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Abstract

Background: Despite the widespread use of patient-reported Outcomes (PRO) in clinical studies, their design
remains a challenge. Justification of study size is hardly provided, especially when a Rasch model is planned for
analysing the data in a 2-group comparison study. The classical sample size formula (CLASSIC) for comparing
normally distributed endpoints between two groups has shown to be inadequate in this setting (underestimated
study sizes). A correction factor (RATIO) has been proposed to reach an adequate sample size from the CLASSIC
when a Rasch model is intended to be used for analysis. The objective was to explore the impact of the parameters
used for study design on the RATIO and to identify the most relevant to provide a simple method for sample size
determination for Rasch modelling.

Methods: A large combination of parameters used for study design was simulated using a Monte Carlo method:
variance of the latent trait, group effect, sample size per group, number of items and items difficulty parameters.
A linear regression model explaining the RATIO and including all the former parameters as covariates was fitted.

Results: The most relevant parameters explaining the ratio’s variations were the number of items and the variance
of the latent trait (R2 = 99.4%).

Conclusions: Using the classical sample size formula adjusted with the proposed RATIO can provide a straightforward
and reliable formula for sample size computation for 2-group comparison of PRO data using Rasch models.
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Background
Patient-reported outcomes (PRO) are increasingly used
in clinical research; they have become essential criteria
that have gained major importance especially in chronic-
ally ill patients. Consequently, nowadays these outcomes
are often considered as main secondary endpoints or
even primary endpoints in clinical studies [1-4]. Two
main types of analytic strategies are used for PRO data:
so-called classical test theory (CTT) and models coming
from Item Response Theory (IRT). CTT relies on the
observed scores (possibly weighted sum of patients
items’ responses) that are assumed to provide a good
representation of a “true” score, while IRT relies on an
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underlying response model relating the items responses
to a latent trait, interpreted as the true individual quality
of life (QoL) for instance. The potential of IRT models
for constructing, validating, and reducing questionnaires
and for analyzing PRO data has been regularly under-
lined [5-7]. IRT and in particular Rasch family models
[8] can improve on the classical approach to PRO as-
sessment with advantages that include interval measure-
ments, appropriate management of missing data [9-11]
and of possible floor and ceiling effects, comparison of
patients across different instruments [12]. Consequently,
many questionnaires are validated (or revalidated) using
IRT along with CTT [13-15] allowing analysing PRO
data with IRT models in clinical research.
Clinical research methodology has reached a high level of

requirements through the publication of international
guidelines including the CONSORTstatement, the STROBE
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(Strengthening the Reporting of Observational Studies
in epidemiology), or TREND (Transparent Reporting of
Evaluations with Nonrandomized Designs), initiative for
instance [16-19]. All of these published recommenda-
tions are aimed at improving the reporting of scientific
investigations coming either from randomized clinical
trials or observational studies and systematically include
an item related to sample size justification and deter-
mination. Furthermore, good methodological standards
recommend that methods used for sample size planning
and for subsequent statistical analysis should be based
on similar grounds. Even if guidelines have also been re-
cently published for PRO based studies [20,21], the
reporting of such studies often lacks mentioning the
justification of study size and its computation. Three
main types of situations are often encountered in 2-
group comparison studies: i) sample size determination
is not performed whatever the intended analysis for
PRO data (CTT and/or IRT), ii) tentative justification is
occasionally given a posteriori for the size of studies, iii)
sample size computation is made a priori but only relies
on CTT (mostly using the classical formula for compar-
ing normally distributed endpoints on expected mean
scores) even if IRT models are envisaged for data ana-
lysis. In this latter case, previous studies have shown
that the classical formula was inadequate for IRT models
because it leads to underestimation of the required sample
size [22]. From this perspective, a method has been re-
cently developed for power and sample size determination
when designing a study using a PRO as a primary end-
point when IRT models coming from the Rasch family are
intended to be used for subsequent analysis of the data
[23]. This method, named Raschpower, provides the
power for a given sample size during the planning stage of
a study in the framework of Rasch models. It depends on
the following parameters (that are a priori assumed and
fixed): the parameters related to the items of the question-
naire (items' number J and difficulties parameters δj, j = 1,
…,J), the variance of the latent trait (σ2) and the mean dif-
ference between groups on the latent trait (γ). Some of
these parameters are easily known a priori when planning
a study (e.g. number of items) others are sometimes more
difficult to reach (e.g. items difficulties, σ2, γ) and initial
estimates based on the literature or pilot studies are re-
quired. Besides, whether all these parameters have the
same importance regarding sample size determination for
Rasch models is unknown. The aim of our paper is to ex-
plore the relative impact of these parameters on sample
size computation and to identify the most relevant to be
used during study design for reliable power determination
for Rasch models. Our main objective is to provide a sim-
ple method for sample size determination when a Rasch
model is planned for analysing PRO data in a 2-group
comparison study.
Methods
The Rasch model
In the Rasch model [8], the responses to the items are
modelled as a function of a latent variable representing
the so-called ability of a patient measured by the ques-
tionnaire (e.g. QoL, anxiety, fatigue…). The latent vari-
able is often considered as a random variable assumed
to follow a normal distribution. In this model, each item
is characterized by one parameter (δj for the jth item),
named item difficulty because the higher its value, the
lower the probability of a positive (favourable) response
of the patient to this item regarding the latent trait
being measured.
Let us consider that two groups of patients are com-

pared and that a total of N patients have answered a
questionnaire containing J binary items. Let Xij be a bin-
ary random variable representing the response of patient
i to item j with realization xij, θi be the realization of the
latent trait Θ for this patient, and γ the group effect de-
fined as the difference between the means of the latent
trait in the two groups.
For each patient, the probability of responding to each

item is:

P Xij ¼ xij
� ��θi; δjÞ ¼ exp θi þ giγ−δj

� �
xij

� �
1þ exp θi þ giγ−δj

� � ;

i ¼ 1;…; N and j ¼ 1;…; J

ð1Þ

where δj represents the difficulty parameter of item j
and gi = 0,1 for patients in the first or second group, re-
spectively. The latent variable Θ is usually a random
variable following a normal distribution with unknown
parameters μ and σ2. Marginal maximum likelihood esti-
mation is often used for estimating the parameters of
the model.

Sample size determination in the framework of the Rasch
model – The Raschpower method
We assume that we want to design a clinical trial using
a given dimension of a PRO (e.g. the Mental Health di-
mension of the SF-36) as a primary outcome in a two-
group cross-sectional study. Let γ (assumed > 0) be the
difference between the mean values of the latent trait
(e.g. mental health) in the two groups and σ2 the com-
mon variance of the latent trait in both groups. We as-
sume that the study involves the comparison of the two
hypotheses H0: γ = 0 against the two-sided alternative
H1: γ ≠ 0. If we plan to use a Rasch model that includes
a group effect γ (Eq 1) to test this null hypothesis on the
data that will be gathered during the study with a given
power 1-βR and type I error α, determination of the re-
quired sample size can be made using an adapted for-
mula that has been implemented in the Raschpower
method [23]. This method is based on the power of the
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Wald test of group effect γ for a given sample size and it
is briefly described. To perform a Wald test, an estimate Γ
of γ is required as well as its standard error. Since we are
designing a study, some assumptions are made regarding
the expected values of these parameters. More specifically,
Γ is set at the assumed value for the group effect, γ, and its
standard error is obtained as follows: an expected dataset
of the patient’s responses is created conditionally on the
planning values that are assumed for the sample size in
each group, the group effect γ, the items difficulties δj, and
the variance of the latent trait σ2. The probabilities and
the expected frequencies of all possible response patterns
for each group are computed with the statistical model
that will be used for analyzing the data that will be gath-
ered during the study: a Rasch model. The variance of the
group effect V̂ar γ̂ð Þ is subsequently estimated using a
Rasch model including a group effect with δj and σ2 fixed
to their planned expected values.
The power 1-βR is then computed with the following

formula:

1−βR≈1−Φ z1−α=2−
γffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ar γ̂ð Þ
q

0B@
1CA ð2Þ

where Φ is the cumulative standard normal distribution
function and z1 − α/2 the percentiles of the standard normal
distribution. 1 − βR is the power of the Wald test of group
effect when a Rasch model is used to detect γ at level α. In
practice, γ, σ2, and the items' difficulties are unknown
population parameters and initial estimates based on the
literature or pilot studies are required for calculations.

Relationship between the Raschpower method and the
classical formula for manifest normal variables
Using the same notations as before (γ is the group effect
and σ2 is the common variance of the latent trait for both
groups), we can also compute the required sample size
per group (NC0 for the first group and NC1 for the second
group) using the classical formula for comparing normally
distributed endpoints with a given power 1-β and a type I
error α to detect the group effect γ as follows [24]:

NC0 ¼
kþ 1ð Þ � σ2 � z1−α=2−z1−β

� � 2
k� γ2

ð3Þ

Where NC1 = k x NC0 (when k = 1, the sample sizes are
assumed equal in both groups).
The power 1-β for detecting a difference between

groups equal to γ with a total sample size of NC0 + NC1

and a type I error set to α can also be computed as:

1−β ¼ Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kNC0 � γ2

kþ 1ð Þ � σ2

s
−z1−α=2

 !
ð4Þ
Let us assume without loss of generality that k = 1, that
is we expect that the samples sizes are equal in each
group (NC0 = NC1 = Ng). It has been evidenced [23] that
the sample size per group computed using this classical
formula (Ng) allowed obtaining a power of 1-β at level α
for CTT-based analysis but did not provide the same
power for Rasch-based analysis, but a lower power, com-
puted with the Raschpower method, namely 1-βR ≤ 1-β
(Figure 1, RP①). Thus, using this classical formula, the
sample size required when a Rasch model is used has to
be increased to reach the desired power of 1-β (i.e. Ng

has to be increased).
It has been observed in a previous study that this in-

crease could be easily computed using the following
relationships:

- since 1-βR ≤ 1-β, the sample size that provides a
power of 1-βR using the classical formula (Eq 3 and
Figure 1, CF②), say Nc, is lower than Ng and the ratio
Ra ¼ Ng

Nc
(Figure 1, ③) is therefore higher than 1

- previous observations [23] have shown that this ratio
Ra remained stable for different values of Ng and 1-βR,
given γ, J and items difficulties
- it has been noticed that multiplying Ng by this ratio
gave a sample size of NR =Ng x Ra (Figure 1, ④) that
could provide the desired power 1-β for Rasch modelling
(Figure 1, RP⑤)

Hence this ratio Ra depends on the well-known clas-
sical formula and can be used to provide sample size cal-
culations for Rasch modelling.

Simulations
A simulation study has been performed in order to get
more insight into the relationships between the parame-
ters that are required when planning a study for power
determination for a given sample size (γ, σ2, δj, J) and
the ratio Ra. A large number of cases (106) were simu-
lated with each case corresponding to a single parameter
combination (γ, σ2, δj, J, Ng). The parameters values were
randomly drawn from continuous or discrete uniform
distributions, U[min-max], for: the variance of the latent
trait σ2 (U[0.25-9]), the group effect γ (U[0.2xσ - 0.8xσ]),
the number of items J (U[3-20]), and the sample size per
group Ng assumed to be equal in both groups (U[50–
500]). The items difficulty parameters δj, j = 1,…,J, were
drawn from a centred normal distribution with variance
σ2 and set to the percentiles of the distribution. The
Raschpower method was applied on each parameter
combination and provided the power 1-βR for Rasch
modelling as well as the ratio Ra. Multiple linear regres-
sion was performed to assess the contribution of Ng, γ, J,
and σ2 and the difficulty parameters δj, j = 1,…,J to the
variation of the ratio Ra. The effects of the difficulty



Table 1 Parameters estimates of the linear regression
model explaining the ratio provided by the Raschpower
method

Variables NPOP = 984722 P-values

Intercept 1.012 (7.0 10−5) <10−3

1/σ2 0.095 (1.0 10−4) <10−3

1/J 0.939 (5.0 10−4) <10−3

Interaction (1/σ2*1/J) 3.730 (7.5 10−4) <10−3

R2 0.994 /

RMSE 0.030 /

Standard errors in parentheses. σ2: variance of the latent trait; J: number
of items.

Figure 1 Description of the whole procedure for power and sample size determination using the ratio with the Raschpower method
and the linear regression model.
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parameters on Ra were investigated in several ways for
different values of J: i) by introducing each parameter in-
dividually δj, j = 1,…,J, ii) by introducing their mean and
variance. A two-tailed P-value < 0.05 was considered sig-
nificant. The variance explained by the model (R2) and
the root mean square error (RMSE) were obtained and
contributed to variable selection. Variables were re-
moved if R2 and RMSE remained stable (within a 0.01
range). Post-regression diagnoses were performed to en-
sure that all linear regression assumptions were met
(normality and homoscedasticity of residuals). Statistical
analysis was performed using SAS statistical software
version 9.3 (SAS Institute Inc, Cary, North Carolina).

Results
Among the 106 parameter combinations, 15278 corre-
sponded to the largest power for CTT and Rasch-based
analysis, 100%, where the ratio cannot be computed.
Hence all analyses were performed on 984722 parameter
combinations.
A full linear model explaining the value of Ra was first

fitted including Ng, γ, 1/J, 1/σ
2, the difficulty parameters



Table 2 Distributions of the difference between the ratio
(respectively number of subjects per group) predicted by
the model and the one expected by the Raschpower
method ΔR (respectively ΔN) and according to the
threshold (Thres) for ΔN

Variables NPOP = 1996077

2.5% / Median / 97.5%

[min-max]

ΔR −0.049 / 0.002 / 0.043

[−1.236 ; 0.230]

ΔN −10.623 / 0.438 / 13.499

[−179.576 ; 112.064]

n (%)

– Thres < ΔN < + Thres 968364 (98.34%)

ΔN < − Thres 10865 (1.10%)§

ΔN > + Thres 5493 (0.56%)†

Thres : threshold corresponding to 5% of the number of subjects per group
derived from the Raschpower method.
§: underestimation of the number of subjects per group produced by the
model as compared to the Raschpower method; †: overestimation of the
number of subjects per group produced by the model as compared to the
Raschpower method.
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(included either individually or using their mean and
variance) and their interactions. A backward procedure
was used for variable selection relying on the R2 and
RMSE variations between models and not on p-values.
Indeed, since the number of simulated combinations
was high (984722), all parameters were significant but
not necessarily meaningful (very small estimated values).
The R2 and RMSE remained stable during the backward
procedure until the final model only containing 1/J and
1/σ2 and their interaction was obtained (a maximum
variation of 0.0015 and of 0.0037 was observed for the
R2 and the RMSE, respectively). The model that was
retained can be written as follows:

Rai ¼ β0 þ β1 �
1
σ2i

� 	
þ β2 �

1
Ji

� 	
þ β3 �

1
σ2i

� 1
Ji

� 	
þ εi ð5Þ

where εi eN 0; σ2ε
� �

, for i = 1,…, 984722
Table 1 shows the estimates of the multiple linear re-

gression model that explains R2 = 99.4% of the variance
of the ratio and displays high accuracy (RMSE = 0.030).
The interaction between 1/σ2 and 1/J is significant; the
effect of 1/σ2 on the ratio seems to be more pronounced
when 1/J is large (i.e.: J is small). The ratio increases with
1/σ2 (ie: when σ2 decreases) and with 1/J (i.e.: when
J gets smaller).
The number of subjects per group predicted by this

model was computed as follows: N̂R ¼ Ng � R̂a where

R̂a is the ratio predicted by the model. It was compared
Figure 2 Distributions of ΔN / NR with ΔN ¼ N̂R−NR, where N̂Ris the n
model and NR is the number of subjects per group associated with th
to the expected number of subject per group NR = Ng ×
Ra where Ra is the ratio derived from the Raschpower
method. The difference between the ratio (respectively
number of subjects per group) predicted by the model
R̂a (respectively N̂R ) and the one associated with the
Raschpower method Ra (respectively NR) was computed
umber of subjects per group predicted by the linear regression
e Raschpower method.
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for all parameters combinations with ΔR ¼ R̂a−Ra and
ΔN ¼ N̂R−NR . Figure 2 shows the distributions of ΔN /
NR which is distributed around 0.
To quantify more precisely the magnitude of the dif-

ference ΔN, a threshold (Thres) corresponding to 5% of
the number of subjects per group expected with the
Raschpower method, Thres = 0.05 × NR, was calculated
for all parameters combinations. The descriptive statis-
tics related to the distributions of ΔR, ΔN, and to ΔN

with respect to Thres are displayed in Table 2. Ninety-
five percent of the values of ΔR, (respectively ΔN) lie be-
tween −0.049 and 0.043 (respectively −10.623 and
13.499). The largest overestimation (respectively under-
estimation) of the number of subjects per group pre-
dicted by the model is about 112 subjects per group
(respectively −180 subjects per group). The distribution
of ΔN mostly lies (98.34% of the cases) within the interval
[−Thres – + Thres] corresponding to ±5% of the number
of subjects per group expected with the Raschpower
method. Moreover, the model rarely predicted (0.56%) an
overestimated number of subjects per group of more than
5% of the sample size per group expected with Rasch-
power. This case only occurs when the variance of the la-
tent trait σ2 < 1 and J > 7 items. An underestimated
number of subjects per group of more than 5% of the
sample size per group expected with Raschpower is occa-
sionally observed (1.10%) and it mostly occurs (more than
90% of the cases) when J is larger than 16 items and
mostly when σ2 < 1 (75% of the cases).
The whole procedure including the Raschpower

method and the linear regression model for power and
sample size determination using the ratio is summarized
in Figure 1.
Table 3 Comparison of the required parameters and the
results obtained using the linear regression model and
the Raschpower method on the NHP data

Variables Linear regression model Raschpower method

σ2 3.9323 3.9323

J 8 8

γ / 0.649

Ng / 197

δ / (2.61, 2.94, 1.75, 0.46,
−0.11, 0.36, 1.28, 2.23)

Ra 1.27210 1.34

NR 251 264

σ2: variance of the latent trait; J: number of items; γ: difference between the
mean values of the latent trait in the two groups (group effect); Ng: sample
size per group providing a 1-β = 90% power with the classical formula and a
1-βR = 80% power with Raschpower; δ: vector of the items parameters (δ1, δ2,
δ3, δ4, δ5, δ6, δ7, δ8); Ra: ratio, NR: sample size per group providing a 1-β ≈ 90%
power for Rasch analysis with the linear regression model and Raschpower, /:
not required.
An example of sample size determination in
clinical research using the ratio – NHP data
The data come from a pilot study whose main objective
is to compare the pain level of two groups of patients
having either Steinert's disease or another muscular dys-
trophy. The two disease groups have similar symptoms
but also present a number of dissimilar features such as
pain, cognitive disorders or male hypogonadism that are
more frequently encountered in patients suffering from
Steinert's disease and may impact QoL. Since QoL and
in particular pain assessment may help to better under-
stand the burden of disease from the patients' perspec-
tive and improving health outcomes and management,
the pain dimension of the Nottingham Health Profile
(NHP) questionnaire was used; it is composed of eight
binary items (J = 8). The ethics committee of Reims,
France granted approval for the study and patients were
recruited in the university hospital of Reims: 52 patients
were included with Steinert’s disease and 95 patients
with others muscular dystrophies. A Rasch model in-
cluding a group effect γ was fitted on these data and its
global fit was not rejected by the R1m test (p = 0.329)
[25]. The estimation of the difference between the means
of the latent trait of the two groups was γ̂ = 0.649 and
the estimated latent trait's variance was σ̂ 2 = 3.9323
(non-significant difference between groups: p = 0.08).
The objective was to use this pilot study to help plan-
ning a future possibly larger study that would provide
enough power to detect this difference on the latent trait
using a Rasch model. Indeed, it seemed valuable to the
clinicians to determine a sample size large enough to be
able to significantly detect this difference considered as
clinically relevant with a power of 1-β = 90% using a
Rasch model. The sample size per group computed
using the classical formula (Eq 3), for detecting γ =
0.649 with a 90% power at α = 5%, assuming σ2= 3.9323,
is Ng = 197 for CTT-based analysis. We know that Ng

has to be increased to reach the desired power for Rasch
modelling using the ratio. The ratio predicted by the
multiple linear regression model can be easily computed
as follows using the values of J and σ2:

R̂a ¼ 1:012þ 0:095� 1
3:9323

� 	
þ 0:939� 1

8

� 	
þ 3:730� 1

3:9323
� 1
8

� 	
¼ 1:27210 ð6Þ

Multiplying Ng by this ratio gives a sample size of N̂R=
197 × 1.27210 ≈ 251 patients per group that should pro-
vide the desired power of 90% for Rasch modelling of the
pain dimension of the NHP questionnaire. These results
were compared to those obtained with the Raschpower
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method using the estimated difficulty parameters from the
pilot study (2.61, 2.94, 1.75, 0.46, − 0.11, 0.36, 1.28, 2.23),
γ̂ = 0.649, σ̂ 2 = 3.9323, and Ng = 197 per group. An 80%
power (1-βR) is expected using the Raschpower method
for Rasch modelling with a sample size of Ng = 197 per
group (Figure 1, RP①). The proposed ratio is therefore
equal to 197 / 147 = 1.34 where Nc = 147 is the number
of subjects per group that provides a power of 80%
using the classical formula (Figure 1, CF②). Hence,
using the ratio, 197 × 1.34 ≈ 264 (NR) patients per group
should provide the desired power of 90% for Rasch
modelling (Figure 1, RP⑤).
The parameters that are required for the determin-

ation of the ratio using the linear regression model or
the Raschpower method as well as their corresponding
values appear in Table 3. The ratio provided by the lin-
ear regression model and Raschpower (Table 3) are close
to one another (ΔR = −0.0679) and the number of sub-
jects per group are |ΔN| = 13 patients apart. Moreover,
since |ΔN| / NR = 13 / 264 = 0.0492, the linear model's
prediction was within 5% of the expected sample size
provided by the Raschpower method.
Discussion
Our results revealed that the sample size required in the
framework of two-group cross-sectional studies for
1

2

3

4

5

6

7

2 4 6 8 10

Ra
tio

 (R
a)

Number 

Figure 3 Values of the ratio Ra as a function of the number of items
subsequent use of a Rasch model to analyse PRO data can
be easily computed using the classical formula for com-
paring normally distributed endpoints along with a correc-
tion factor (named ratio in this paper). The most relevant
parameters explaining this ratio’s variation (R2 = 99.4%)
were the number of items of the questionnaire to be used
in the study (J) and the latent trait’s variance (σ2). Hence
when designing a study, the most important parameters
for reliable power determination using this ratio when a
Rasch model is intended to be used to analyse PRO data
appear to be the variance of the latent trait and the num-
ber of items regardless of the values of the group effect (γ)
and items parameters (δj, j = 1,…,J). A preliminary investi-
gation had already evidenced that the precision with
which item difficulty parameters were known did not have
an impact on power determination of the test of group ef-
fect using a Rasch model [22]. However, in this previous
study, the number of items J greatly impacted power as it
was observed in our current study for sample size deter-
mination; both (sample size and power) being very closely
related. The power increased with J in line with what we
observed in this study where the ratio decreased when J
rose from 3 to 20 items, implying that fewer subjects were
needed to obtain the same power when J = 20 as com-
pared to J = 3. Moreover, this decrease of the ratio was
more marked as σ2 got smaller (significant interaction be-
tween 1/J and 1/σ2). Quite a large range of values were
12 14 16 18 20

of items (J)

Variance = 0.25

Variance = 0.5

Variance = 1

Variance = 2

Variance =9

J according to the values of the variance of the latent trait.
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chosen for the variance of the latent trait (from 0.25 to 9)
and for the number of items J (from 3 to 20) that allowed
investigating more in depth the magnitude of their impact
on the ratio. Figure 3 shows the evolution of the ratio Ra
as a function of the number of items J according to the
values of the variance of the latent trait σ2. The effect of
σ2 on the ratio was large, especially for small values of the
variance (σ2 < 1), the ratio increasing as σ2 decreased. This
result, which might be thought as counter-intuitive, comes
from the fact that the ratio, used to correct the sample size
coming from the classical formula to obtain an adequately
powered Rasch model, is a measure of the distance be-
tween the sample sizes corresponding to the powers ex-
pected for CTT and Rasch-based analyses. This distance
becomes larger as the variance gets smaller and it reaches
its maximum when σ2 < 1. Hence, the correction factor
(ratio) is likely to get larger as σ2 decreases and the dis-
tance between the sample sizes for CTT and Rasch in-
creases. Furthermore, it can be noted that when σ2 < 1, the
linear regression model could predict an overestimated
number of subjects per group of more than 5% of the
sample size per group expected with Raschpower (in at
most 0.56% of all parameters combinations). An under-
estimation of more than 5% of the sample size per group
expected with Raschpower could also be noticed (in at
most 1.10% of all parameters combinations) for small
values of σ2 (σ2 < 1 in 75% of the cases) and large values of
J (J > 17 in more than 90% of the cases). It can be empha-
sized that such small variances for the latent trait might
be rarely encountered in practice especially when J is large
[26,27]; hence this simple regression model should be reli-
able for sample size determination in most situations usu-
ally found in clinical research. Nevertheless, one of the
major issues regarding study design and sample size deter-
mination still remains: to what expected values should we
fix the key parameters? In our case, the challenge is put
on one single parameter, the expected value for the vari-
ance of the latent trait. Retrospective, pilot data or pub-
lished studies can be used for that purpose to provide
information regarding the plausible range of values for the
variance. However, it can turn out to be problematic if no
previous studies can provide this information and it seems
important to further study the impact of misspecifications
of the planning values for the variance on the performance
of the proposed method for sample size determination for
Rasch modelling.
The fact that the number of subjects given by the clas-

sical formula, based on the latent trait, has to be in-
creased using the ratio to reach the expected power for
Rasch modelling could deliver a wrong message. Indeed,
it could be interpreted as if Rasch models required more
subjects than CTT-based analyses would. In fact, the
classical formula is directly computed from the expected
difference between the latent traits in both groups and
the latent trait's variance in each group, assumed to be
equal. By doing so, we assume that the means and vari-
ance of the latent traits are "perfectly" known and thus
do not take into account the fact that the latent trait is
not an observed (manifest) variable. Hence, its estima-
tion requires the use of a model which creates uncer-
tainty, unlike scores that can be directly observed and
measured. This uncertainty is taken into account by
adjusting the sample size using the ratio to obtain an ad-
equately sized study for Rasch modelling. Moreover, it
has been underlined that the so-called effect size (differ-
ence in means over the standard deviation) on the score
scale was lower than the corresponding effect size on
the latent trait scale. Consequently, the sample size re-
quested for CTT-based analysis using the effect size on
the score scale is higher than its counterpart on the la-
tent trait scale.
The proposed method can be used with confidence

when J stands between 3 and 20 and especially when the
variance of the latent trait is expected to be higher than 1.
Otherwise (when σ2 < 1), the Raschpower method should
be preferred since the ratio-based approach might under
or overestimate the sample size. One of the limitations of
our study is that we focused on one of the most well-
known IRT model, the Rasch model. The Raschpower
method has also been developed for other models that are
well suited for the analysis of polytomous item responses,
such as the Partial Credit Model or the Rating Scale
Model (Hardouin, under revision). Moreover, the Rasch-
power method has recently been extended to deal with
longitudinal designs [28] and it might be expected that
this ratio would also be worthwhile in these contexts. Fi-
nally, the Raschpower method (for dichotomous and poly-
tomous items and for cross-sectional and longitudinal
designs) and the ratio-based approach (for dichotomous
items) have been implemented in the free Raschpower
module available at the website PRO-online http://pro-
online.univ-nantes.fr.
Conclusion
Using the classical formula for normally distributed end-
points along with the proposed ratio only depending on
the number of items and the variance of the latent trait
can provide a straightforward and reliable formula for
sample size computation for subsequent Rasch-based
analysis of PRO data.
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