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Abstract

Background: For many molecularly targeted agents, the probability of response may be assumed to either increase
or increase and then plateau in the tested dose range. Therefore, identifying the maximum effective dose, defined as
the lowest dose that achieves a pre-specified target response and beyond which improvement in the response is
unlikely, becomes increasingly important. Recently, a class of Bayesian designs for single-arm phase II clinical trials
based on hypothesis tests and nonlocal alternative prior densities has been proposed and shown to outperform
common Bayesian designs based on posterior credible intervals and common frequentist designs. We extend this and
related approaches to the design of phase II oncology trials, with the goal of identifying the maximum effective dose
among a small number of pre-specified doses.

Methods: We propose two new Bayesian designs with continuous monitoring of response rates across doses to
identify the maximum effective dose, assuming monotonicity of the response rate across doses. The first design is
based on Bayesian hypothesis tests. To determine whether each dose level achieves a pre-specified target response
rate and whether the response rates between doses are equal, multiple statistical hypotheses are defined using
nonlocal alternative prior densities. The second design is based on Bayesian model averaging and also uses nonlocal
alternative priors. We conduct simulation studies to evaluate the operating characteristics of the proposed designs,
and compare them with three alternative designs.

Results: In terms of the likelihood of drawing a correct conclusion using similar between-design average sample
sizes, the performance of our proposed design based on Bayesian hypothesis tests and nonlocal alternative priors is
more robust than that of the other designs. Specifically, the proposed Bayesian hypothesis test-based design has the
largest probability of being the best design among all designs under comparison and the smallest probability of
being an inadequate design, under sensible definitions of the best design and an inadequate design, respectively.

Conclusions: The use of Bayesian hypothesis tests and nonlocal alternative priors under ordering constraints
between dose groups results in a robust performance of the design, which is thus superior to other common designs.
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Background
The maximum effective dose (MaxED), defined as the
lowest dose that is effective (say achieves a pre-specified
therapeutic target) and that also has full therapeutic
effect [1], is important for various anti-cancer agents. For
example, for traditional cytotoxic agents, for which the
dose-response relationship is commonly assumed to be
monotonically increasing, it is often of interest to iden-
tify the dose that achieves a ‘nearly maximal’ therapeutic
effect, such as the ED95, the smallest dose at which 95% of
the maximal response is achieved [2,3]. With the advent
of molecularly targeted agents (MTAs) in recent years,
identification of the MaxED becomes increasingly impor-
tant as the efficacy of the MTAs may either increase or
increase and then plateau in the tested dose range [4-9].
Based on considerations of long-term toxicity, potential
shortages of drugs, and high costs, identifying the MaxED
for further study is critical.
In practice, however, resource constraints may make

it infeasible to test a large number of doses to accu-
rately identify theMaxED. Consequently, in phase II trials,
physicians often choose only two or three doses as an
initial step to identify a potential lower dose that is suf-
ficiently active and equally effective as higher doses. One
common choice out of the small number of doses is either
the maximum tolerated dose (MTD) or the highest tried
dose from the phase I trials if the MTD was not identi-
fied (which tends to occur more frequently for an MTA
than for a cytotoxic agent). This strategy is to ensure
that the maximal benefit of the agent will be investigated.
The remaining dose(s) chosen may be one or two lev-
els below the chosen maximum dose, or even lower, if
the preliminary efficacy at these doses from phase I tri-
als supports these selections. Our goal in this paper is to
propose designs for phase II oncology trials to identify the
MaxED across a small number of doses, say two or three
doses. These trials represent a preliminary step under lim-
ited resources toward the ultimate goal of identifying the
MaxED. At The University of TexasMDAnderson Cancer
Center, these trials are commonly proposed by physicians.
Our proposed designs are motivated by a phase II trial

of a lysyl oxidase homolog 2 (LOXL2) inhibitor, an MTA,
in adult patients with primary, post polycythemia vera, or
post essential thrombocythemia myelofibrosis. Two doses
were selected for evaluation of their best overall response.
The physicians assumed that a higher dose would not lead
to a lower efficacy or toxicity rate, yet a higher dose may
not necessarily lead to a higher response rate. No dose-
limiting toxicities (DLTs) had been observed from the
phase I trials. The physicians decided to select two doses
close to the lower and upper ends of the tested dose range
from the phase I trials for evaluation in this phase II trial,
based on the drug activity-related phase I and preclinical
data. If the lower dose was found to confer equal benefit to

the patients in the phase II trial, it would be used for fur-
ther testing. Therefore, the goal of this trial was to identify
the MaxED, restricted to two dose levels.
Based on the abovemotivating trial, we consider designs

with a binary efficacy endpoint, for example, tumor
response defined by complete or partial remission, or for
certain MTAs, a pharmacodynamic response assessed by
the change in relevant biomarker measurements that are
considered to confer clinical benefit to the patients.
A number of authors have proposed designs for clini-

cal trials relevant to the identification of the MaxED. For
example, some authors considered designs for simultane-
ously identifying the minimum effective dose, the lowest
dose that achieves a target anti-tumor effect, and the
MaxED [2,10]. Other authors focused on designs for find-
ing the MaxED when assuming a range of therapeutically
useful doses has been established [11-13]. These methods
are not applicable to our setting, where we aim to iden-
tify the MaxED only, without having already identified
the minimum effective dose. Furthermore, the paramet-
ric models assumed in some of these designs [10,12] are
unnecessary in our setting as we evaluate only two or
three dose levels. Kong et al. [14] proposed a one-stage
and a two-stage design to select the MaxED using iso-
tonic regression and evaluate the efficacy of the selected
MaxED. The objective of that design is similar to our
objective; however, we focus on a binary efficacy endpoint,
whereas they assume a continuous efficacy outcome.
To identify the MaxED, one approach is to use a fre-

quentist multiple hypothesis testing procedure, in the
spirit of Strassburger et al. [13], to evaluate whether one
or more doses are sufficiently active and in cases where
multiple doses are active, whether lower doses are equally
effective as higher doses. A limitation of such a frequentist
hypothesis test-based approach is its inability to declare
that the null hypothesis (e.g., two doses being equally
effective) is true, which can be critical for identifying
the MaxED. Johnson and Cook [15] proposed a Bayesian
hypothesis test with nonlocal alternative prior densities
for designing single-arm phase II trials with continuous
monitoring of futility and/or superiority. The nonlocal
alternative prior densities refer to the prior densities used
to define the alternative hypotheses that assign no mass
to parameter values that are consistent with the null
hypotheses. In contrast, the local alternative prior densi-
ties assign positive probability to regions of the parameter
space that are consistent with the null hypotheses [15,16].
The Bayesian hypothesis test approach not only allows for
direct evaluation of the probability of the null hypothe-
sis (and of course the alternative hypothesis as well), but
the use of the nonlocal alternative prior densities also
allows a fair weight of evidence to be accumulated towards
both the null and alternative hypotheses, thus facilitating
a fair evaluation of both hypotheses [16]. This nonlocal
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alternative prior density approach, when applied to the
design of clinical trials, also has an important conservative
property in the sense that a specification of strong priors
seemingly in favor of the treatment can actually decrease
the expected weight of evidence collected in favor of
the treatment [17]. This suggests the ‘objectivity’ of the
approach by preventing cheating through the use of strong
prior distributions in favor of the treatment. With these
properties, their design was shown to outperform exist-
ing common single-arm phase II trial designs, including
the Thall and Simon [18] and Simon two-stage designs
[15,19].
The above features of the Bayesian hypothesis test with

nonlocal alternative prior distributions motivate us to
extend the approach to the design of phase II trials for
identifying the MaxED. Specifically, due to the need to
evaluate both the efficacy of more than one dose and
potential equality of the efficacy between doses, we pro-
pose to extend the nonlocal alternative priors of Johnson
and Cook [15] to those for multiple composite hypothe-
ses with multivariate ordered parameters (such as priors
in Hypotheses H2 and H3 in Section “Bayesian hypothesis
testing”).
We propose an additional design based on Bayesian

model averaging where nonlocal prior densities are used
in models in which response probabilities are strictly
ordered. We propose a continuous monitoring rule for
each design, the Bayesian hypothesis test-based design
and the Bayesian model averaging-based design, by eval-
uating the posterior probabilities of the multiple hypothe-
ses and the posterior credible intervals for the response
probabilities, respectively. In both designs, we implement
a separate continuous monitoring rule for toxicity. Based
on the motivating trial of the LOXL2 inhibitor, we use
simulations to compare the performance of our proposed
designs with those of three alternative designs.
The remainder of this article is organized as follows. In

Section “Methods”, we present the two designs for two
dose groups: the design based on Bayesian hypothesis
tests in Section “Bayesian hypothesis testing” and that
based on Bayesian model averaging in Section “Bayesian
model averaging”. We further describe an extension of
the two-dose designs for three doses in Section “Three-
dose designs”. We evaluate the performance of our pro-
posed designs and compare them with alternative designs
using simulations in Section “Results and discussion”. In
Section “Conclusions” we provide concluding remarks.

Methods
Bayesian hypothesis testing
Local prior densities that are used to define alternative
hypotheses in most Bayesian tests are positive at val-
ues of the parameters that are consistent with the null
hypothesis. As discussed in Johnson and Rossell [16], local

alternative priors result in tests that provide exponen-
tial accumulation of evidence in favor of true alternative
hypotheses, but only sublinear accumulation of evidence
in favor of the true null hypothesis. In clinical trial designs,
this means that the local alternative hypotheses result
in designs that cannot terminate early in favor of a true
null hypothesis. The nonlocal prior densities [16], by
contrast, assign no mass to parameter values that are con-
sistent with the null hypotheses. For example, the inverse
moment prior densities used in Johnson and Cook [15]
provide exponential convergence in favor of both the true
null and true alternative hypotheses.
In this section, we consider using Bayesian hypothesis

tests with nonlocal priors to facilitate the identification
of the MaxED. Let θ1 and θ2 be the response rates at the
lower and higher dose levels, and θ0 and θ� be a response
rate not of interest and the target response rate in the
study, respectively. Both θ0 and θ� can be specified in con-
sultation with the study investigators. For example, θ0 can
be the response rate of a standard treatment. With a lack
of information, general guidelines are provided in Simon
[19] to select appropriate values of the response rate that is
not of interest and of the target response rate. We propose
to equally randomize patients between groups, as it has
been argued that outcome-adaptive randomization pro-
vides minimal benefit compared to equal randomization
in trials with two or three arms [20,21]. We consider the
following four hypotheses:

H0 : θ1 = θ0, θ2 = θ0,
H1 : θ1 = θ0, θ2 ∼ πrI(θ2; θ0, k = 1, ν = 2, τ1),
H2 : θ1 = θ2 ∼ πrI(θ1; θ0, k = 1, ν = 2, τ1),
H3 : (θ1, θ2) ∼ πrI(θ1; θ0, k = 1, ν = 2, τ1)

πrI(θ2; θ1, k = 1, ν = 2, τ2),

where πrI(θ ; θ ′, k, ν, τ) = πI(θ ; θ ′, k, ν, τ)I(θ ′ < θ < 1)/
P(θ ′ < θ < 1) is the inverse moment prior πI(θ ; θ ′, k, ν, τ)

[15] restricted on the interval (θ ′, 1) with

πI(θ ; θ ′, k, ν, τ) = kτ ν/2

�(ν/2k)
[
(θ − θ ′)2

]− ν+1
2

× exp
{

−
[

(θ − θ ′)2

τ

]−k}
.

By equation (6) in Johnson and Cook [15], P(θ ′ < θ <

1) = 1/2 exp[−τ(1 − θ ′)−2] when k = 1 and ν = 2.
Under H0, both response rates are θ0, so neither dose

level is promising. Under H1, only the higher dose level is
promising. The corresponding response rate is assigned a
nonlocal prior distribution with null value θ0. Under H2,
both dose levels are promising, and the two response rates
are the same. A nonlocal prior distribution with null value
θ0 is used for the common response rate. Under H3, both
dose levels are promising but the two response rates are
different. To separate H3 from H2, we specify a nonlocal
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prior for θ1 with null value θ0 and a nonlocal prior to the
difference in response rate, θ2−θ1, with null value 0. For all
hypotheses, default values of k = 1 and ν = 2 are used. τ1
can be chosen to result in a prior mode at θ� and τ2 can be
chosen to result in a prior mode at some level of difference
in the response rate that is of interest to the study (e.g.,
0.1). This suggests that the selection of τ1 and τ2 implicitly
defines what is meant by a substantively meaningful dif-
ference between a response rate of interest and one not of
interest, and between two response rates of interest [16].
The likelihood is L(θ1, θ2) = (n1

x1
)
θ
x1
1 (1 − θ1)n1−x1 ×(n2

x2
)
θ
x2
2 (1 − θ2)n2−x2 . Under H0, the marginal likelihood

is the likelihood evaluated at (θ0, θ0), i.e., L(θ0, θ0). Under
H1, H2 and H3, we use one-, one-, and two-dimensional
Monte Carlo integration to evaluate the marginal likeli-
hood, respectively.
We first combine H2 and H3 to test three hypotheses:

H0, H1, and H�
2 = H2 ∪ H3. H�

2 represents the hypoth-
esis in which both dose levels are promising, regardless
of whether the two response rates are equal or not. Each
patient is randomly assigned to one of the two dose levels
with probability 0.5. Denote the prior model probabil-
ity of H0, H1, H2 and H3 to be P(H0), P(H1), P(H2) and
P(H3), respectively. After data from the first n0 patients
are observed, we calculate the three posterior model prob-
abilities according to p(H0 | x) : p(H1 | x) : p(H�

2 | x) =
p(H0) × p(x | H0) : p(H1) × p(x | H1) : p(H�

2) × p(x | H�
2),

where n0 is the minimum number of patients treated in
the trial. In the absence of prior information about the
probability of each hypothesis, we may assign P(H0) =
P(H1) = P(H2) = P(H3) = 1/4 (as assumed in the BHT-
A design in Section “Results and discussion”). In this case,
p(H0 | x) : p(H1 | x) : p(H�

2 | x) = p(x | H0) :
p(x | H1) : p(x | H2) + p(x | H3). If instead we assume
P(H0) = P(H1) = 1/3 and P(H2) = P(H3) = 1/6 (as
assumed in the BHT-B design in Section “Results and dis-
cussion”), we have p(H0 | x) : p(H1 | x) : p(H�

2 | x) =
p(x | H0) : p(x | H1) : 1/2

[
p(x | H2) + p(x | H3)

]
. The

trial is terminated if any of p(H0 | x), p(H1 | x) and
p(H�

2 | x) is greater than some threshold Pa or if the max-
imum sample size (N) is reached. If H�

2 is concluded, then
we conclude H2 if p(x | H2)/p(x | H3) > Pb and con-
clude H3 otherwise, with some threshold Pb. If none of
p(H0 | x), p(H1 | x) and p(H�

2 | x) is greater than Pa,
then the above procedure is repeated after the outcome of
each subsequently treated patient is observed. The trial is
declared inconclusive if no hypothesis is concluded by the
end of the trial.
In our simulations, Pa and Pb are set to be 0.65 and 1.2,

respectively, in order to strike a balance between attaining
overall high percentages of drawing correct conclusions at
the end of the trial and reducing the sample size required
for drawing the conclusions. The maximum sample size
N is often chosen based on practical considerations such

as budget constraints. Within the budget limit, N may be
selected based on the physician’s judgment on the trade-
off between the overall improved percentages for drawing
the correct conclusions, as evaluated through simula-
tions, and the time and resources required to achieve such
improvements. The minimum sample size n0 is similarly
chosen to strike such a balance. We prefer an average of
10 patients or more per dose level in order for the calcu-
lation of the posterior probabilities of the hypotheses to
be meaningful. Such a choice is also consistent with the
minimum sample size used in a design proposed by Thall
and Simon for single-arm phase IIb trials [22]. We use
simulations to select these and other design parameters to
be introduced in later sections. In particular, we choose
n0 = 24 across two groups (i.e., approximately 12 patients
per group) in our simulation study.
We also monitor toxicity continuously during the trial.

We first assign independent prior distributions to the
probabilities of toxicity at the two dose levels, denoted
as pt1 and pt2, respectively, based on information from the
phase I trials. Next, to borrow strength (i.e., the ordering
constraint) across the two dose levels, we apply a Bayesian
isotonic regression transformation approach [23]. Specifi-
cally, for each pair

(
pt1, p

t
2
)
drawn from the unconstrained

posterior distributions (e.g., under independent beta pri-
ors), the isotonic regression

(
pt,�1 , pt,�2

)
of

(
pt1, p

t
2
)
is an

isotonic function that minimizes the weighted sum of
squares

2∑
i=1

ωi
(
pt,�i − pti

)2
subject to the constraint pt,�1 ≤ pt,�2 [24]. The weights
ωi are taken to be the unconstrained posterior preci-
sion of pti . It can be easily shown that pt,�1 and pt,�2 are
weighted averages of pt1 and pt2 with weights ω1 and ω2
when the order between pt1 and pt2 is violated [24]. When
the order is not violated, it is clear that pt,�1 = pt1 and
pt,�2 = pt2. When there are three or more dose levels, we
apply the pool-adjacent-violators algorithm [24] to obtain
the order-restricted posterior samples. Suppose that the
toxicity upper limit is p̄. Define dose level i to be toxic if
p

(
pt,�i > p̄ | data) > Pc for some threshold Pc. After the

toxicity outcome of each patient is observed, we terminate
the trial if both dose levels are toxic and close the higher
dose arm if only the higher dose is toxic.

Bayesian model averaging
In the second design we propose, we also assume that
both the response rates and probabilities of toxicity are
ordered across the two dose levels. We similarly use equal
randomization between groups. This design is based on
the calculation of posterior credible intervals. Our goal is
to determine whether the two dose levels are promising
or not, and whether the two response rates are the same
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when both dose levels are found promising. We consider
two models — M1 : θ1 = θ2 and M2 : θ1 < θ2. Under
M1, the prior distribution is θ1 = θ2 ∼ Uniform(0, 1).
Under M2, we assume θ1 ∼ Uniform(0, 1) and θ2 | θ1 ∼
πrI(θ2; θ1, k = 1, ν = 2, τ2)I(θ1 < θ2 < 1) with τ2
chosen so that the prior mode is at some value of the dif-
ference between θ2 and θ1 that is of interest to the study,
say 0.1. Thus, the joint prior distribution of θ1 and θ2 is
proportional to

[
(θ2 − θ1)

2]− ν+1
2 exp

{
−

[
(θ2 − θ1)2

τ

]−k}
I(0 < θ1 < θ2 < 1).

Under M1, the marginal likelihood p(x | M1) has a
closed form:

(n1
x1

)(n2
x2

)
B(x1 + x2 + 1, n1 + n2 − x1 − x2 + 1),

where B(·, ·) is the beta function. UnderM2, the marginal
likelihood p(x | M2) does not have a closed form, so
we use a two-dimensional Monte Carlo integration to
evaluate the marginal likelihood. Note that in the above
prior specification, the Uniform(0,1) distribution may be
replaced by a vague beta distribution with a mean con-
sistent with a physician’s prior guess of the response rate
under each model. We assign equal prior probabilities to
the two models: p(M1) = p(M2) = 1/2. Each patient is
randomly assigned to one of the two dose levels with prob-
ability 0.5. After the data from a minimum of n0 patients
are observed, we calculate the two posterior model prob-
abilities according to the formula p(M1 | x) : p(M2 |
x) = p(x | M1) : p(x | M2). Consider three posterior
probabilities: p1 = P(θ1 > θ� − δ, θ2 > θ� − δ | data),
p2 = P(θ1 < θ0 + δ, θ2 > θ� − δ | data), and p3 =
P(θ1 < θ0 + δ, θ2 < θ0 + δ | data), where δ is a small posi-
tive value. The trial is terminated if the maximum sample
size is reached, p1 > Pe, or p2 + p3 > Pf , where p1 is the
probability averaged over the two models:

p1 = p(θ1 > θ� − δ, θ2 > θ� − δ | data)

=
2∑

k=1
p(θ1> θ�−δ, θ2> θ�−δ |Mk , data)p(Mk |data),

and similarly for the other two probabilities. If the trial
is not terminated, this procedure continues after the out-
come of each subsequently treated patient is observed. At
the end of the trial, if p1 > Pe, we conclude H�

2 ; we claim
H2 if p(M1 | data)/p(M2 | data) > Pg , and H3 otherwise.
If p2 + p3 > Pf , we conclude H0 if p2 − p3 ≤ Pk , and con-
clude H1 otherwise. Pe and Pf are similarly chosen based
on simulations, as for Pa, Pb, etc.
As in the previous section, we use Bayesian iso-

tonic regression transformation to compute and monitor
toxicity continuously. If both dose levels are considered to
be excessively toxic, the trial is terminated; if only the high
dose level is toxic, then this dose group is closed.

Three-dose designs
So far, we have described the designs for two dose groups.
Our designs can be extended to multiple dose groups in a
straightforward fashion. For example, suppose three doses
are being evaluated. Let θ1, θ2 and θ3 be the response
rates at the low, median, and high dose levels, respectively.
In the Bayesian hypothesis testing (BHT) approach, we
consider the following hypotheses:

H0 : θ1 = θ2 = θ3 = θ0
H1 : θ1 = θ2 = θ0, θ3 ∼ πrI(θ3; θ0, k = 1, ν = 2, τ1)
H2 : θ1 = θ0, θ2 = θ3 ∼ πrI(θ2; θ0, k = 1, ν = 2, τ1)
H3 : θ1 = θ0, (θ2, θ3) ∼ πrI(θ2; θ0, k = 1, ν = 2, τ1)

πrI(θ3; θ2, k = 1, ν = 2, τ2)
H4 : θ1 = θ2 = θ3 ∼ πrI(θ ; θ0, k = 1, ν = 2, τ1)
H5 : θ1 ∼ πrI(θ1; θ0, k = 1, ν = 2, τ1), θ2 = θ3

∼ πrI(θ2; θ1, k = 1, ν = 2, τ1)
H6 : θ1 = θ2 ∼ πrI(θ1; θ0, k = 1, ν = 2, τ1), θ3

∼ πrI(θ3; θ2, k = 1, ν = 2, τ1)
H7 : θ1 ∼ πrI(θ1; θ0, k = 1, ν = 2, τ1),

θ2 ∼ πrI(θ2; θ1, k = 1, ν = 2, τ1),
θ3 ∼ πrI(θ3; θ2, k = 1, ν = 2, τ1)

Upon assigning appropriate prior probabilities to the
eight hypotheses, final conclusions and interim monitor-
ing are based on the evaluation of the posterior probability
of each hypothesis.
In the Bayesian model averaging (BMA) approach, there

are four possible models:

M1 : θ1 = θ2 = θ3
M2 : θ1 = θ2 < θ3
M3 : θ1 < θ2 = θ3
M4 : θ1 < θ2 < θ3

The computation is parallel to that of the two-dose case.
As the number of doses increases, the number of

hypotheses/models increases rapidly. So our proposed
methods should be most efficient when there is a small
number of (such as two or three) doses being tested, as is
often the case for practical phase II trials with a goal of
identifying the MaxED when assuming ordered response
rates.

Results and discussion
Design operating characteristics
We evaluate the performance of the proposed designs
based on the motivating trial of the LOXL2 inhibitor. The
study drug is hypothesized to exert a therapeutic effect
in fibrosis and cancer by inhibiting fibroblast activation
and thereby altering the pathologic matrix in different
disease states. The consequences of inhibiting fibroblast
activation include substantial reduction of desmoplasia,
decreased expression of growth factors and cytokines,
lack of formation of tumor vasculature, and increased
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necrosis, pyknosis, and autophagy of tumor cells. Given
the hypothesized action of this MTA, the investigators
assumed that efficacy either increases or increases and
then plateaus in the tested dose range. Toxicity was
assumed to be nondecreasing with an increasing dose.
Two dose levels were to be evaluated, and a maximum of
54 patients were to be enrolled. The primary goal of the
study was to determine whether both dose levels would
result in a target response rate of greater than or equal
to 30% against a null hypothesis of 10%. If both doses
achieved the target response rate and appeared compara-
ble, the investigators would proceed with the lower dose
for subsequent testing. However, if activity was primarily
seen at the higher dose level, or if both doses achieved the
target response rate, yet the higher dose had a consider-
ably higher response rate, the investigators would test the
higher dose in subsequent studies.
In this study, response was defined as the clinical

response based on the International World Group cri-
teria. In particular, stable disease with improvement in
bone marrow fibrosis score, clinical improvement, par-
tial remission, or complete remission would be considered
a response. Toxicity was defined as dose-limiting toxic-
ity (DLT) with pre-specified categories and grades. In the
corresponding phase I study, four dose levels had been
evaluated in patients with advanced solid tumors, and
three patients had been treated at each dose level. Given a
patient’s weight of 70 kg, the two middle dose levels tested
in the phase I trial were very close to the dose levels con-
sidered in this study. As no DLTs or drug-related severe
adverse events had been observed at any dose in the phase
I trial, to elicit informative prior distribution for toxicity
at a given dose by incorporating toxicity data at the same
and higher dose levels from the phase I trial, we chose to
treat every three patients at the higher dose level with-
out toxicity as five patients at the lower dose level without
toxicity, when the lower doses were studied in this phase
II trial. Our final prior distributions for the probabilities
of toxicity were p

(
pt1

) ∼ beta(0.5, 16.5) and p
(
pt2

) ∼
beta(0.5, 8.5), both of which were obtained by assuming
a beta(0.5, 0.5) prior distribution prior to observing the
phase I toxicity data.
We first compare our proposed designs with two alter-

native designs, both of which use futility and efficacy
continuous monitoring rules. The first design is an inde-
pendent design that uses Bayesian hypothesis tests with a
nonlocal alternative prior [15] at each dose level. The null
and alternative hypotheses at the two dose levels are

Hi
0 : θi = θ0, Hi

1 : θi ∼ πrI(θi; θ0, k = 1, ν = 2, τ1),

for i = 1, 2. Arm i (i = 1, 2) is terminated for efficacy if
p(Hi

1 | x) > Pa�, and is terminated for futility if p(Hi
0 |

x) > Pa�, with Pa� > 0.5 being a cutoff value to be tuned
by simulations. We conclude H0 if both H1

0 and H2
0 are

found to hold; we conclude H1 if H1
0 and H2

1 are found to
hold; and we conclude H�

2 if H
1
1 and H2

1 are found to hold.
For these independent designs, we cannot obtain an exact
posterior probability that the two response rates are equal,
so we use approximations. If H�

2 holds, then we conclude
H2 if p(θ2−θ1 > 0.1 | x) ≤ Pd, and concludeH3 otherwise,
with Pd being some threshold to be calibrated by simula-
tions. We assign independent prior distributions for the
toxicity probabilities at the two dose levels, and terminate
the trial if both dose levels are toxic and close either arm if
the corresponding dose level is toxic.
The second design we assess for comparison is based

on Bayesian isotonic regression transformation (BIT) [23].
The prior distributions are independent Uniform(0, 1)
distributions for both θ1 and θ2. After data are observed,
the unconstrained posterior distributions of θ1 and θ2 are
independent beta distributions. For each pair of (θ1, θ2)
drawn from the unconstrained posterior beta distribu-
tions, the order-restricted posterior samples (θ�

1 , θ�
2 ) are

obtained as weighted averages of (θ1, θ2) when the order
is violated, or otherwise remain unchanged, where the
weights ω are proportional to the unconstrained posterior
precision at the two dose levels. Consider three posterior
probabilities: p1 = P(θ1 > θ� − δ, θ2 > θ� − δ | data),
p2 = P(θ1 < θ0 + δ, θ2 > θ� − δ | data), and p3 =
P(θ1 < θ0 + δ, θ2 < θ0 + δ | data). The trial is termi-
nated if the maximum sample size is reached, p1 > Ph, or
p2 + p3 > Pi. This procedure is undertaken after the out-
come of each subsequently treated patient is observed. At
the end of the trial, if p1 > Ph, we conclude H�

2 , and claim
H2 if p(θ1 = θ2 | data) ≥ p(θ1 < θ2 | data), and H3 other-
wise. If p2 + p3 > Pi, we conclude H0 if p2 − p3 ≤ Pj, and
concludeH1 otherwise. The rule for early termination due
to toxicity is the same as in the BHT approach.
Given that little toxicity was found in the phase I studies,

we assumed low toxicity probabilities in our simulation
scenarios, specifically, 0.15 at both dose levels. The upper
limit of the toxicity probability p̄ = 0.3. The null and tar-
get response rates are θ0 = 0.1 and θ� = 0.3. We chose
τ1 = 0.06 and τ2 = 0.015 to correspond with a prior mode
at 0.3 and a value of interest, the between-dose differ-
ence in response rate of 0.1. The between-dose difference
of interest refers to a minimal clinically meaningful dif-
ference between doses. To facilitate the comparison of
the performances of several methods, the cutoffs of each
method were chosen to approximately match the resulting
type I error and average sample size under H0, based on
simulations. The cutoffs used were Pa = 0.65, Pb = 1.2,
Pc = 0.8, Pa� = 0.7, Pd = 0.11, Pe = 0.7, Pf = 0.65, Pg =
1.3, Ph = 0.65, Pi = 0.65, Pj = 0.4, Pk = 0.02, and δ = 0.1.
For the independent design, the maximum sample size
was set at 27 at each dose level. For all designs, we used
a minimum total sample size of 24 (12 at each dose level
for the independent design) as “burn-in”, and continuous
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monitoring of futility and efficacy after the burn-in
period. In addition, we monitored toxicity continuously
starting from the first patient. We constructed 12 sce-
narios with different true response rates at the two dose
levels. Under each scenario, we simulated 1,000 trials.
The operating characteristics of the four designs are

summarized in Table 1, with the joint BHT design labeled
‘BHT-A’, the independent BHT design labeled ‘indep’, the
BMA design ‘BMA’, and the BIT design ‘BIT’. We also
conducted a sensitivity analysis to evaluate different prior
probabilities of the four hypotheses under the joint BHT
design. Instead of assuming equal prior probability of each
of the four hypotheses, we gave equal prior probability
for the three hypotheses, i.e., 1/3, to H0, H1, and H�

2 , and
1/6 probability to each of H2 and H3. The corresponding
results are shown in Table 1 under column ‘BHT-B’. Under
each scenario, we list the true response rates at the two
dose levels in the top row, the probability of concluding
that each of the four hypotheses is true in the next four
rows, the probability of concluding that both dose levels
are promising in the sixth row, and the average sample size
and percentage of inconclusive trials in the bottom two
rows, respectively.
In all scenarios, there are few early terminations due

to toxicity because the true probabilities of toxicities are
assumed low and the prior distributions for toxicity are
informative (summary not shown). In the first scenario,
H0 is true. The five designs are tuned to result in similar
probabilities of declaringH0 (0.936, 0.935, 0.894, 0.94, and
0.935, respectively) and the corresponding average sample
sizes, with the independent BHT design performing a little
worse. In the second scenario, although the true response
rate of 0.2 is between the null value 0.1 and the target
value 0.3, it may be desirable to claim H0 because neither
dose achieves the target response rate (but this may be
debatable). The BHT-B and BMA designs result in higher
probabilities of claimingH0, and use slightly larger sample
sizes. The independent BHT design performs the worst.
In the third scenario, i.e., 0.1 & 0.2, we may similarly want
to claim H0. BMA and BIT yield the highest probabilities
of claiming H0, and also use fewer patients than the joint
BHT. In the next three scenarios, H2 is true. The proba-
bility of concludingH�

2 is higher under BHT-A, BMA, and
BIT. BHT-A has the largest probability of correctly claim-
ing H2 under scenarios 0.3 & 0.3 and 0.4 & 0.4, and BMA
has the largest probability of claiming H2 under scenario
0.5 & 0.5. The results in these three scenarios highlight
the advantages of using nonlocal alternative priors in BHT
and BMA, as these priors are perceived to be helpful in
identifying equality of response rates between doses. In
the next two scenarios, H1 is true. The independent BHT
and BHT-B designs lead to the highest probabilities of
claiming H1. The independent BHT design also uses the
smallest sample sizes on average. In these two scenarios,

BMA performs the worst, because the response rate esti-
mates corresponding to the model in which the two
response rates are equal are averaged in the final results,
which decreased the higher response rate. In the last four
scenarios, H3 is true. BMA yields the highest probabil-
ity p(H�

2) in all four scenarios. This may be explained by
the fact that the incorrect model that assumes equality for
the response rates (i.e., M1) in fact has strengthened the
claim that both doses are promising. For 0.3 & 0.4 and
0.3 & 0.5, BMA and BIT yield the highest probabilities of
claiming H3. And for 0.4 & 0.5 and 0.4 & 0.6, BHT-A and
BIT result in the highest probabilities of H3. As expected,
BHT-B leads to a smaller probability of H�

2 than BHT-A.
In all 12 scenarios, the inconclusive percentages are the
highest under the independent BHT design.
The overall results suggest that the BHT-A design per-

forms the best among all designs. The BMA design per-
forms reasonably well (except in scenarios 0.1 & 0.3, and
0.1 & 0.4), similarly to or marginally better than the BIT
design and independent BHT design. The BHT-B design
tends to perform adequately in most scenarios, but not
the best in any scenario. To summarize the robustness of
the performances of all five designs, we counted the num-
ber of scenarios out of 10 scenarios (excluding scenarios
0.2 & 0.2, and 0.1 & 0.2) in which each design performs
the best or almost the best (in terms of the percentage
of drawing the correct conclusion) across all five designs
and the number of scenarios in which the design performs
inadequately (defined as when the chance of drawing a
correct conclusion is at least 15 percentage points less
than that of the best design for that scenario). For exam-
ple, the corresponding numbers are (3,1) for the BHT-A
design, meaning that in 3 out of the 10 scenarios, the
design performs the best or nearly the best, and in 1 out
of the 10 scenarios it performs inadequately. The corre-
sponding pairs of numbers for the BHT-B, indep, BMA,
and BIT designs are (0,2), (2,3), (2,2), and (3,2), respec-
tively. We excluded scenarios 0.1 & 0.2 and 0.2 & 0.2
because it is unclear which conclusion should be deemed
‘correct’ in these scenarios. We re-counted these num-
bers by further excluding scenarios 0.3 & 0.4 and 0.4 &
0.5, because they represent minimal levels of clinically
meaningful difference in the response rate between doses,
and thus may be of less relevance than other scenarios.
With these exclusions, the numbers are (3,0), (0,1), (2,2),
(2,2), and (1,2) for the BHT-A, BHT-B, indep, BMA, and
BIT designs, respectively. These results demonstrate the
robust performance of the proposed BHT-A design.

Comparison to the independent Simon optimal two-stage
designs
We also compared our proposed Bayesian designs to the
independent Simon optimal two-stage designs, perhaps
the most commonly used design for single-arm phase II
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Table 1 Probability of concluding each hypothesis, average sample size and percentage of inconclusive trials (toxicity
probability= 0.15)

Scenario BHT-A BHT-B indep BMA BIT Scenario BHT-A BHT-B indep BMA BIT

0.1& 0.1 0.1& 0.3

P(H0) 0.936 0.935 0.894 0.94 0.935 P(H0) 0.258 0.295 0.277 0.396 0.355

P(H1) 0.041 0.049 0.057 0.037 0.039 P(H1) 0.604 0.645 0.676 0.435 0.501

P(H2) 0.022 0.014 0.003 0.018 0.016 P(H2) 0.085 0.029 0.02 0.03 0.051

P(H3) 0 0 0 0.003 0.01 P(H3) 0.045 0.024 0.012 0.129 0.088

P(H�
2) 0.022 0.014 0.003 0.021 0.026 P(H�

2) 0.13 0.053 0.033 0.159 0.139

avg ss 25.209 25.205 24.985 24.709 24.621 avg ss 26.862 26.96 25.328 26.711 25.606

% inconclusive 0.001 0.002 0.046 0.002 0 % inconclusive 0.008 0.007 0.014 0.01 0.005

0.2& 0.2 0.1& 0.4

P(H0) 0.434 0.524 0.401 0.519 0.496 P(H0) 0.092 0.092 0.077 0.171 0.136

P(H1) 0.133 0.183 0.225 0.106 0.115 P(H1) 0.765 0.84 0.877 0.553 0.723

P(H2) 0.386 0.246 0.104 0.267 0.255 P(H2) 0.06 0.029 0.016 0.017 0.018

P(H3) 0.036 0.029 0.025 0.088 0.129 P(H3) 0.081 0.037 0.027 0.247 0.123

P(H�
2) 0.422 0.275 0.129 0.355 0.384 P(H�

2) 0.141 0.066 0.042 0.264 0.141

avg ss 26.782 27.805 26.341 26.919 25.995 avg ss 25.871 25.68 24.84 27.431 25.754

% inconclusive 0.011 0.018 0.245 0.02 0.005 % inconclusive 0.002 0.002 0.004 0.012 0

0.1& 0.2 0.3& 0.4

P(H0) 0.577 0.619 0.609 0.701 0.674 P(H0) 0.03 0.031 0.024 0.04 0.04

P(H1) 0.326 0.336 0.341 0.203 0.241 P(H1) 0.152 0.249 0.274 0.043 0.109

P(H2) 0.072 0.034 0.013 0.047 0.036 P(H2) 0.425 0.383 0.319 0.379 0.283

P(H3) 0.01 0.002 0.004 0.045 0.048 P(H3) 0.392 0.336 0.324 0.535 0.565

P(H�
2) 0.082 0.036 0.016 0.092 0.084 P(H�

2) 0.817 0.719 0.643 0.914 0.848

avg ss 27.881 27.231 25.673 25.704 25.426 avg ss 25.244 25.52 25.291 25.116 25.191

% inconclusive 0.015 0.009 0.034 0.004 0.001 % inconclusive 0.001 0.001 0.059 0.003 0.003

0.3& 0.3 0.3& 0.5

P(H0) 0.085 0.108 0.086 0.124 0.108 P(H0) 0.006 0.004 0.005 0.006 0.011

P(H1) 0.104 0.192 0.211 0.061 0.081 P(H1) 0.179 0.295 0.293 0.041 0.133

P(H2) 0.618 0.557 0.355 0.503 0.455 P(H2) 0.233 0.2 0.193 0.236 0.162

P(H3) 0.187 0.141 0.141 0.3 0.353 P(H3) 0.581 0.501 0.496 0.714 0.689

P(H�
2) 0.805 0.698 0.496 0.803 0.808 P(H�

2) 0.814 0.701 0.689 0.95 0.851

avg ss 25.594 26.214 25.779 26.084 25.505 avg ss 24.74 25.202 25.063 24.832 25.374

% inconclusive 0.006 0.002 0.206 0.012 .003 % inconclusive 0.001 0 0.013 0.003 0.005

0.4& 0.4 0.4& 0.5

P(H0) 0.006 0.019 0.009 0.012 0.013 P(H0) 0 0.001 0.002 0.002 0.002

P(H1) 0.032 0.078 0.103 0.011 0.03 P(H1) 0.049 0.087 0.11 0.011 0.029

P(H2) 0.611 0.589 0.497 0.573 0.487 P(H2) 0.336 0.335 0.34 0.405 0.319

P(H3) 0.351 0.314 0.319 0.404 0.47 P(H3) 0.615 0.577 0.533 0.582 0.65

P(H�
2) 0.962 0.903 0.816 0.977 0.957 P(H�

2) 0.951 0.912 0.874 0.987 0.969

avg ss 24.326 24.755 24.742 24.436 24.458 avg ss 24.289 24.408 24.514 24.319 24.359

% inconclusive 0 0 0.072 0 0 % inconclusive 0 0 0.014 0 0

0.5& 0.5 0.4& 0.6

P(H0) 0 0 0 0 0 P(H0) 0.001 0.001 0 0.001 0

P(H1) 0.007 0.017 0.014 0.002 0.002 P(H1) 0.053 0.114 0.112 0.01 0.036
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Table 1 Probability of concluding each hypothesis, average sample size and percentage of inconclusive trials (toxicity
probability= 0.15) (continued)

Scenario BHT-A BHT-B indep BMA BIT Scenario BHT-A BHT-B indep BMA BIT

P(H2) 0.495 0.498 0.513 0.558 0.491 P(H2) 0.159 0.14 0.175 0.237 0.176

P(H3) 0.498 0.485 0.457 0.44 0.507 P(H3) 0.787 0.745 0.711 0.752 0.788

P(H�
2) 0.993 0.983 0.97 0.998 0.998 P(H�

2) 0.946 0.885 0.886 0.989 0.964

avg ss 24.028 24.188 24.21 24.025 24.072 avg ss 24.193 24.491 24.412 24.177 24.341

% inconclusive 0 0 0.016 0 0 % inconclusive 0 0 0.002 0 0

trials. Since we have demonstrated that the BHT-A design
performs more robustly than the BMA and BHT-B designs,
we compare only the BHT-A and independent Simon
two-stage designs.We conduct this comparison separately
because the Simon design does not include early stopping
for efficacy. For simplicity, we assumed toxicity was low at
both dose levels again, and only considered efficacy.
We extended the Simon optimal two-stage design to a

setting with two doses, as follows. First, we applied the
two-stage design to each dose level independently. We
aimed to control the type I error to be 0.05 when both
response rates were 0.1 and the type II error to be 0.2
when both response rates were 0.3. So at each dose, the
type I error was chosen to be 0.0253 and the type II error
was 0.106. Under the optimality criterion of Simon, the
required maximum sample size for each dose was 45,
with 17 in the first stage. We concluded H0 if both doses
were rejected, H1 if only the lower dose was rejected, and
H∗
2 if neither dose was rejected. Here rejection of a dose

means that the dose is not considered to be promising
(or hypothesis θ1 = θ0 or θ2 = θ0 is concluded). If H�

2
was concluded, we claimed H2 if RR1 ≥ RR2 − δ, and H3
otherwise, where RR1 and RR2 were the observed propor-
tions of patients who experienced efficacy at lower and
higher doses, respectively. We first used δ = 0.05, and
performed additional sensitivity analyses using δ = 0.03
and 0.07. If only the higher dose was rejected, the trial was
claimed to be inconclusive. The reasons why we compare
with the independent Simon’s designs are: 1) Based on our
experiences at MD Anderson Cancer Center, it is a com-
monly used approach in designing phase II oncology trials
with more than one dose groups, even under a plausible
assumption that the response rates are ordered between
dose levels; 2) we are not aware of a published version
of the Simon optimal two-stage designs for ordered dose
groups in the literature.
To make the BHT-A design comparable with the Simon

two-stage designs, we modified our monitoring rule to
allow for early stopping only for futility. Specifically, we
terminated the trial if p(H0|x)was above 0.848, and closed
the lower dose arm if p(H1|x) was above 0.848. The BHT-
A design utilized continuous monitoring after the out-
comes of a minimum of 24 patients across both doses had

been observed. The maximum sample size was also set to
be 45 at each dose level. At the end of the trial, we claimed
H0, H1, or H�

2 if the corresponding posterior probabil-
ity was above 0.5. If H�

2 was claimed, we concluded H2 if
p(x|H2)/p(x|H3) > 1.37, and concluded H3 otherwise.
We considered the same 12 scenarios, and under each

scenario we simulated 1,000 trials. The operating char-
acteristics of both designs are shown in Tables 2, with
δ = 0.05, 0.03, and 0.07 for the Simon designs labeled
as ‘Simon I’, ‘Simon II’, and ‘Simon III’, respectively. The
column ‘SS’ shows the average total sample size; columns
‘SS 1’ and ‘SS 2’ show the average sample size for the
lower and higher doses, respectively. The type I error rate
was slightly lower under BHT. For scenario 0.3 & 0.3,
the BHT design performed much better than the Simon I
design, with 14% higher P(H�

2) and 35% higher P(H2). For
scenario 0.1 & 0.3, BHT resulted in a little lower P(H1)
than Simon I. In other scenarios, BHT-A and Simon I
designs perform comparably. In scenario 0.1 & 0.1 where
neither dose level is promising, BHT-A required at least
six patients fewer at each dose compared to the Simon I
design. The comparisons with the Simon II and Simon III
designs are similar. In summary, compared with the Simon
optimal two-stage designs, our proposed BHT-A design
can terminate trials of unpromising doses early, by utiliz-
ing a continuous monitoring rule and nonlocal alternative
prior distributions in the hypothesis tests.
To compare the robustness of the performances of all

four designs, i.e., BHT-A and Simon I, II and III designs,
we similarly report the numbers of scenarios in which
each design performs the best and inadequately. The pairs
of numbers are (5,0), (2,1), (6,2), and (4,1) out of 10
scenarios, and (4,0), (2,1), (4,2), and (4,0) out of the 8
scenarios, for the BHT-A, Simon I, II, and III designs,
respectively, with the same 10 and 8 scenarios selected in
Section “Design operating characteristics”. We extended
the definitions for ‘best’ and ‘inadequate’ by also account-
ing for situations where an average total sample size is
reduced by 10 or more when the percentages of draw-
ing the correct conclusion are similar (i.e., scenario 0.1
& 0.1). These results suggest that the proposed BHT-A
design performs more robustly than the three versions of
the independent Simon optimal two-stage designs.
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Table 2 Comparisons of BHT-A and Simon optimal two-stage designs

P(H0) P(H1) P(H2) P(H3) P
(
H�
2

)
SS SS 1 SS 2 % incon

0.1 & 0.1

BHT-A 0.978 0.014 0.003 0.000 0.003 34.5 17.1 17.4 0.005

Simon I 0.954 0.022 0.001 0.000 0.001 47.1 23.6 23.5 0.022

Simon II 0.954 0.022 0.001 0.000 0.001 47.1 23.6 23.5 0.022

Simon III 0.954 0.022 0.001 0.000 0.001 47.1 23.6 23.5 0.022

0.2 & 0.2

BHT-A 0.408 0.142 0.408 0.003 0.411 68.6 33.3 35.3 0.039

Simon I 0.261 0.250 0.203 0.040 0.243 73.2 36.7 36.5 0.246

Simon II 0.261 0.250 0.174 0.069 0.243 73.2 36.7 36.5 0.246

Simon III 0.261 0.250 0.221 0.022 0.243 73.2 36.7 36.5 0.246

0.1 & 0.2

BHT-A 0.623 0.343 0.027 0.000 0.027 53.6 23.6 30.0 0.007

Simon I 0.515 0.457 0.008 0.004 0.012 60.0 23.7 36.3 0.016

Simon II 0.515 0.457 0.008 0.004 0.012 60.0 23.7 36.3 0.016

Simon III 0.515 0.457 0.011 0.001 0.012 60.0 23.7 36.3 0.016

0.3 & 0.3

BHT-A 0.039 0.056 0.773 0.132 0.905 86.7 42.8 43.9 0.000

Simon I 0.008 0.094 0.574 0.220 0.794 85.5 42.9 42.6 0.104

Simon II 0.008 0.094 0.506 0.288 0.794 85.5 42.9 42.6 0.104

Simon III 0.008 0.094 0.632 0.162 0.794 85.5 42.9 42.6 0.104

0.4 & 0.4

BHT-A 0.002 0.008 0.706 0.284 0.990 89.7 44.7 44.9 0.000

Simon I 0.000 0.014 0.675 0.300 0.976 89.3 44.6 44.7 0.010

Simon II 0.000 0.014 0.588 0.387 0.976 89.3 44.6 44.7 0.010

Simon III 0.000 0.014 0.748 0.227 0.976 89.3 44.6 44.7 0.010

0.5 & 0.5

BHT-A 0.000 0.001 0.659 0.340 0.999 90.0 45.0 45.0 0.000

Simon I 0.000 0.001 0.691 0.305 0.996 89.9 45.0 44.9 0.003

Simon II 0.000 0.001 0.626 0.370 0.996 89.9 45.0 44.9 0.003

Simon III 0.000 0.001 0.762 0.234 0.996 89.9 45.0 44.9 0.003

0.1 & 0.3

BHT-A 0.150 0.811 0.030 0.006 0.036 64.9 23.9 41.0 0.003

Simon I 0.104 0.872 0.006 0.016 0.022 66.4 23.6 42.8 0.002

Simon II 0.104 0.872 0.002 0.020 0.022 66.4 23.6 42.8 0.002

Simon III 0.104 0.872 0.007 0.015 0.022 66.4 23.6 42.8 0.002

0.1 & 0.4

BHT-A 0.021 0.949 0.007 0.023 0.030 65.2 20.9 44.4 0.000

Simon I 0.013 0.957 0.001 0.028 0.029 68.5 23.9 44.6 0.001

Simon II 0.013 0.957 0.000 0.028 0.029 68.5 23.9 44.6 0.001

Simon III 0.013 0.957 0.002 0.027 0.029 68.5 23.9 44.6 0.001

0.3 & 0.4

BHT-A 0.006 0.097 0.358 0.539 0.897 87.5 42.7 44.8 0.000

Simon I 0.000 0.100 0.336 0.556 0.892 87.7 42.9 44.8 0.008

Simon II 0.000 0.100 0.261 0.631 0.892 87.7 42.9 44.8 0.008

Simon III 0.000 0.100 0.412 0.480 0.892 87.7 42.9 44.8 0.008
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Table 2 Comparisons of BHT-A and Simon optimal two-stage designs (continued)

P(H0) P(H1) P(H2) P(H3) P
(
H�
2

)
SS SS 1 SS 2 % incon

0.3 & 0.5

BHT-A 0.000 0.116 0.071 0.813 0.884 87.3 42.3 45.0 0.000

Simon I 0.000 0.104 0.075 0.820 0.896 87.9 43.0 45.0 0.001

Simon II 0.000 0.104 0.050 0.846 0.896 87.9 43.0 45.0 0.001

Simon III 0.000 0.104 0.122 0.774 0.896 87.9 43.0 45.0 0.001

0.4 & 0.5

BHT-A 0.000 0.010 0.289 0.701 0.990 89.7 44.7 45.0 0.000

Simon I 0.000 0.014 0.353 0.632 0.984 89.6 44.6 45.0 0.000

Simon II 0.000 0.014 0.280 0.705 0.984 89.6 44.6 45.0 0.000

Simon III 0.000 0.014 0.424 0.560 0.984 89.6 44.6 45.0 0.000

0.4 & 0.6

BHT-A 0.000 0.021 0.051 0.928 0.979 89.4 44.4 45.0 0.000

Simon I 0.000 0.016 0.074 0.910 0.984 89.6 44.6 45.0 0.000

Simon II 0.000 0.016 0.051 0.934 0.984 89.6 44.6 45.0 0.000

Simon III 0.000 0.016 0.116 0.868 0.984 89.6 44.6 45.0 0.000

Note: A tuning parameter δ = 0.05, 0.03, or 0.07 was used in the Simon I, II, or III design, respectively.

Conclusions
We have proposed two Bayesian designs for phase II
oncology trials to assess the efficacy ofmore than one dose
level of a treatment and identify the MaxED, one using
Bayesian hypothesis tests and the other using Bayesian
model averaging. Both designs use the recently devel-
oped nonlocal alternative priors for the response rates.
Our simulation results suggest that the BHT-A design
performs better overall than the BMA design, the inde-
pendent single-arm design using Bayesian hypothesis tests
with a nonlocal alternative prior, and the Bayesian isotonic
regression transformation (BIT)-based design. The better
performance of the BHT-A design compared to the BMA
design is consistent with our expectation that the Bayesian
hypothesis test approach outperforms the posterior cred-
ible interval-based approach, the latter being used in the
BMA design. Of the two versions of the BHT design,
BHT-A (assuming equal prior probability of hypothe-
ses H0 through H3) outperforms BHT-B (assuming equal
prior probability of hypotheses H0, H1 and H�

2), if we
consider the scenarios in which both doses are effective
to be more likely in practice. Our additional simulation
results similarly show that the BHT-A design that is mod-
ified to only allow for futility monitoring performs better
than the independent Simon optimal two-stage designs.
These results demonstrate the expected advantages of
using Bayesian hypothesis tests with nonlocal alternative
priors to continuously monitor the trial and identify the
MaxED. Specifically, as one of our goals is to determine
whether a lower dose may result in the same efficacy as
a higher dose does, the nonlocal alternative priors allow

the trial to accumulate strong evidence in favor of the null
hypothesis of equal response rates between doses when
this hypothesis holds.
The proposed designs allow the user to specify the

values of τ1 and τ2 to reflect the physician’s notion of
what is meant by a clinically meaningful difference in the
response rate both from historical control and between
dose groups. The maximum sample sizeN is often chosen
based on both practical considerations such as the budget
constraints and the physician’s judgment on the trade-off
between the gain in the probability of drawing the correct
conclusion and the time and resources required to achieve
such a gain. Simulations are used to evaluate the trade-off,
as well as to select other design parameters. When more
than three doses are evaluated, our proposed designs are
still applicable, but the computational burden increases.
Our proposed designs use continuous monitoring. To

be more practical, our designs can be modified to allow
for semi-continuousmonitoring, e.g., monitoring after the
outcomes of every five patients are observed. Our designs
can be extended to trials that assume an umbrella order-
ing of efficacy across doses [25], with the same goal of
identifying the MaxED. In that case, different hypotheses
that correspond to dose-response curves with different
peak locations can be defined and similarly modeled using
nonlocal alternative priors.
The designs we propose assume equal randomization

across doses. However, this is not required. Adaptive ran-
domization may be implemented, with the randomization
probabilities depending on the current overall compari-
son of efficacy across doses. However, as mentioned in
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Section “Bayesian hypothesis testing”, the gain by using
outcome-adaptive randomization may not be substantial
for trials with two or three arms.
Both proposed designs require a prior specification of

the model probabilities. In our simulations, we assumed
equal prior model probabilities to represent prior igno-
rance. If there is a priori a higher probability of a cer-
tain model being true, the performances of the proposed
designs may be improved by assigning unbalanced prior
model probabilities.
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