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Abstract

Background: Several types of statistical methods are currently available for the meta-analysis of studies on
diagnostic test accuracy. One of these methods is the Bivariate Model which involves a simultaneous analysis of the
sensitivity and specificity from a set of studies. In this paper, we review the characteristics of the Bivariate Model and
demonstrate how it can be extended with a discrete latent variable. The resulting clustering of studies yields
additional insight into the accuracy of the test of interest.

Methods: A Latent Class Bivariate Model is proposed. This model captures the between-study variability in sensitivity
and specificity by assuming that studies belong to one of a small number of latent classes. This yields both an easier to
interpret and a more precise description of the heterogeneity between studies. Latent classes may not only differ with
respect to the average sensitivity and specificity, but also with respect to the correlation between sensitivity and
specificity.

Results: The Latent Class Bivariate Model identifies clusters of studies with their own estimates of sensitivity and
specificity. Our simulation study demonstrated excellent parameter recovery and good performance of the model
selection statistics typically used in latent class analysis. Application in a real data example on coronary artery disease
showed that the inclusion of latent classes yields interesting additional information.

Conclusions: Our proposed new meta-analysis method can lead to a better fit of the data set of interest, less biased
estimates and more reliable confidence intervals for sensitivities and specificities. But even more important, it may
serve as an exploratory tool for subsequent sub-group meta-analyses.
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Background
There is an increasing interest in meta-analyses of data
from diagnostic accuracy studies [1-4]. Typically, the data
from each of the primary studies are summarized in a 2-
by-2 table cross-tabulating the dichotomized test result
against the true disease status, from which familiar mea-
sures such as sensitivity and specificity can be derived
[5]. Several statistical methods for meta-analysis of data
from diagnostic test accuracy studies have been proposed
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[6-13]. Generally, we expect that such data show a negative
correlation between sensitivity and specificity because of
explicit or implicit variations in test-thresholds [1,7], as
well as contain a certain amount of heterogeneity [14].
Our research is motivated by the need to explore and
explain sources of heterogeneity in systematic reviews of
diagnostic tests in a more careful manner. In fact, meth-
ods for the meta-analysis of sensitivity and specificity are
still an active field of research and debate. One frequently
used method involves generating a ROC curve using sim-
ple linear regression [6,7]. However, the assumptions of
the underlying linear regressionmodel are not alwaysmet,
and as a consequence the produced statistics, in particu-
lar standard errors and p-values, may be invalid. There is
also uncertainty as to the most appropriate weighting of
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studies to be used in the regression analysis [15]. Rutter
and Gatsonis [9] suggested that in the presence of a
substantial amount of heterogeneity, the results of meta-
analyses should be presented as Summary ROC curves.
Reitsma and others [12] proposed the direct analysis

of sensitivity and specificity estimates using a bivariate
model BM, which yields a rigorous method for the meta-
analysis of data on diagnostic test accuracy, in particu-
lar when the studies are selected based on a common
threshold [16]. Chu and Cole [17] extended this bivariate
normal model by describing the within-study variability
with a binomial distribution rather than with a normal
approximation of transformed observed sensitivities and
specificities. Though the BMmay work well with the nor-
mal approximation, Hamza [18] and others suggested that
the binomial distribution is to be preferred, especially
when only few studies with a small size are available. An
additional advantage of the binomial approach is that it
does not require a continuity correction. When using a
bivariate generalized linear mixed model to jointly model
the sensitivities and specificities, different monotone link
functions can be implemented, such as logit, probit, and
complementary log-log transformations [19]. Chu and
others [20] also discussed a trivariate nonlinear random-
effects model for jointly modeling disease prevalence,
sensitivity and specificity, as well as an alternative param-
eterization for jointly modeling prevalence and predictive
values.
Bayesianmodeling approach to BM are gaining popular-

ity, by allowing the structural distribution of the random
effects to depend on multiple sources of variability and
providing the predictive posterior distributions for sensi-
tivity and specificity [21]. In order to avoid the Markov
chainMonte Carlo sampling also a deterministic Bayesian
approach using integrated nested Laplace approximations
have been proposed [22]. BM can be seen within a unified
framework which includes also the Hierarchical Summary
ROC model [23]. Arends and others [24] showed that
the bivariate random-effects approach not only extends
the Summary ROC approach but also provides a unifying
framework for other approaches. Rücker and Schumacher
[13] proposed an alternative approach for defining a Sum-
mary ROC curve based on a weighted Youden index.
The Latent Class Model has been introduced in the lit-

erature as a tool for evaluating the accuracy of a new test
when there is no gold standard against which to compare
it [25,26]. A probabilistic model is assumed for the rela-
tionship between the new diagnostic test, one or more
imperfect reference tests, and the unobserved, or latent,
disease status. This provides estimates of the sensitivity
and specificity of the new diagnostic test. This application
of latent class analysis has received considerable attention
in the context of primary (individual) diagnostic accuracy
studies, but its use in meta-analysis is rare [27].

In this paper we propose using a latent class approach
for a different purpose. More specifically, we use it as
a tool for clustering the studies involved in the meta-
analysis [28]. For this purpose, the BM based on using
a binomial distribution is expanded to include a discrete
latent variable. The resulting Latent Class BivariateModel
(LCBM) allows obtaining more reliable estimates of sensi-
tivity and specificity, as well as the estimation of a different
between-study correlation between sensitivity and speci-
ficity per latent class. While this correlation is usually
assumed to be negative, this is not always correct in real-
data applications, probably due to varying accuracy levels
and differences in test performance. In a simulation study,
the LCBM is compared to the standard BM in terms
of bias, power, and confidence. Moreover, it is applied
to a well-known dataset on the diagnostic performance
of multislice computed tomography and magnetic reso-
nance imaging for the diagnosis of coronary artery disease
[16,29].
The remaining of the article is organized as follows.

We first describe the BM and the LCBM, as well as dis-
cuss computational issues and the setup of the simulation
study. Then, attention is paid to the results of the sim-
ulation study and the application of the LCBM to the
coronary artery disease data. Next, we discuss the implica-
tions of our study and present some conclusions. Software
code for estimating the LCBM is provided as Additional
files.

Methods
The bivariate model
The BM is based on an approach to meta-analysis intro-
duced by Van Houwelingen and others [8], which has also
been applied to the meta-analysis of diagnostic accuracy
studies [12]. Let x1i and n1i be the number of subjects
with a positive test result and the total number of sub-
jects with the disease in study i, respectively, and x0i and
n0i, analogously, be the number of subjects with a nega-
tive test result and the total number of subjects without
the disease. Then, the observed sensitivity and specificity
is x1i/n1i and x0i/n0i. The corresponding true values are
denoted by ηi and ξi, respectively. TheBM can be specified
as follow [17]:

x1i ∼ binomial(ηi , n1i)
x0i ∼ binomial(ξi, n0i) (1)

logit(ηi) = Xiα + μi
logit(ξi) = Wiβ + νi (2)

(
μi
νi

)
∼ N

(
0
0

) (
σ 2

η ρσησξ

ρσησξ σ 2
ξ

)
. (3)
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Here, Xi and Wi are (possibly overlapping) vectors of
covariates related to sensitivity and specificity, σ 2

η and σ 2
ξ

are the between-study variances of sensitivity and speci-
ficity, and ρ is their correlation. Thus, the parameters of
the covariance matrix quantify the amount of heterogene-
ity present across studies together with how strongly the
sensitivity and specificity of a study are related.
The hierarchical model specified by (1), (2) and (3) can

be fitted using the generalized linear mixed model pro-
cedures in several standard statistical packages. Other
kinds of link functions can be used instead of the logit
one [19]. In simulation experiments, it has been shown
that, in general, it is better to work with such a binomial
model rather than with a normal model for transformed
observed proportions [18].

The latent class bivariate model
In the BM, between-study heterogeneity modelled with
covariates (2) and random effects (3).We extend the mod-
eling of the between-study heterogeneity by assuming that
each study belongs to one of K latent classes [28]. This
implies expanding the BM model with a discrete latent
variable with categories denoted by c. The basic structure
of the resulting LCBM is:

P(x1i, x0i) =
K∑
c=1

P(c)P(x1i, x0i|c), (4)

where P(c) is the probability of a study to belong to latent
class c, and P(x1i, x0i|c) is the joint sensitivity and speci-
ficity distribution within latent class c. For P(x1i, x0i|c)
we specify a BM model with all parameters (including
the variances and the correlation) varying across classes.
More specifically, in the LCBM the binomial probabilities
have the following form:

x1i ∼ binomial(ηi|c , n1i)
x0i ∼ binomial(ξi|c, n0i) (5)

logit(ηi|c) = Xiα + μi|c
logit(ξi|c) = Wiβ + νi|c. (6)

True sensitivities and specificities ηi|c and ξi|c condi-
tional on study i belonging to class c are assumed to have
a bivariate normal distribution with parameters that vary
across classes:(

μi|c
νi|c

)
∼ N

(
0
0

)(
σ 2

η|c ρcση|cσξ |c
ρcση|cσξ |c σ 2

ξ |c

)
. (7)

where σ 2
η|c, σ 2

ξ |c are the class-specific between-study vari-
ances and ρc is the class-specific between-study correla-
tion. Finally, sensitivity and specificity are assumed to be
mutually independent given the latent class memberships

and the random effects. This yields the following expres-
sion for P(x1i, x0i|c):

P(x1i, x0i|c) =
∫

μ

∫
ν

P(x1i|c,μ)P(x0i|c, ν)f (μ, ν|c)dμdν.

(8)

An additional extension involves the inclusion of covari-
ates Zi to predict the latent class membership in the
LCBM, which yields:

P(x1i, x0i|Zi) =
K∑
c=1

P(c|Zi)P(x1i, x0i|c). (9)

Here, P(c|Zi) is the probability that a study belongs to
latent class c given the covariate set Zi and where, as
above, P(x1i, x0i|c) denotes the class-specific sensitivity
and specificity distribution. As can be seen, covariates Zi
affect the latent classes but have no direct effects either on
the true sensitivity and specificity or the random effects.
The values of the latent class variable given a study’s

covariate values is assumed to come from a multino-
mial distribution. The multinomial probability P(c|Zi) is
typically parameterized as follows:

P(c|Zi) = exp(γc|Zi)∑K
c′=1 exp(γc|Zi)

, (10)

with

γc|Zi = δ0 +
P∑

p=1
δpZip. (11)

Here δ0 is an intercept term and δp is the effect of
covariate p on the class membership probability.

Estimation techniques
Both the BM and LCBM can be estimated with the Latent
GOLD 4.5 software package for latent class analysis [30].
To find the Maximum Likelihood estimates for the model
parameters, a combination an EM and a Newton-Raphson
algorithm is used; that is, the estimation process starts
with a number of EM iterations and when close enough
to the final solution, the program switches to Newton-
Raphson. A well-known problem in LC analysis is the
occurrence of local maxima. To prevent ending up with
a local solution, multiple sets of starting values are used.
The user can specify the number of start sets and the
number of EM iterations to be performed per set.

Simulation study
The performance of the LCBM was evaluated using a
simulation study.More specifically, we evaluated Bias (dif-
ference between the mean estimate and the true value of
the parameter for both LCBM and BM), Power (the pro-
portion of replications in which the LCBM is preferred
over the BM when data are generated from a true latent
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class structure), and Confidence (the proportion of repli-
cations in which the BM is preferred over the LCBMwhen
data are generated from a single class structure). We were
interested in the effects of the number of studies included
in the meta-analysis, within-study sample size, and true
mean sensitivity and specificity on the performance of the
BM and the LCBM.
The settings used in our study were taken from the

simulation study by Hamza et al. [18]. The disease preva-
lence was fixed to 50%. Four conditions were considered
for the number of studies included in the meta-analysis;
that is, 10, 25, 50, and 100 studies. The study size was
generated from a normal distribution and rounded to the
nearest integer. Two different distributions were consid-
ered, N(40, 302) and N(500, 4502). The minimum study
size was set to be 10, meaning that if the generated study
size was less than 10, it was set to 10. Consequently, 40 and
500 are no longer the means for the simulated study sizes,
but the medians, and the realized standard deviations will
be slightly smaller than 30 and 450, respectively.
For assessing the Power and the Bias, we considered

scenarios with data coming from two equal size latent
classes with varying patterns of sensitivities and specifici-
ties. Due to the need of simplifying the evaluation of the
results, both in the first and in the second latent class
the negative correlation across studies between sensitiv-
ity and specificity was kept fixed at -0.75. We considered
six different patterns for the class-specific specificities and
sensitivities, which crossed with the 4 sample size and the
2 within-study sample conditions, yields a total of 48 sce-
narios. An overview of the simulated scenarios is given in
Table 1.
For assessing the Confidence of LCBM, we considered a

set of scenarioswith data coming from a single latent class,
with a -0.75 correlation between sensitivity and specificity
across studies. We considered three different patterns for
specificity and sensitivity, which crossed with the 4 sam-
ple size and the 2 within-study sample conditions, yields a
total of 24 scenarios (see Table 2).

Table 1 The different scenarios used in the simulation
study for assessingpower

Class1 Class2

Sensitivity Specificity Sensitivity Specificity

1-8 90% 75% 75% 75%

9-16 90% 75% 90% 90%

17-24 90% 75% 75% 90%

25-32 90% 60% 60% 60%

33-40 90% 60% 90% 90%

41-48 90% 60% 60% 90%

Each subset of eigth scenarios corresponds to 10, 25, 50, and 100 studies in the
meta-analysis and different median within-study sample size (40 and 500).

Table 2 The different scenarios used in the simulation
study for assessing confidence

Sensitivity Specificity

1-8 90% 60%

9-16 90% 75%

17-24 90% 90%

Each subset of eigth scenarios corresponds to 10, 25, 50, and 100 studies in the
meta-analysis and different median study size (40 and 500).

Each scenario was replicated 1,000 times, and the sim-
ulated data sets were analyzed according to the BM and
LCBM. Power and Confidence were assessed for differ-
ent model selection criteria: AIC, AIC3 and BIC. These
information criteria are defined as follows:

BIC = −2LL + log(N)· npar
AIC3 = −2LL + 3· npar
AIC = −2LL + 2· npar. (12)

Note that the criteria differ with respect to theweighting
of parsimony in terms of number of parameters. Because
the log of the sample size is usually larger than 3, BIC tends
to select a model with fewer latent classes than AIC and
AIC3. AIC has been shown to be a superior fit-index when
dealing with complex models combined with small sample
sizes [31].

Results
Simulation study
Bias
The results of the simulation study show that BM yields
a systematic bias if sensitivity or specificity differs across
latent classes. The BM tends to overestimate sensitiv-
ity/specifity more when the difference between the two
latent class increases. For the condition with a median
study size of 40 (Figure 1), the largest bias in the sensitivity
is 4.8%, which occurs when the true sensitivity is 90% in
one class and 60% in the other one and when the number
of studies is 50. The bias of specificity reaches its maxi-
mum at 5.0% when specificity is 90% in one class and 60%
in the other one and the number of studies is 25.When the
median study size is 500 (Figure 2), the bias of sensitivity
estimate in BM reaches its maximum at 5.8% when sensi-
tivity is 90% in one class and 60% in the other one and the
number of study is 10. The bias of specificity reaches its
maximum at 5.0% when specificity is 90% in one class and
60% in the other one and the number of studies is 25. The
mean bias is close to zero for the LCBM in all scenarios.

Power
As we expected, when two latent class of studies exist,
the probability of correctly finding this mixture (Power)
goes up as we increase the number of studies, their size,
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Figure 1 Simulation results for median within-study sample size equals to 40. Bias of sensitivity (top panel) and specificity (bottom panel) in
LCBM (black line) and BM (grey line).

and the difference in the sensitivity/specificity between
the classes. Power was evaluated with AIC, AIC3 and BIC
across different conditions (Figure 3). The AIC criterion
is clearly preferable, because in most of the cases (except
when the difference in terms of sensitivity/specificity
between the classes is huge) BIC and AIC3 need more
than 25 primary studies to detect the specified two-class
structure.

Confidence
When data were simulated from a single class of stud-
ies, the probability of correctly rejecting a two component
mixture (Confidence) was inversely related to the num-
ber of primary studies and their size. Confidence was also
evaluated withAIC, AIC3 and BIC (Figure 4). The BIC cri-
terion protected very well from the eventuality that LCBM
finds two classes when in fact data were generated from
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Figure 2 Simulation results for median within-study sample size equals to 500. Bias of sensitivity (top panel) and specificity (bottom panel) in
LCBM (black line) and BM (grey line).
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Figure 3 Simulation results for median within-study sample size equals to 40 (top panel) and 500 (bottom panel). Power of LCBM
(proportion of replications in which the LCBM is preferred over the BM when data are generated following a true latent class structure) in terms of
AIC (solid line) AIC3 (dotted line) and BIC (dashed line).
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Figure 4 Simulation results for median within-study size equals to 40 (top panel) and 500 (bottom panel). Confidence of LCBM (proportion
of replications in which the BM is preferred over the LCBM when data are generated within a single class structure) in terms of AIC (solid line) AIC3
(dotted line) and BIC (dashed line).
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a single class model. AIC and AIC3 were reliable criteria,
up to a certain number of studies (approximately up to 25
studies for AIC and 50 for AIC3).

Real data example: coronary artery disease data
We illustrate the use of the LCBM approach by re-
analyzing data from Schuetz and others [29]. This well-
known dataset is presented (Additional file 1) in the
Cochrane Handbook for Systematic Reviews of Diagnos-
tic Test Accuracy [16]. In this meta-analysis, the diag-
nostic performances of multislice computed tomography
(CT) and magnetic resonance imaging (MRI) for the diag-
nosis of coronary artery disease (CAD) are compared.
Prospective studies that evaluated either CT or MRI (or
both), used conventional coronary angiography (CAG) as
the reference standard, and used the same threshold for
clinically significant coronary artery stenosis (a diameter
reduction of 50% or more) were included in the review. A
total of 103 studies provided a 2-by-2 table for one or both
tests and were included in the meta-analysis: 84 studies
evaluated only CT, 14 evaluated only MRI, and 5 evalu-
ated both CT and MRI. Because the studies were selected
based on a common threshold for clinically significant
coronary artery stenosis, BM was used for data synthesis
and test comparison.
Using the Latent GOLD software version 4.5 [30], we

estimated both the BM and LCBM with test type as a
covariate (the software code is provided in the Additional
file 2). For model selection, we used the AIC. The 2-class
LCBM gave a lower AIC value (AIC = 961.9) than the
standard BM (AIC = 963.7), which is in fact a 1-class
LCBM.
Table 3 reports the estimated sensitivities and speci-

ficities with their confidence intervals for CT and MRI
studies obtained with the BM and LCBM. The LCBM
identified two clusters, the first one with a sensitivity of
86.6% (95% CI = 84.5%-88.7%) and a specificity of 69.1%
(95% CI = 61.8%-76.4%), and the second with a sensitiv-
ity of 97.2% (95% CI = 96.3%-98.1%) and a specificity of
84.9% (95% CI = 82.7%-87.0%). Thus we have a clear sepa-
ration in the ROC space between overperforming (higher
sensitivity and specificity) and underperforming studies
(lower sensitivity and specificity). CT studies are mostly

Table 3 Coronary hearth disease data: point estimates and
confidence intervals of sensitivityand specificity in BM
and LCBMboth for CT andMRI studies

CT MRI

BM Sensitivity 95.0% (94.0%-96.0%) 86.2% (81.4%-91.0%)

Specificity 82.4% (80.4%-84.4%) 71.0% (64.5%-77.6%)

LCBM Sensitivity 95.7% (94.6%-96.8%) 86.9% (84.7%-89.1%)

Specificity 82.6% (80.1%-85.0%) 69.5% (62.2%-76.7%)

classified, with a probability of 85.5% (95% CI = 75.4%-
95.5%), in the first latent class of (overperforming studies),
and show estimated sensitivity and specificity respectively
of 95.7% (95% CI = 94.6%-96.8%) and 82.6% (95% CI =
80.1%-85.0%). MRI studies are mostly classified in the
second latent class (overperforming studies), with a prob-
ability of 97.5% (95% CI = 87.9%-100.0%), and have an
estimated sensitivity and specificity of 86.9% (95% CI =
84.7%-89.1%) and 69.5% (95% CI = 62.2%-76.7%).
Looking at the model estimates (Table 3), we notice

LCBM yields slightly different confidence intervals for
sensitivity and specificity in MRI than BM.
The obtained classification of the studies in two clus-

ters is very clear and the ROC space is well separated
(Figure 5). Classification probabilities for each study are
presented, with their 95% confidence intervals in the
Additional file 3. As a next step, we can investigate why a
particular study is classified in the second class. It turn out
that underperforming primary studies are older (38%were
conducted before 2006 vs 18% in overperforming) and
more often included one direct comparison study (7% vs
5% in overperforming). The class with underperforming
studies could be investigate more in depth by considering
other study-specific variables.

Discussion
In the simulation study we have seen that when sensitiv-
ity or specificity differs between latent classes, BM leads
to biased estimates of sensitivity and specificity. In the real
data example, we obtained slightly different confidence
intervals for sensitivity and specificity inMRI with LCBM.
The disadvantage of using the LCBM is the considerable

increase in the number of parameters to estimate com-
pared to the BM, implying that the number of primary
studies available may become an issue. As we can see from
the results of the simulation study, even when there is a
strong latent class structure, to obtain a reasonable power,
the number of primary studies need to be about 25. While
the AIC fit criterion has to be preferred in order to achieve
a reasonable power, it can lead to false positive identifica-
tion of latent classes. However, false positive identification
of clusters by LCBM will not end-up in biased estimates
but in inflated standard errors.
In the reported simulation study, we fixed the disease

prevalence to 50%. However, prevalence can take on quite
different values in diagnostic accuracy studies [32]. We
also simulated scenarios with a lower disease prevalence,
which had little impact on the results (data not shown).
Meta-analysis of diagnostic studies with bivariate

mixed-effects models can sometimes end up with non-
convergence. In the LCBM, an additional discrete
latent variable is added to the standard BM, which
increases number of parameters and makes the com-
putational aspects even more challenging. However, the
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Figure 5 Scatter plot in a ROC space of all (left panel), CT (middle panel) andMRI (rigth panel). Class 1 studies in black and Class 2 studies in
grey.

implementation of BM and LCBM in the Latent GOLD
computer program turned out to be very stable.
LCBM could be programmed in R or implemented in

a SAS macro by applying PROC NLMIXED. However,
the computational approach used in Latent GOLD is
very stable and offers good performance in terms find-
ing the maximum likelihood solution and convergence.
Additional advantages of the Latent GOLD implementa-
tion include that it allows expanding the model in various
possible ways and that several useful outputs are readily
available, which would be quite complicated to program
from scratch in other languages.

Conclusions
The proposed LCBM framework provides us with a tool
for assessing whether the study heterogeneity can be
explained in a more careful way. It yields a clustering of
studies in diagnostic test accuracy reviews that can be
used for explanatory purposes.
In the real data example, we saw how LCBM can

improve the understanding of the relationship between
sensitivity and specificity. The LCBM is able to identify
subgroups of studies that are separated in ROC space.
What is added by the LCBM framework is that it provides
an explanatory and confirmatory tool for investigating
and testing different patterns of performance across stud-
ies. In particular, in the real data example, we tested
the equivalence in diagnostic performance between CT
and MRI. Moving from BM to LCBM we obtained a
clear picture of two clusters of studies, and obtained

more reliable confidence intervals for the sensitivity and
specificity.
We can conclude that the LCBM yields a statistically

rigorous, flexible, and data-driven approach to meta-
analysis. LCBM generates useful results when subgroups
of studies can be related to meaningful design or clini-
cal characteristics and it provides us with a model-based
starting point for subgroup meta-analyses.
Future work will include the implementation of the

LCBM in an R package, the Bayesian estimation and test-
ing of the model, and the investigation of its application in
Hierarchical Summary ROC.

Additional files

Additional file 1: CAD data.

Additional file 2: Software code for estimating BM and LCBM.

Additional file 3: CAD posterior classification probabilities and
95% CI.
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