclusions to assess the prognostic effect of subsequent
pregnancy after treatment for breast cancer in a female cohort treated and followed up in eight french hospitals.

Results: In terms of bias and RMSE, Method 2 performed better than Method 1 in designing the pairs, and LWAa was
the best model for all the situations except when there was an interaction between exposure and covariates, for
which LWAi was more appropriate. On our real data set, we found opposite effects of pregnancy according to the six
prognostic profiles, but none were statistically significant. We probably lacked statistical power or reached the limits of
our approach. The pairs’ censoring options chosen for combination Method 2 - LWA had to be compared with others.

Conclusions: Correlated censored data designing by Method 2 seemed to be the most pertinent method to create
pairs, when the criterion, which characterized the pair, was an exposure occurring over time. In such a setting, the
LWA was the most appropriate model.
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Background
Five percents of breast cancers occur among women
before the age of 40 and in fewer than 2% of women
under 35 [1]. Physicians are more and more faced with
issues of post-treatment pregnancy, such as the optimal
time before considering conception. In physiopathologi-
cal terms, a pregnancy after breast cancer is not advisable,
especially in patients with positive hormonal receptors
[2,3]. However, many observational studies report that
pregnancy does not have any impact on the evolution of
breast cancer [4-6], and could even have a long-term pro-
tective effect [2,6-10]. This phenomenon can be due to
the so-called “healthy mother bias” [7], i.e. only women
who are in good health will undertake a pregnancy after
treatment for breast cancer.
Pregnancy is therefore related to the prognostic con-

dition of the patient, and its occurrence might change
the prognostic effect of some factors, for instance, the
hormonal receptors. The prognosis of positive hormonal
receptors could be qualitatively (interaction) different
before and after pregnancy (i.e. interaction between hor-
monal receptor and pregnancy).
In an attempt to control for this “healthy mother effect”,

various statistical approaches have been used. Some
authors used the standard Cox model [11] with preg-
nancy considered as a covariate whose value depends on
time, and adjusting for the known prognostic factors at
the diagnosis of cancer, reflecting the gravity of the dis-
ease [2,6,8,9]. In spite of this adjustment for disease grade
at diagnosis, pregnancy still remained a significant good
prognostic factor, indicating a long-term protective effect
of pregnancy, which is difficult to explain and to interpret.
Others tackled the problem from the angle of an “illness-
death” model [12-14] which makes it possible to describe
the natural history of the disease, taking into account the
prognostic profiles of the patients who had or did not
have a pregnancy [15]. This model provided better under-
standing and interpretation of the effect of pregnancy
by comparing transition probabilities to relapse between
women who had or did not have a pregnancy. Moreover,
taking into account a possible interaction between prog-
nostic profiles and the pregnancy improved the estimation
of the pregnancy prognostic effect. Overall prognosis was
not adversely affected by subsequent pregnancy. How-
ever, to allow adjustment, such a complex model requires
enough pregnancies and events of interest.
In both previous approaches, the adjustment relied only

on known prognostic factors. However, measured prog-
nostic factors might not be enough to characterize the
prognostic status in such a disease. Matching subjects
designs might be helpful to accomplish that.
Other researchers have conducted paired studies: preg-

nant and non-pregnant women were matched on the
main known prognostic factors (hormonal receptor,

proliferation level, nodal involvement, use of chemother-
apy, year of diagnosis), and the non-pregnant had to be
disease-free for as long as the time from diagnosis to preg-
nancy of the pregnant women [3-5,7,10]. By this matching
carried out on known and measured factors, one can
suppose that the subjects of the same pair also share
non-observable, not observed or not measured factors,
in addition to the factors of pairing. Thus, this design
may improve the control of the “healthy mother effect”
compared to the two approaches presented above.
However, to our knowledge, in such a case and con-

trary to the first methods cited previously, researchers
[3-5,7,10] did not take into account the fact that preg-
nancy was an event occurring over time. They matched
the pregnant woman to a non-pregnant one a posteri-
ori, i.e. at the end of the follow up study, knowing which
women were pregnant and which were not over the study
period. They analyzed the data as if these pairs were a
priori known and created at diagnosis, i.e. at time t =
0. Moreover, they always used the stratified Holt and
Prentice semi-parametric model (HP) [16] to estimate
the pregnancy prognostic effect, whereas other semi-
parametric models devoted to censored correlated data
are available such as frailty models [17,18] and marginal
models [19-22]. Frailty models model the time distribu-
tion conditionally to a random effect (frailty covariate),
specific to each pair, and which is not observed. The struc-
ture of correlation has to be defined. The latter leave the
nature of dependence among paired failure times com-
pletely unspecified.
Non-parametric [23,24] and parametric [25] approaches

have been developed, but we focus on the semi-
parametric approach, more specifically on the commonly
used marginal semi-parametric model. This marginal
approach was developed byWei, Lin andWeissfeld [19] to
analyze subjects with multiple events, and then Lee, Wei
and Amato [20] adapted it to clustered subjects.
In this paper, we use the marginal paired proportional

hazards model of Lee, Wei and Amato (LWA) [20] and the
Holt and Prentice stratified model [16] (HP). The main
difference between them lies in the ability of the LWA [20]
model to adjust for matching covariates and for the pos-
sible interaction between the covariate and the exposure,
contrary to the HP model. Mehrotra et al. [26] proposed
an efficient alternative to the stratified Cox model analysis
to estimate the exposure effect, which does not require the
assumption of a common hazard ratio across strata. How-
ever, that model is not adapted to our particular context of
a large number of strata, with very small sample size per
stratum (in our work, a stratum is a pair), thus it will not
be studied here.
With HP and LWA models, we considered two differ-

ent methods to create our pairs: the a posteriori one
commonly used and described previously, and a new one
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designing the pairs “in real-time” by taking into account
the occurrence of the event over time, i.e. the preg-
nancy, which characterizes the subject’s group within the
pair.
The goal was to determine the combination between

matching methods (a posteriori and in “real-time”) and
models (HP and LWA), which is themost efficient in terms
of bias and Root Mean Square Error (RMSE) to estimate
and test the pregnancy prognostic effect. In the follow-
ing, pregnancy is referred to as the “exposure” occurring
over time and the pairs are composed of an exposed and a
non-exposed subject.
In the next section, the two matching methods as

well as the models of analysis are presented. In Section
‘Simulations’, extensive simulations are used to analyze
the performance of these Method - Model combina-
tions in term of bias and RMSE of the estimated effect
related to the exposure occurring over time. In Section
‘Real data application’, our findings are applied to real
data in order to analyze the effect of a subsequent preg-
nancy on breast cancer evolution [9]. A brief discussion
concludes the paper.

Methods
The subjects are matched on all the known prognostic
factors represented by vector Z. In the following, index j
corresponds to the rank of the exposed subject occurring
at the jth position’s order among the ne exposed subjects
at the end of the study (j = 1, . . . , ne), and index i corre-
sponds to the subject among the n subjects of the study
(i = 1, . . . , n). Let ti being defined as the follow-up time of
each subject i, and tEi as the time exposure for a subject i;
for a subject who is never exposed, we consider tEi = +∞.
Rm (t) represents the subjects at risk of event and non-
exposed at time t for the method m (m = 1 or 2). Let the
set of paired subjects being defined as Pj = {j, i(j)}, with
i(j) the subject i of Rm

(
tEj
)
chosen for the jth exposed

subject.

The twomatching methods
The two matching methods applied in the context
where exposure is an event occurring over time, are
presented.
Method 1 matches the subjects as follows: all the sub-

jects i exposed (tEi < +∞) are matched with a subject
who was not exposed during the whole period of follow-
up. This method is called an a posteriori method because
the groups exposed and non-exposed are defined at the
end of the study and are considered to be known and
created at time t = 0. According to Method 1, if a
subject j undergoes an exposure at time tEj, then the
eligible subject’s set R1

(
tEj
)
of subjects i eligible to be

matched to j could be written as follows: R1
(
tEj
) ={

i �= j/ti ≥ tEjANDtEi = +∞}. This approach has been

commonly used in the literature [3-5,7,10] with exposure
not being considered as time-dependent.
As exposure is a time-dependent event, a second

approach is proposed which designs the pairs “in real-
time”: according to Method 2, if a subject j undergoes an
exposure at time tEj, then the eligible subject’s set R2

(
tEj
)

of subjects i eligible to be matched to j at time tEj, could
be written as follows: R2

(
tEj
) = {i �= j/ti ≥ tEj AND

tEi > tEj}. R2
(
tEj
)
includes subjects at risk that are not

yet exposed at tEj and will be exposed after, and subjects
whowill never be exposed. A pair composed of an exposed
subject and a non-exposed one who would never undergo
the exposure is called a “perfect pair”, whereas it would be
an “imperfect pair”. As a result, the non-exposed subject
of an imperfect pair could be matched after exposure with
another non-exposed subject.
Method 2 is similar to the one proposed by Lu et al.

in case-cohort studies [22] where the membership in
the exposed and unexposed groups is the outcome to
be explained, whereas in our work it is an explanatory
variable.
For both methods, exposed and not exposed subjects

are matched according to the covariate vector Z, and the
not exposed subject has to be disease-free for as long as
the time from the starting point (disease diagnosis) to the
exposure time.
For both methods, if several non-exposed subjects can

be matched with an exposed one, the matched non-
exposed subject is randomly chosen from the set of
eligible subjects Rm (t); if no non-exposed subjects are
available, the exposed subject cannot be paired and is thus
excluded from the analysis.
Note that even if a subject could belong to two differ-

ent pairs with Method 2, these two pairs are independent
while they are never at risk at the same time t.

The statistical models
In the following, λi(t) is the instantaneous hazard function
of outcome to be estimated for pair Pj. It is noted λi (t,Zi)
to specify that the estimation is made on the pair Pj, which
is composed of the exposed subject j and the non-exposed
subject i matching on Zi. This notation is the same for all
the models studied, even those where the adjustment for
Zi is not available.
For all the models presented below, Ei (t) corresponds

to the time-dependent exposure status and is defined as
follows: Ei (t) = 0 if t < tEi, and Ei(t) = 1 if t ≥ tEi.
The pair of subjects is also defined by a time-dependent
covariate: Pi (t) = j if i ∈ Pj and t ∈[ tEj; ti] , or Pi (t) = 0
otherwise.

Holt and Prentice stratified Coxmodel
Holt and Prentice [16] adapted the standard Cox model
[11] to analyze matched paired data.
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The instantaneous hazard function is written for each
subject i as

λi (t,Zi) = λ0i(j) (t) exp (γ (t)Ei (t)) (HP)

λ0i(j) (t) is a pair-specific baseline hazard function that
is assumed to be identical for both subjects of pair Pj, con-
sidered here as strata; it is considered as a nuisance param-
eter not to be estimated. The exposure effect exp (γ (t))
is then estimated, considering the between-pair hetero-
geneity, by allowing the instantaneous baseline hazard to
be different within each pair. It is assumed to be iden-
tical across strata (no interaction between the exposure
and the pairs) and thus to be implicitly common for the
whole exposed population: exp (γ (t)) is defined as the
population-weighted average of the stratum-specific haz-
ard ratios. However, if this assumption is incorrect, i.e.
in the presence of a true (and often undetected) interac-
tion, using this model leads possibly to a biased and/or less
powerful analysis [26].
Furthermore, with this model, estimation of the expo-

sure effect cannot be adjusted for a possible interaction
between the matching factors and the exposure. This
stratified approach is sensitive to the unit number per
strata and to the number of strata: the accuracy of the
regression coefficients decreases for a small number of
units per strata and/or many numbers of strata [27].
This model is implemented in R software [28] through

the coxph function by including the term “strata(Pi(t))”
with the other explanatory covariates.

Lee, Wei and Amato Coxmodel
The marginal LWA model [20] is an alternative to the
standard Cox model [11] and is written as follows

λi (t,Zi) = λ0 (t) exp (γ (t)Ei (t)) , (LWAu)

if the exposure effect is not adjusted for the matching
covariates vector Z;

λi (t,Zi) = λ0 (t) exp
(
β ′Zi + γ (t)Ei (t)

)
, (LWAa)

if the exposure effect is adjusted for the matching covari-
ates vector Z;

λi (t,Zi) = λ0 (t) exp
(
β ′Zi + γ (t)Ei (t) + α′ (t)ZiEi (t)

)
,

(LWAi)

if the exposure effect is adjusted for the matching covari-
ates vector Z, and for the interaction between Z and the
exposure.
For each of these three LWAmodels, λ0 (t) is an unspec-

ified marginal baseline hazard function considered as
common for all the pairs, so for the whole population. As
above, it is considered as a nuisance parameter; exp (γ (t))
is the average time-varying exposure effect as in the HP
model, but adjusted (LWAa) or not (LWAu) for covariates
Z and for the possible interaction between covariates and

exposure (LWAi). Like the standard Cox model [11], the
LWA assumes that all sample subjects are homogeneous
(all subjects have the same λ0 (t)) in spite of the possi-
ble adjustment for covariates (unique difference between
LWAu and HP).
This model is implemented in R software through the

coxph function, by including the term “cluster(Pi(t))” with
the other explanatory covariates.
For both models, the Proportional Hazard Assumption

(PHA) was evaluated by Harrel’s test on scaled Schoënfeld
residues. This test is implemented in R software through
the cox.zph function. The possible time-dependent effect
of the exposure was taken into account by time intervals
chosen a posteriori, and not by a time-specified function.
Note that the combination HP and Method 1, taking

the exposure as a time-dependent covariate or not, gave
exactly the same estimation of HR (t), whereas LWA did
not.
Table 1 presents all the models according to the adjust-

ment or not for covariates.
In the following, different simulations and analyses were

performed with R software version 2.13.0.

Results
Simulations
Objective
The main objective of the simulation study was to assess
the ability of the HP and LWA models to estimate the
true effect of exposure HR (t), defined by exp (γ (t)), in a
context of matched paired survival data, where the pairs
were designed according to the two different methods
described previously. The aim was to establish the most
efficient Method - Model combination.

Dataset
Simulation of cohort data - Procedures and scenar-
ios chosen. All the details of the cohort data simulation
and the procedures and scenarios chosen are given in
Appendix A.
We simulated the cohort data referring to an “illness-

death” model with transition intensities λ12 (t), λ13 (t) and
λ23 (t) (Figure 1). The parameter of interest HR(t) corre-
sponded to the ratio λ23 (t) /λ13 (t). The average HR(t) is
obtained from an exact formula involving the averages of
λ13 (t) and λ23 (t) which are computed through a numer-
ical approximation (transformation of the time from con-
tinuous to discrete values) (See the Appendix B). The
average HR(t) adjusted for the different covariates was
estimated empirically: its estimation was obtained using
large size samples to guarantee good precision. Moreover,
note that the larger the ratio λ12 (t) /λ13 (t), the larger the
number of exposures in the simulated cohort.
Each subject was characterized by a prognostic profile

through vector Z, which corresponded to three dummy
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Table 1 λi(t, Zi) estimations with theHP and LWAmodels are associated to theHR(t) to be estimated according to the
adjustment for covariates

Exposure covariate Models HR(t)

HP LWA
λi(t,Zi) λi(t,Zi)

Time-dependent
and no time-dependent effect λ0i(j)(t) exp (γ Ei (t)) λ0(t) exp (γ Ei (t)) HR(t)

With adjustment for Z λ0(t) exp
(
γ Ei (t) + β ′Zi

)
HRa(t)

and with interaction λ0(t) exp
(
γ Ei (t) + β ′Zi + α′ (t)ZiEi (t)

)
HRi(t)

Time-dependent
and time-dependent effect λ0i(j)(t) exp (γ (t) Ei (t)) λ0(t) exp (γ (t) Ei (t)) HR(t)

With adjustment for Z λ0(t) exp
(
γ (t) Ei (t) + β ′Zi

)
HRa(t)

and with interaction λ0(t) exp
(
γ (t) Ei (t) + β ′Zi + α′ (t)ZiEi (t)

)
HRi(t)

λi(t,Zi) is the instantaneous risk function of event for the pair Pj , which is composed of the exposed subject j and the non-exposed subject imatching on Zi .

covariates Zk (k = 1, 2 or 3). At time t = 0, there were
23 = 8 possible profiles of Z factors.
The simulation model included (i) the choice of an

instantaneous baseline risk function λuv (t,Z) for each
of the three transitions u → v (Table 2), (ii) the
choice of the Z effects, exp (βuvk), for each transition, i.e.
λuv (t,Z) = λ0,uv (t) exp (βuv1Z1 + βuv2Z2 + βuv3Z3) and
(iii) the choice for the censoring proportion.
For (i), an instantaneous average risk function

λuv
(
t,Z = Z

)
for each of the three transitions was sim-

ulated. Table 2 displays the λuv
(
t,Z = Z

)
distributions

of each transition used for each of the five different
configurations of HR (t).
For (ii), ten different βuvk scenarios considered as plau-

sible βuvk clinical values [9,15], were performed. Given the
five configurations chosen for HR(t) and these ten βuvk
scenarios, 50 different situations were obtained.
Finally, for (iii), these previous 50 situations were

first performed without censoring. Two levels of inde-
pendent uniform censoring were implemented only to

the following βuvk scenario: β
′
12 = (−0.2,−0.4,−0.8),

β13 = −β12 and β23 = β12; and they were applied to
each of the five configurations of HR (t). This yielded to
10 more situations.
For each of the 60 situations, 1000 different data sets

were generated with a sample size of 2000 subjects. At
t = 0, these 2000 subjects were allocated to eight Z pro-
files. At t > 0, the 250 subjects of the 8 different profiles
will be divided up in the three transitions and will change
over time according to the five HR (t) configurations.
All theoretical values of HR (t) were calculated on the

simulated cohort data. They were computed in the over-
all correlated censored data and inside each sample of the
Z profile. The average HR (t) was calculated without and
with adjustment for the matching covariates, i.e. HR (t)
and HRa (t) respectively. HRi(t) is the one estimated in
each Z profile.
From the correlated censored data, HP and LWAu mod-

els are both assumed to give an average HR(t) i.e. HR (t)
(considering different assumptions), so they are the only

State 1
Breast cancer
diagnosis

State 2
Pregnancy

State 3
Outcomeλ13(t)

Figure 1 “Illness-death” model. “Illness-death” model with three transition intensities λuv(t).
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Table 2 Survival functions applied to simulate each transition and each selected configuration

Constant HR (t)∗ Increasing HR (t) Decreasing HR (t)
Increasing then
decreasing HR (t)

Transition 1 → 2 Exponential(1) Exponential(1) Exponential(1) Exponential(1)

(λ) (λ) (λ) (λ)

(0.0050) (0.0075) (0.0025) (0.0020)

Transition 1 → 3 Weibull(2) Weibull(2) Loglogistic(3) Weibull(2)

(λ0, γ ) (λ0, γ ) (μ, σ) (λ0, γ )

(0.0039, 1.1881) (0.0022, 1.1881) (5.7146, 0.2390) (0.0018, 1.1881)

Transition 2 → 3 Weibull(2) Weibull(2) Loglogistic(3) Loglogistic(3)

(λ0, γ ) (λ0, γ ) (μ, σ) (μ, σ)

(0.0039, 1.1881) (0.0028, 1.5439) (5.6778, 0.2463) (5.9858, 0.4971)

(1)S(t) = exp(−λt); (2)S(t) = exp(−(λ0t)γ ); (3)S(t) =[ 1 + exp(
ln(t)−μ

σ
)]−1 .

*We simulated the same functions and parameters for the second Constant HR(t) except for Transition 2 → 3where λ0 = 0.0069.

two models which could be compared. Fitting of model
LWAa makes it possible to estimate an average HR(t) i.e.
HRa (t), while LWAi is assumed to give HRi(t) for each Z
profile (Table 1).
As the exposure effect was considered to change over

time for three of the five configurations, its estimation was
assessed by time interval specified a posteriori.

Matching methods - Creation of censored correlated
data from cohort data. For each data set, the twomatch-
ing methods presented in Section ‘Methods’ were applied.
According to Methods 1 and 2, the two subjects in each

pair were matched on the three covariates Zk , and the
non-exposed subject had to be disease-free for as long as
the time from t = 0 to exposure time of the exposed
subject.
Then from the 2000 subjects simulated in cohort data

sets and equally allocated to the 8 Z profiles, a number of
pairs smaller or equal to the number of subjects in State
2 (i.e. pregnancy) were obtained. This latter depended on
the situation simulated, resulting from the HR (t) config-
uration, the βuvk scenario and the censoring percent.

Statistical criteria used to compare the perfor-
mances of the different estimators. To estimate a time-
dependent effect, the time interval [0 − tmax] was divided
into L time intervals Il defined a priori, according to the
HR(t) configuration, and written as follows:

a0 = 0 < a1 < . . . < aL = tmax

and

Il = [al−1; al[, l ≥ 1.

If there was no interaction and no time-dependent
effect, an estimation γ̂s was obtained that corresponded
to the estimation of γ performed in the sth simulation set
inside the same HR(t) configuration.

If there was an interaction and no time-dependent
effect, an estimation for each of the 8Z prognostic profiles
was obtained and expressed as γ̂s + α̂

′
sZ.

If there was no interaction and a time-dependent effect,
an estimation for each of the Il time intervals was obtained
and expressed as γ̂sl.
If there was an interaction and a time-dependent effect,

8 × L estimations were obtained and expressed as γ̂sl +
α̂

′
slZ.
To assess the combination Method - Model to estimate

HR (t), the bias and the RMSE of the estimations pre-
sented above were calculated. The 8 Z profiles are indexed
by w = 1 to 8, and the profile w is noted Z(w).
In the event of with an interaction and a time-dependent

effect, the bias was estimated for each l and each Z(w) over
the 1000 simulations as follows:

blZ(w) = 1
1000

1000∑
s=1

(
γ̂sl + α̂

′
slZ −

(
γl + α

′
lZ
))

= γl + α
′
lZ −

(
γl + α

′
lZ
)

and

RMSElZ(w) =
√
b2lZ(w) + V

(
γ̂l + α̂

′
lZ
)
,

where, in each Il interval, γl + α
′
lZ is the mean and

V
(
γ̂l + α̂

′
lZ
)
the empirical variance of the 1000 parame-

ters estimated γ̂sl + α̂
′
slZ:

V
(
γ̂l + α̂

′
lZ
)

= 1
(1000 − 1)

⎡
⎢⎣∑1000

s=1

(
γ̂sl + α̂

′
slZ
)2

−
[∑1000

s=1

(
γ̂sl + α̂

′
slZ
)]2

1000

⎤
⎥⎦ .



Savignoni et al. BMCMedical ResearchMethodology 2014, 14:83 Page 7 of 18
http://www.biomedcentral.com/1471-2288/14/83

To compare the different combinations Method -
Model, the bias was averaged over the profiles (bl•) or over
the time intervals (b•Z(w)) or both (b••).

b•Z(w) = 1
L

L∑
l=1

bl Z(w)

bl• = 1
8

8∑
w=1

blZ(w)

b•• = 1
8

8∑
w=1

b•Z(w)

The associated RMSEs are given by

RMSE•Z(w) =
√√√√1

L

L∑
l=1

b2lZ(w) + V
(
γ̂l + α̂

′
lZ
)

RMSEl• =
√√√√1

8

8∑
w=1

b2lZ(w) + V
(
γ̂l + α̂

′
lZ
)

RMSE•• =
√√√√1

8

8∑
w=1

1
L

L∑
l=1

b2lZ(w) + V
(
γ̂l + α̂

′
lZ
)

Note that if the exposure effect is not time-dependent,
then L = 1. If there is no interaction between the exposure
and the prognostic profiles, then α = 0.

Results
One particular situation among the 60 simulated is
described. Figure 2 displays the increasing then decreas-
ing HR (t) configuration, for each profile and on average,
without censoring and with β

′
12 = (−0.2,−0.4,−0.8),

β13 = −β12 and β23 = −β13. In this particular sit-
uation which corresponds to a “healthy effect” because
of the negative values of β12, Figure 2 shows three
different overall effects of the exposure: a pejorative
one in the three better prognostic profiles (PP) (Z′ ∈
{(0, 0, 0) , (0, 0, 1) , (0, 1, 0)}), no effect in the intermediate
PP (Z′ ∈ {(0, 1, 1)}) and a protective effect in the last
four PP (Z′ ∈ {(1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)}). With
β23 = −β13, we force an interaction between Z and the
exposure. Note that in this particular configuration cho-
sen, where β23 = −β13, HR (t) � HRa (t) and their values
are so close that the difference between them is not visible
in Figure 2.

Number of pairs. Inside each profile, the maximum
number of pairs was determined by the number of
exposed subjects. With Method 1, this number was also
limited by the number of “perfect” non-exposed subjects,
but not with Method 2 since the non-exposed subject set

was composed of “perfect” and “imperfect” non-exposed
subjects. The difference between the number of pairs
from the two methods depended on the number of expo-
sures: the larger the number, the larger the difference. We
computed the relative difference (RD) in number of pairs
between the two methods defined as

RD = Number of pairs with Method 2 − Number of pairs with Method 1
Number of pairs with Method 1

,

whose median was equal to +55% (range, +23%
to +220%). Figure 3 represents the distribution of the
number of pairs according to the profiles and to the
matching methods: the median number with Method 2
was always larger than or equal to that with Method 1.
Figures 4 shows the number of subjects pertaining to the

three possible subjects groups at each time t: the exposed
subject (solid green line), the non-exposed subject who
never will undergo the exposure (solid red line) and the
non-exposed subject who will undergo the exposure
(solid blue line). The dotted vertical green line represents
the time of first exposure, i.e. the time of occurrence of
the first pair; the dotted vertical blue line corresponds to
the time of the last perfect pair’s creation and the dot-
ted vertical red line corresponds to the time of the last
imperfect pair’s creation. With Method 2, the larger the
ratio λ12 (t) /λ13 (t), the larger the number of imperfect
pairs and thus the greater the probability for an exposed
subject to belong to an imperfect pair. Table 3 provides
the proportion of imperfect pairs among the whole pairs
which was estimated over the 1000 simulated data sets of
our particular situation. It was equal to 81% in the good
profile Z′ = (0, 0, 0), decreasing to 54%, 44% and 20% in
the Z profiles (1, 1, 0), (0, 0, 1) and (1, 1, 1), respectively.
Moreover, the larger the ratio λ12 (t) /λ13 (t), the faster
the pair’s creation stopped. After the last dotted line (blue
or red, depending on the Z profile), the exposed subjects
are no longer able to be matched with a non-exposed one,
because they are no longer available subjects; the pair’s
creation stopped at a time that gradually increased from
Z′ = (0, 0, 0) to Z′ = (1, 1, 1). For instance, this is illus-
trated for profile Z′ = (0, 0, 0) in Figure 4A: at the time
of first exposure (dotted vertical green line), the exposed
subject was more likely to be matched with an imperfect
subject than to a perfect non-exposed one. This set of
non-exposed subjects decreased over time because each
of them was matched with an exposed subject until the
dotted blue line, when no more non-exposed subjects
were available, while a new exposed subject, belonging
before to a pair as a non-exposed one, appeared. This
set of exposed subjects increased and was not able to be
matched because there were no longer any non-exposed
subjects. For a same level of λ12 (t) /λ13 (t) ratio, RD was
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Figure 2HR (t) configuration chosen. Increasing then decreasing HR (t) configuration, for each Z profile and on average, without censoring and
with β

′
12 = (−0.2,−0.4,−0.8), β13 = −β12 and β23 = −β13. This figure displays the theoretical estimations of HR (t) called “mean”, HRa(t) called

“adjusted mean” and HRi(t) in the eight prognostic profiles. The profile Z
′ = (0, 0, 0) at time t = 0 is the profile with the better prognosis; the profile

Z
′ = (1, 1, 1) has the worse prognosis, and the 6 others an intermediate prognosis. In this particular configuration chosen, where β23 = −β13,

HR (t) � HRa (t) and their values are so close that the difference between them is not visible in this figure.

5
0

1
0
0

1
5
0

Profiles

N
u
m
b
e
r
 o
f 
p
a
ir
s

Numbers of pairs
according to the profiles and the pairs design's methods

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

M1

M2

Figure 3 Number of pairs. Distribution of the number of pairs according to the profiles and to the matching methodsM1 andM2. Results obtained
with the increasing then decreasing HR(t) configuration, without censoring and with β

′
12 = (−0.2,−0.4,−0.8), β13 = −β12 and β23 = −β13.
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Figure 4 Number of subjects in the three possible groups. Number of subjects pertaining to the three possible subjects groups at each time t:
the exposed subject (solid green line), the non-exposed subject who never will undergo the exposure (solid red line) and the non-exposed subject
who will undergo the exposure (solid blue line). The dotted vertical green line represents the time of first exposure, i.e. the time of occurrence of the
first pair; the dotted vertical blue line corresponds the time of the last perfect pair’s creation; and the dotted vertical red line corresponds the time of
the last imperfect pair’s creation. Results obtained with the increasing then decreasing HR(t) configuration, without censoring and with
β

′
12 = (−0.2,−0.4,−0.8), β13 = −β12 and β23 = −β13.

larger depending on the censoring percent: the higher the
censoring percent, the smaller the RD.

Bias and RMSE. Figures 5 displays the distribution of
the bias and the RMSE of the exposure effect estimator,
according to our four models.
With Method 1, the estimation of HR (t) was biased

with HP and LWAu, but more with HP; the estimation
of HRa (t) was biased with LWAa. Whatever the model
applied, HR (t) (HP, LWAu) and HRa (t) (LWAa) were
underestimated, i.e. a poor prognostic exposure effect
tended to be ignored and a no exposure effect tended to
become a protective one. In each Z profile, LWAi always
largely underestimated HRi(t) (Figures 5). The bias b•• is
equal to −0.77, −0.61, −0.58 and −0.52 underHP, LWAu,
LWAa and LWAi models, respectively; and the RMSE•• is
equal to 0.88, 0.65, 0.62 and 1.06 under HP, LWAu, LWAa
and LWAi models, respectively (Figures 5). The bias and
RMSE are given by PP in Table 3.

With Method 2 where HR (t) � HRa (t), LWAu and
LWAa gave very similar values, whereas HP gave a smaller
estimation of HR (t) than LWAu. All these three models
are very close to the true value of the effect of exposure,
but none gave an unbiased estimation: this estimation was
slightly over- or under-estimated according to the time,
but much less than with Method 1. HRi(t) was overesti-
mated in some Z profiles: HRi(t) was overestimated in
the three PP, Z′ ∈ {(0, 0, 0) , (1, 0, 0) , (0, 1, 0)}, where the
ratio λ12 (t)

/
λ13 (t) was large and then the proportion of

imperfect pairs in the set of pairs to be analyzed, was also
large (Figures 5). Themean of the time-dependent bias b••
was equal to -0.10, 0.14, 0.15 and 0.04 under HP, LWAu,
LWAa and LWAi models, respectively; and RMSE•• was
equal to 0.40, 0.27, 0.27 and 1.05 under HP, LWAu, LWAa
and LWAi models, respectively (Figures 5). The biases
and RMSE are quite acceptable and much smaller than
with Method 1. Table 3 displays the bias and RMSE more
specifically, with the percent of imperfect pairs according
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and according to thematchingmethods are presented with the percent of imperfect pairs for Method 2

Prognostic profiles Z(w) %of exposure Method 1 Method 2

b•Z(w) RMSE•Z(w) Mean of pairs number b•Z(w) RMSE•Z(w) Mean of pairs number % of imperfect pairs

(0, 0, 0) 0.82 -0.97 1.05 40.26 0.13 0.32 146.88 0.81

(0, 0, 1) 0.48 -0.46 0.59 85.46 0.04 0.33 109.05 0.44

(0, 1, 0) 0.67 -0.70 0.79 68.82 0.08 0.31 133.47 0.64

(0, 1, 1) 0.30 -0.22 0.46 70.87 -0.03 0.36 74.07 0.26

(1, 0, 0) 0.76 -0.83 0.91 54.48 0.10 0.31 141.70 0.73

(1, 0, 1) 0.39 -0.34 0.51 82.27 0.007 0.34 92.61 0.35

(1, 1, 0) 0.58 -0.57 0.67 79.94 0.05 0.31 123.44 0.54

(1, 1, 1) 0.23 -0.09 0.46 56.15 -0.06 0.39 56.88 0.20

The percent of exposure inside each prognostic profile is also given.
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Figure 5Methods andModels. Exposure effect’s estimation according to Methods 1 and 2 and related to: (A) The HPmodel, (B) The LWAu model,
(C) The LWAa model and (D) The LWAi model. The solid thick lines red, blue and green (Figure A, B and C) respectively, represent the theoretical
average of γ (t) and the solid thick orange lines (Figure D) represent the theoretical γ (t) + α

′
(t)Z inside each profile Z. The fine lines red, blue and

green (Figure A, B and C) respectively, represent γ (t), estimated according to Methods 1 (fine dotted lines) and 2 (solid dotted lines); and the fine
red lines (Figure D) represent the observed γ (t) + α

′
(t)Z inside each profile. The average bias and RMSE are given for each model: bl• , b•• , RMSEl•

and RMSE•• . These results are obtained with the increasing then decreasing HR(t) configuration, without censoring and with
β

′
12 = (−0.2,−0.4,−0.8), β13 = −β12 and β23 = −β13.

to the PP: the larger the percentage of imperfect pairs, the
larger the bias and RMSE.
All the conclusions displayed with Method 1 were the

same for all five configurations and all the βuvk triplet val-
ues. The biases of HR (t), HRa (t) and HRi (t) were always
huge (data not shown) but more or less followed the con-
figuration and the βuvk scenarios. All the conclusions with
Method 2 were valid for all configurations, and for all βuvk
triplet values. In the configurations without interaction,
i.e. where β23 = β13, HP and LWAu models were more
appropriate than LWAa and LWAi to estimate HR (t) in
terms of bias and RMSE, given that LWAu was much less
biased than HP in most of the scenarios. In some con-
figurations where the proportion of the profile with the
smallest HRi (t) was the most highly represented profile
leading to a low HR (t), HP was better than LWAu. LWAa

was the only model for estimating HRa(t) and led to very
slightly biased estimations of HRa (t) (data not shown). In
the configurations with interaction, i.e. where β23 �= β13,
the LWAi model was the only appropriate one. However,
in some of these configurations, LWAi slightly biased the
extreme profiles and not the intermediate ones (data not
shown). Over the 10 situations with censoring, the cen-
soring percent ranged from 9% to 48%. Censoring did not
change any of the previous conclusions.
Overall, in terms of bias and RMSE, Method 2 per-

formed better than Method 1 to design the pairs, and
LWAa was the best model for all the situations except
when there was an interaction between the covariates and
the exposure (β23 �= β13), for which LWAi was more
appropriate, even if the estimations with HRi(t) were not
uniformly unbiased.
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Real data application
Data
Our data retrospectively included 870 women treated for
breast cancer between January 1990 and December 1999,
and diagnosed before 35 years of age. Information on
patients’ status was collected at the end of the year 2004
and the median follow-up was 87 months (range, 7 to
166) at this date. Tumor, treatment and disease evolu-
tion analyses are available in the paper of Largillier et al.
[9]. One of the goals of the data analysis was to compare
disease-free survival between pregnant and non-pregnant
patients. The protocol was submitted to the appropriate
French authorities supervising individual computerized
data files (Commission Nationale Informatique et Liberté
[CNIL]), and obtained ethical approval from the Institut
Curie ethics committee (Comité des Etudes en Recherche
Clinique [CERC]). The GETNA Working Group, which
was responsible for the data conception, design and acqui-
sition, allowed us access to these real data.
We created pairs of pregnant and non-pregnant women

using the two matching methods. Both women were
matched according to their cancer gravity level using:
Scarff-Bloom-Richardson grade (SBR, related to cell pro-
liferation level), pathological node involvement and hor-
monal receptor status (RH). They were also matched on
treatment: hormonotherapy prescribed or not to RH+
patients, and chemotherapy administered or not before
and/or after surgery. Within each pair, the non-pregnant
woman had to be disease-free for as long as the time
from diagnosis to pregnancy of the pregnant woman. We
sought to estimate the effect of subsequent pregnancy
occurring over time on breast cancer evolution.
According to the results obtained on the cohort data

[15] and to the known breast cancer clinical prognostic
factors in the literature, patients with low cell proliferation
level (SBR I or II) and no node involvement were consid-
ered to have a good prognostic profile and likely to plan to
be pregnant (“healthy mother effect”). According to bio-
logical assumptions and need for therapy (hormonal treat-
ment if RH+), women with negative hormonal receptors
were also more likely to be pregnant. Thus, even if these
factors were not significant in the paper by Savignoni et al.
[15], it seemed relevant to estimate the effect of pregnancy
according to the RH status (and the treatment associated)
and according to a clinical Prognostic Profile (cPP); a poor
cPP was defined as an SBR grade III and/or pathologi-
cal involved nodes, leading to six prognostic profiles: RH
negative with a good cPP, RH negative with a poor cPP,
RH positive not treated with a good cPP, RH positive not
treated with a poor cPP, RH positive treated with a good
cPP and RH positive treated with a poor cPP. Then the
effect of the pregnancy was estimated in the whole pop-
ulation by adjusting or not for the matching factors and
with regard to the six prognostic profiles by adjusting for

an interaction between the pregnancy, and the RH status
(associated with treatment) and the cPP respectively. The
effect of pregnancy was not adjusted for chemotherapy
treatment.

Results
In view of our simulations, Method 2 was the matching
method to apply on the cohort data in order to create
correlated censored data that would give a more accurate
estimate of the exposure effect. To be able to compare
our results with previous findings [3-5,7,10], we used the
HP model on correlated censored data designed from
Method 1.
First, we applied the Method 1—HP combination as

proposed in the literature [3-5,7,10]. Secondly, we applied
the HP and LWA with pregnancy and pair as time-
dependent covariates on the paired survival data created
with Method 2. With LWA, HR (t) estimation was carried
out (i) without adjusting for matching covariates (LWAu
estimates HR (t)), (ii) by adjusting for all the matching
covariates but without any interaction (LWAa estimates
HRa (t)) and (iii) by adjusting for all the matching covari-
ates and with an interaction between pregnancy and
matching covariates (LWAi estimates HRi(t)). The latter
could be applied in the event of real or assumed biological
and clinical interactions. We tested the PHA with Harrel’s
test on the two correlated censored data sets and with
each model. The PHAwas verified and we did not add any
time-effect for pregnancy in the models. HR(t) was com-
pared to 1 by theWald’s test with the appropriate variance
according to the models.
In the cohort data, only 668 patients presented no miss-

ing data for the covariates of interest. Among them, 68
experienced a subsequent pregnancy. We obtained the
maximum number of pairs available with Methods 1 and
2, i.e. 68 pairs: all pregnant women were then matched.
The 68 pairs were not exactly the same between Meth-
ods 1 and 2. In Method 2 five pairs were imperfect, which
represented a low proportion (7.4%). Among the 68 pairs
obtained with Method 1, 32 women experienced an event
(progression or death): 16 in the group of patients who
became pregnant after the breast cancer diagnosis and
16 in the group of patients who did not. Among the 68
pairs obtained with Method 2, 29 women experienced an
event: the same 16 in the group of patients who became
pregnant after the breast cancer diagnosis and 13 in the
group of patients who did not. No events occurred in the
imperfect pairs. Only sixteen pairs (23.5%) were common
between the two matching methods. The number of pairs
and the number of final events in the pregnancy and non-
pregnancy groups are given Table 4, according to the
six profiles and to the matching methods. The number
of pairs was divided into imperfect and perfect pairs for
Method 2.
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Table 4 Real data: number of pairs and final events according to thematchingmethods and to the six prognostic profiles

Prognostic profiles Method 1 Method 2

Number of pairs Number of final events Number of pairs Number of final events
Pregnancy/nonpregnancy group Imperfect/perfect Pregnancy/nonpregnancy group

RH − and goodcPP 7 2/2 1/6 2/0

RH − and badcPP 16 4/2 1/15 4/2

RH + not treated and goodcPP 12 4/2 1/11 4/1

RH + not treated and badcPP 19 5/5 0/19 5/7

RH + treated and goodcPP 5 0/1 2/3 0/1

RH + treated and badcPP 9 1/4 0/9 1/2

The number of imperfect pairs is also given for Method 2.

The HP model applied with Method 1 yielded the fol-
lowing estimations: exp (γ ) = 0.90, CI95% [0.36 − 2.21],
not significant. Kranick et al. [5] and Veletgas et al. [4]
concluded likewise as did Azim et al. [3], but the latter
stratified their analysis on estrogen status. Other authors
[7,10] found a protective role of pregnancy. All these
authors used theHPmodel withMethod 1 adjusted for the
other known prognostic factors. In view of our simulation
results, we believe that this estimation was underesti-
mated and that the models should be used on censored
correlated data created with Method 2. Regarding the lat-
ter, theHPmodel yielded a larger value than with Method
1 but was still not significant (exp (γ ) = 2.00, CI95%
[0.75 − 5.33]). In view of our simulations, we conclude
that HR (t) was widely underestimated with HP using
Method 1 and only slightly underestimated with HP using
Method 2. The increasing value ofHR (t) estimated byHP
between the two matching methods was not surprising.
Method 2 and the LWA model, with or without adjusting
for matching covariates (LWAu and LWAa), yielded simi-
lar and not statistically significant results: exp (γ ) = 1.22,
CI95% [0.61−2.42] and exp (γ ) = 1.24,CI95% [0.62−2.45],
respectively. The difference in HR (t) values estimated by
the HP and LWAu models was not statistically significant.
In such a context, we would like to estimate the proper
effect of the subsequent pregnancy. It is more relevant
to estimate HRa (t) than HR (t). Even if LWAi showed no
significant interaction between the matching covariates
and the pregnancy, because of the biological and clin-
ical assumptions, we estimated the effect of pregnancy
according to the six PP defined above using the LWAi
model. Table 5 presents exp (γ ) estimations according to
the models and their 95% confidence intervals.
The apparent protective role of pregnancy for the the-

oretically less favorable prognostic profile “RH+ (treated
or not) and poor cPP” and its increasing role in risk for the
theoretically best prognostic profile “RH− and good cPP”
were surprising. There was no statistical significance, but
it could be because of a lack of power of the combination
Method 2 - LWAi.

Discussion
In our context of exposure occurring over time, we
focused on two matching methods: Method 1, commonly
used in the literature [3-5,7,10], and Method 2, our new
approach. Method 1 composes the pairs in an a poste-
riori way where the pairs are in fact considered to be
known at diagnostic time t = 0. Method 2 creates pairs
in “real-time”. Suchmatching designs create independence
between pairs but dependence between the subjects of
the same pair, and specific analytical methods exist for
such a situation of correlated censored data. In our work
we studied two semi-parametric models allowing for the
stratified Holt and Prentice model [16] (HP) and the Lee,
Wei and Amato model [20] (LWA). To estimate the aver-
age exposure effect HR (t) and unlike the LWA, the HP
did not make it possible to take into account either the
matching covariates or the possible interaction between
the matching covariates and the exposure.
The aim of this study was to analyze the HP and LWA

models using the two matching methods in order to pro-
pose the most efficient Method - Model combination to
estimate and test the prognostic exposure effect HR (t)
estimated through the models by exp (γ (t)).
In view of our simulations, the relative difference in

the number of pairs between Method 1 and Method 2
depends on the ratio λ12 (t) /λ13 (t) and on the censoring
percent. Compared to Method 1, the number of pairs was
equal or larger withMethod 2. In terms of bias and RMSE,
Method 2 is more relevant than Method 1 to design the
pairs, and LWAa is the best model for all the situations
except when there is an interaction between the covari-
ates and the exposure (β23 �= β13), for which LWAi is
more appropriate even if the HRi(t) estimations are not
uniformly unbiased.
In our sample data, we applied Method 1 and HP to

compare our results with those in the literature [3-5,7,10].
According to the simulation results, we applied Method
2 with HP and LWA. With both matching methods, we
obtained an equal number of pairs (the maximum avail-
able) but not the same ones. HP used with Method 1
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Table 5 exp(γ ) estimations and their 95% confidence
interval according to theHP and LWAmodels and to the
matchingmethods, with the p-value of theWald’s Test

Models Method 1 Method 2

Holt and Prentice model

exp (γ ) = 0.90

CI95 = [0.36 − 2.21]

p − value = 0.82

se = 0.46

exp (γ ) = 2.00

CI95 = [0.75 − 5.33]

p − value = 0.17

se = 0.50

Lee, Wei and Amato model

LWAu

exp (γ ) = 1.22

CI95 = [0.61 − 2.42]

p − value = 0.58

se = 0.35

LWAa

exp (γ ) = 1.24

CI95 = [0.62 − 2.45]

p − value = 0.54

se = 0.35

LWAi : RH− and good cPP

exp (γ ) = 5.70

CI95 = [0.80 − 40.50]

p − value = 0.08

se = 0.98

LWAi : RH− and poor cPP

exp (γ ) = 1.77

CI95 = [0.34 − 9.24]

p − value = 0.49

se = 0.83

LWAi : RH+ not treated
and good cPP

exp (γ ) = 2.87

CI95 = [0.63 − 13.10]

p − value = 0.17

se = 0.76

LWAi : RH+ not treated
and poor cPP

exp (γ ) = 0.89

CI95 = [0.30 − 2.69]

p − value = 0.83

se = 0.55

LWAi : RH+ treated and
good cPP

exp (γ ) = 0.95

CI95 = [0.07 − 13.66]

p − value = 0.97

se = 1.33

LWAi : RH+ treated and
poor cPP

exp (γ ) = 0.30

CI95 = [0.04 − 2.42]

p − value = 0.25

se = 1.05

The estimation of the pregnancy effect standard error (se) by the HP and LWA
models are given.

gave the smallest estimation of HR (t). HR (t) estimations
were not statistically different from 1 with HP, LWAu and
LWAa. According to biological and clinical hypothesis, we
assumed that the effect of exposure was different accord-
ing to the six prognostic profiles so we used the LWAi
model. However, we did not conclude that pregnancy had
neither a protective effect nor an adverse effect on pro-
gression disease, even for women with positive hormonal
receptors and poor clinical profile at diagnosis. Estimat-
ing HR (t) by prognostic profiles using the combination
Method 2 - LWAi, showed a different and opposite effect
of exposure in the six health profiles, but none was sta-
tistically significant. The sample size of the profiles was
small and a few events occurred inside each profile, prob-
ably leading to a lack of power of the combinationMethod
2 - LWAi.
Adjusting for the matching covariates and for their pos-

sible interaction with exposure could be very interesting
to interpret the effect of exposure HR (t). However, it
could be more difficult with real data, especially in the
event of multiple prognostic profiles. The sample had to
be large enough to enable us to assess the performances
of the models according to the two matching methods,
especially LWAa and LWAi, which required a large num-
ber of pairs. The erroneous estimation with LWAi in some
extreme profiles could partially be explained as follows:
in the “imperfect” pairs, we artificially prevent the non-
exposed subject from having a final event, because she will
first become an exposed subject of another pair. Maybe
she will undergo the final event but as an exposed sub-
ject and in another pair. Then, when the proportion of
imperfect pairs is large, HRi(t) could be overestimated.
Moreover the larger the ratio λ12 (t) λ13 (t), the larger the
number of imperfect pairs, and the higher the overestima-
tion of HRi(t) and the faster its appearance. Owing to the
values of the βuvk triplets chosen in the particular config-
uration presented above, the subjects of the three profiles
Z′ ∈ {(0, 0, 0) , (1, 0, 0) , (0, 1, 0)} experienced more expo-
sure before any events, and simultaneously fewer events
(before or after exposure), than the other PP. In these
three profiles, the number of events in the exposed and
in the non-exposed individuals is quite low, suggesting a
possible lack of accuracy in the estimation of HR (t). All
the models needed enough pairs and enough final events
to fit: the larger the number of imperfect pairs and the
smaller the number of events, the worse the accuracy of
the estimation of HRi(t). In a future study, we will explore
more deeply this problem of bias related to the percent of
imperfect pairs in the sample.
Technically, whatever the matching method used, HP

censored the pair when one of its subjects was censored or
experienced the final event, whereas the LWA did not. The
latter leaves each subject to be followed up to her censor-
ing or final event, whatever the outcome of the matched
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subject. Concerning the management of the imperfect
pair obtained with Method 2, the non-exposed subject i
of pair Pj was censored when she became the exposed
subject i of another pair Pi at the time tEi ; by construc-
tion, as said before, her exposure occurred before any
other events. For LWA, an alternative would be to cen-
sor the pair Pj. Another alternative, whatever the model,
would be to propose another non-exposed (perfect or
imperfect) subject to the exposed subject of pair Pj, who
was now single in her pair. This issue deserves more
investigation.
Using time intervals to estimate the effect of exposure

as it changes over time was maybe not the most pertinent
method, because it required many parameters. Therefore,
to improve fitting, we intend to apply splines to fit the
effect of exposure as it changes over time. Indeed, the
present study sought to compare results of two known
models devoted to censored correlated data, and the well-
known frailty model was set aside because it requires the
structure of correlation within the pairs to be specified.
The next step would be to compare the HP, LWA and the
frailty model using Method 2.

Conclusions
In conclusion, correlated censored data designing by
Method 2 seems to be the more pertinent method to cre-
ate pairs when the criterion which characterizes the pair
is an exposure occurring over time. It would be inter-
esting to estimate the proper effect of the subsequent
pregnancy. It is then more pertinent to estimate HRa (t)
thanHR (t). Thus, LWAa seems to be the best model for all
the situations, except when there is an interaction between
the covariates and the exposure, for which LWAi is more
appropriate, even if the estimations of HRi(t) are not uni-
formly unbiased. LWAa and LWAi gave a more accurate
and relevant estimation of the effect of exposure in par-
ticular context, where we can reasonably suppose that the
latter depends on prognostic profiles.

Appendix A: Simulation of cohort data -
Procedures and scenarios chosen
For each subject four independent times were generated:
t12, t23, t13 and C (censoring time), according to the inten-
sities displayed in Table 2. From these times, 2 times of
interest for each subject were derived: a time to expo-
sure t12 = tE and a time to final event ti. Two indicator
variables were derived: E = 1 if an exposure occurs, 0
otherwise and � = 1 if a final event occurs, 0 otherwise.
Four possible quadruplets (tE ; ti;E;�) could be defined as
follows:

(C;C; 0; 0) if C < min(t12, t13),
(t13; t13; 0; 1) if t13 ≤ min(t12,C),
(t12;C; 1; 0) if t12 < min(t13,C) and t12 + t23 > C,

(t12; t12 + t23; 1; 1) if t12 < t13 and t12 + t23 ≤ C.

Such a design refers to an “illness-death” model with
transition intensities λ12 (t), λ13 (t) and λ23 (t) (Figure 1).
All subjects were assumed to be in the initial state (state
1 or cancer diagnosis in our context) at time t = 0.
They could move to the final state (state 3 or disease pro-
gression) with a transition intensity λ13 (t). They might
undergo the intermediate event or exposure (state 2 or
pregnancy) with intensity λ12 (t), before developing any
progression with intensity λ23 (t). Date of entry into state
1 was chosen as time of origin for all transitions. Thus
the parameter of interest HR(t) corresponded to the ratio
λ23 (t) /λ13 (t). However, to compute λ23 (t), we took into
account the left truncation phenomenon: before being at
risk of an event in the transition 2 → 3, a subject has
to wait until its exposure occurs. This delayed entry leads
the set of subjects at risk in transition 2 → 3 to increase
when an exposure occurs and to decrease when an event
occurs. Thus the average HR(t) is obtained from an exact
formula involving the averages of λ13 (t) and λ23 (t) which
are computed through a numerical approximation (trans-
formation of the time from continuous to discrete val-
ues) (See the Appendix B). The average HR(t) adjusted
for the different covariates was estimated empirically by
using large size samples to guarantee good precision.
Moreover, note that the larger the ratio λ12 (t) /λ13 (t),
the larger the number of exposures in the simulated
cohort.
The simulation model included (i) the choice of an

instantaneous baseline risk function λuv (t,Z) for each of
the three transitions u → v, (ii) the choice of the Z effects,
exp (βuvk), for each transition and (iii) the choice for the
censoring proportion.
For (i), an instantaneous average risk function

λuv
(
t,Z = Z

)
for each of the three transitions was simu-

lated: either a constant risk using an exponential density
function(1), a monotone risk using a Weibull density
function(2) or an increasing then decreasing risk using a
loglogistic density function(3). Five λuv

(
t,Z = Z

)
triplets

were simulated in order to construct five realistic con-
figurations of HR (t): two constant, one increasing, one
decreasing and one increasing then decreasing, where
HR (t) range values were clinically pertinent (between
0.5 and 4 in the whole population). Table 2 displays the
λuv
(
t,Z = Z

)
distributions of each transition used for

each of the five different configurations of HR (t).
For (ii), different βuvk values for each of these five

λuv
(
t,Z = Z

)
triplets were chosen. Negative β12 values

were proposed and set at β
′
12 = (−0.2,−0.4,−0.8).

Only β13 and β23 had other possible values which
were the following: (−0.2,−0.4,−0.8), (+0.2,+0.4,+0.8),
(−0.1,−0.2,−0.4) and (+0.1,+0.2,+0.4) . Ten βuvk sce-
narios were performed. Given the five configurations cho-
sen for HR(t) and the ten βuvk scenarios, 50 different
situations were obtained.
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Finally, for (iii), these previous 50 situations were first
performed without censoring. To minimize simulations
time, two levels of independent uniform censoring were
implemented only with the following βuvk scenario: β

′
12 =

(−0.2,−0.4,−0.8), β13 = −β12 and β23 = β12; and they
were applied to each of the five configurations of HR (t).
This yielded to 10 more situations (five HR (t) configu-
rations with2 levels of censoring) for that βuvk scenario.
The maximal event time tmax was set at 1000. The first
uniform distribution for censoring time C was over the
interval time [0; tmax], and the second one over [0; 2tmax];
then the maximal censoring time was Cmax = +∞, tmax
or 2tmax. The overall censoring level was higher in the first
censoring distribution but it also depended on the HR (t)
configuration. In total we had50 situations without cen-
soring and 10 with censoring (the same five configurations
with the two levels of censoring).
For each of the 60 situations, 1000 different data sets

were generated with a sample size of 2000 subjects. At t =
0, these 2000 subjects were allocated to the eight Z pro-
files. At t > 0, the 250 subjects of the 8 different profiles
are divided up among the three transitions and change
over time according to the five HR (t) configurations.

Appendix B: Calcul of the average exposure effect
not adjusted for the covariates HR(t)
Density function f23 (t) , Repartition function F23 (t) and
Survival function S23 (t) of transition 2 → 3 taking into
account the left truncation

f23 (t) =
∫ t

0
f23 (t − u) f12 (u) S13(u)du,

F23 (t) =
∫ t

0
f23 (v) dv =

∫ t

0

∫ v

0
f23 (v − u) f12 (u) S13(u)du,

where u is the exposure occurrence time and t the final
event time.
To obtain an useful formula we divide the time in K tiny

intervals with t0 < t1 < · · · < tk < · · · < tK = Tmax

S23 (tk) =
k∏

j=1

(
1− f23

(
tj
) (
tj − tj−1

)
∫ tj
0 f12 (x) S13(x)dx −∑j−1

l=1
(
tl − tl−1

)
f23 (tl)

)

=
k∏

j=1

(
1− f23

(
tj
) (
tj − tj−1

)
∫ tj
0 f12 (x) S13(x)dx −∑j−1

l=1
(
tl − tl−1

)
f23 (tl)

)

=
k∏

j=1

⎛
⎜⎜⎜⎝
∫ tj
0 f12 (x) S13(x)dx −

j∑
l=1

(
tl − tl−1

)
f23 (tl)

∫ tj
0 f12 (x) S13(x)dx −

j−1∑
l=1

(
tl − tl−1

)
f23 (tl)

⎞
⎟⎟⎟⎠

and

λ23(t) = −Log (S23 (tk))(
tk − tk−1

) .

The average instantaneous hazard λ̄ (t) is equal to

λ̄ (t) =
∑

z ωz (t) λ (t |Z )∑
z ωz (t)

ωz (t) = π (z) S (t |Z )

ω̄z (t) = ωz (t)∑
z ωz (t)

λ̄ (t) =
∑
z

ω̄z (t) λ (t |Z ) =
∑
z

ω̄z (t) λz (t)

ω̄z (t) = Nz (t)∑
z
Nz (t)

where λ (t |Z ) = λz (t) is the average instantaneous haz-
ard in the profile z at time t,Nz (t) is the number of subject
at risk in the profile z at time t. Then we can write

HR(t) = λ23(t)
λ13(t)

=
∑
z

N23z (t)∑
z
N23z (t)

λ23z (t)

N13z (t)∑
z
N13z (t)

λ13z (t)
.

The computation of Nz (t) is the following.
In transition 1 → 3, a subject is at risk if it does not have

any event and if it is not censored

N13z (t) = N13zS13z (t) Ḡ (t) S12z (t) ,

where

• S12z(t) is the survival rate in the transition 1 → 2 for
the profile z at time t,

• S13z(t) is the survival rate in the transition1 → 3 for
the profil z at time t,

• N13z is the number of subject at risk in the profile z at
time t = 0,

• Ḡ (t) = 1−G (t) with G(t) is the repartition function
of the variable C characterizing the censoring time. It
does not depend on the profile.

In transition 2 → 3, taking into account the left trun-
cation, a subject is at risk of event in this transition, if it
entered in the transition and if it had neither an event nor
being censored.
N23z could be expressed as

N23z (t) = [E23z (t) − D23z (t) − C23z (t)
]
N23z

where

• E23z (t): the number of subjects which entered in the
transition 2 → 3 in the time interval [0; t] ,

• D23z (t): the subjects which undergo the final event in
the time interval [0; t] ,

• C23z (t): the censored subject in the time interval
[0; t] ,

• N23z is the number of subject at risk in the profile z at
time t = 0.
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Then
N23z (t)=

[
E23z (t) − D23z (t) − C23z (t)

]
N23z

=
⎡
⎣
∫ t
0 Ḡ (x) λ12z (x) S12z (x) S13z (x) dx

−∫ t0 Ḡ(x)
∫ x
0 λ12z (v)S12z (v)S13z (v)f23z (x−v) dvdx

−∫ t0 g(x)∫ x0 λ12z (v)S12z (v)S13z (v)S23z (x−v) dvdx

⎤
⎦N23z ,

where

• λ12z(t) is the instantaneous hasard function of
transition 1 → 2 for the profil z at time t,

• g (t) is the density function of the variable C
characterizing the censored time. It does not depend
on the profile.

Appendix C: Empirical estimation of the average
exposure effect adjusted for the covariates HRa(t)
Let’s consider L intervals Il (l = 1 to L) inside the study
interval [0;Tmax], where all the i subjects are censored at
time Tmax: Il = ]al−1; al

]
: l = 1, · · · , L with

a0 = 0 < a1 < a2 < · · · < aL = Tmax.

Inside each Il, the exposure variable El(t) is as follows:

El (t) =
{
1 if t ≥ tEiand t ∈ Il
0 otherwise.

Then we define: E (t) =∑L
l=1 El (t) .

Our model of simulation obtained from an “illness-
death” model is as follows:

λ (t,Z,E) = λ0 (t) exp
( L∑

l=1
γlEl (t) + β1Z1 + β2Z2

+ β3Z3 + (α1Z1 + α2Z2 + α3Z3)E (t)

)
,

where λ(t,Z,E) is the instantaneous risk function of state
3 occurrence according to the exposure E and the covari-
ates Zk (k = 1 to 3).
From this model, we are able to calculate HRi(t), i.e. the

HR(t) for each profile (Z1, Z2, Z3):

HRi (t) = λ (t,Z,E = 1)
λ (t,Z,E = 0)

.

We approximate HRa(t) by

HRa (t) = exp
( L∑

l=1
γlEl (t)

)
,

where the γl are obtained from

λ (t,Z,E) = λ0 (t) exp
( L∑

l=1
γlEl (t) + β1Z1 + β2Z2 + β3Z3

)
.

We approximate HR(t) by

HR (t) = exp
( L∑

l=1
γlEl (t)

)
,

where the γl are obtained from

λ (t,Z,E) = λ0 (t) exp
( L∑

l=1
γlEl (t)

)
.

For HRa(t), the estimation of γl is adjusted for the βk ,
whereas for HR(t) it is not.
The approximation ofHRi(t),HRa(t) andHR(t) is espe-

cially relevant when L and the total number of patients are
large, in order to have enough exposure and events inside
the transitions 2 → 3 and 1 → 3.
The approximations ofHRi (t) andHR (t) could be com-

pared to the theoretical values (See Appendix B), not of
HRa(t).
To be sure of the approximation of HRa(t), we simu-

lated data from a Cox proportional hazards model with
a time-dependent covariate representing exposure. As we
obtained directly the effect of the exposure we were able
to certify that our approximation’s method was correct.
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