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Abstract
Background: The evaluation of randomized trials for cancer screening involves special statistical
considerations not found in therapeutic trials. Although some of these issues have been discussed
previously, we present important recent and new methodologies.

Methods: Our emphasis is on simple approaches.

Results: We make the following recommendations:

(1) Use death from cancer as the primary endpoint, but review death records carefully and report all causes
of death

(2) Use a simple "causal" estimate to adjust for nonattendance and contamination occurring immediately
after randomization

(3) Use a simple adaptive estimate to adjust for dilution in follow-up after the last screen

Conclusion: The proposed guidelines combine recent methodological work on screening
endpoints and noncompliance/contamination with a new adaptive method to adjust for dilution in
a study where follow-up continues after the last screen. These guidelines ensure good practice in
the design and analysis of randomized trials of cancer screening.

Background
The evaluation of randomized trials of cancer screening
involves special statistical considerations. Although some
of these considerations have been previously discussed
[1,2], our emphasis is on recent and new methodologies
that are easy to implement. Throughout the article, when
we refer to cancer we mean the target cancer of the screen-
ing test.

To better appreciate some of the issues, we review com-
mon biases associated with a naïve analysis of cancer
screening data. These biases arise when comparing surviv-

al after cancer detection between screen-detected and clin-
ically detected cancer cases. To better explain these biases
we introduce a novel analogy.

Lead-time bias
Detection of an asymptomatic cancer by screening starts
the clock at a younger age so the survival time from screen
detection is longer than the survival time from clinical de-
tection, even if screening does not change the age of death.
As an analogy, imagine waiting at a bus stop C for a bus
traveling north to destination D. Suppose you walk south
and board the same bus at stop B prior to its arrival at C.
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Although the bus ride from B to D is longer than from C
to D (by the lead time from B to C), the arrival time at D
is unchanged. You have simply spent more of your life on
the bus. The travel time from B to D is a lead-time-biased
estimate of the travel time from C to D.

Length-bias
Screening preferentially detects slower growing cancers
because there is a longer period of time (hence the name
length-bias) when such cancers could be found on screen-
ing. If slower growing cancers have a different prognosis
than faster growing cancers, the estimated survival time af-
ter diagnosis will be subject to length-bias. Continuing
with the analogy, suppose there are two types of buses:
slow local buses that frequently stop at B, and fast express
buses that rarely stop at B. Because a bus boarded at B is
most likely local, the average time it takes to travel from C
to D (thus the lead time has been subtracted) will be a
length-biased estimate of the averages of the local and ex-
press travel times from C to D.

Overdiagnosis bias
Screening may detect cancers that would never surface
clinically or be diagnosed in the absence of screening.
Continuing with the analogy, suppose some buses stop at
B but not D. Overdiagnosis bias arises when counting all
buses stopping at B as going to D.

Selection bias
The type of subject who receives screening may differ from
other subjects in ways that are related to survival times.
Continuing with the analogy, suppose there is only one
type of bus (so there is no length-bias or overdiagnosis bi-
as), but you only board it at stop B in the morning when
the traffic is heaviest. The time it takes the bus boarded at
B to travel from C to D (so lead-time has been removed)
is a selection-biased estimate of the average, over the en-
tire day, of the travel times from C to D.

A randomized trial with an endpoint of death (typically
measured in each trial arm as a death rate among all par-
ticipants) avoids these biases. Lead-time bias is avoided
by setting the time of randomization instead of the time
of cancer detection as the zero time. Length-bias and over-
diagnosis bias are avoided because the comparison is be-
tween randomized groups not between screen-detected
and clinically detected cancer cases. The use of a mortality
endpoint also avoids lead-time bias, length-bias, and
overdiagnosis bias that would arise with an endpoint
based on characteristics of the cancer. For example, sup-
pose that stage were the endpoint of the trial. A screen-de-
tected stage I cancer is likely to have a different prognosis
than a clinically detected stage I cancer due to lead-time,
length, and overdiagnosis biases. Therefore using stage as
endpoint would bias the results.

Selection bias within the trial is avoided because randomi-
zation guarantees the same distribution of known and un-
known covariates in both groups. Under randomization,
imbalances can occur in the empirical distribution of
baseline covariates. These imbalances are not generally a
concern unless they are extremely large even after adjust-
ing for multiple comparisons. In that case one should in-
vestigate if there were any deviation from random
treatment assignment that may have affected cancer death
rates. It is important that only baseline characteristics be
considered in investigating imbalance. Characteristics
that could be known only after randomization (e.g.
number of cancers diagnosed, stage, age at diagnosis, cure
rates of detected cancers) are likely to be biased because
the screening could have affected these characteristics and
the analysis is no longer "protected" by randomization.

Randomization does not, however, correct for another
type of selection bias. Volunteers who participate in clini-
cal trials and who consent to randomization may differ
from the general population. They often have better un-
derlying health, an effect known as "healthy volunteer bi-
as." Although we do not discuss this bias further, it should
be considered in planning trial size and in trying to gener-
alize trial results to the population- at-large.

Methods
Our emphasis is on simple methods. Although survival
analyses from time of randomization (e.g. logrank tests)
are sometimes used, we focus on simple estimates based
on the cumulative number of cancer deaths. Because can-
cer death is a rare event in asymptomatic participants in a
screening trial, inference based on survival analysis and
cumulative number of cancer deaths is similar [2]. We as-
sume the yearly numbers of cancer deaths follow a Pois-
son distribution, which is appropriate for rare events.

Results
We make three recommendations concerning the design
and analysis of a randomized trial of cancer screening.

(1) Use death from cancer as the primary endpoint, but re-
view death records carefully and report all causes of death
The primary endpoint of most cancer screening trials is
death from cancer. Recently Black [3] identified two types
of biases that can affect the assessment of the cancer death
endpoint. Sticky-diagnosis bias arises when deaths from
an uncertain cause are more likely to be attributed to can-
cer if there was a previous diagnosis of cancer, especially if
the diagnosis was relatively recent. If there were overdiag-
nosis, sticky-diagnosis would induce a higher cancer
death rate in the intervention group than actually the case.
Slippery linkage, the second type of bias, occurs because
deaths that are caused or triggered by screening, work-up,
or a subsequent therapy (e.g. perforation of the colon and
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perhaps cardiovascular deaths) are not attributed to
screening.

Using all deaths as an endpoint avoids these biases but
leads to prohibitive sample sizes as shown in the follow-
ing calculations based on a power of 80% and a one-sided
type I error of 2.5%.

First consider the design of a randomized trial with a can-
cer death endpoint. Under the null hypothesis, the prob-
ability of cancer death in each group is p. Under the
alternative hypothesis the probability of cancer death is p
in the control group and p-d in the study group, where d is
the probability of cancer death in the control group minus
the probability of cancer death in the screened group. For
computing sample size, we assume d is positive. Assuming
a Poisson distribution for the number of cancer deaths,
the sample size (for both groups combined) for a cancer
death endpoint is

Ncancer= 2 (1.96 Sqrt [2 vcancerH0] + .84 Sqrt [vcancerH0 +
vcancerHA ])2/d2,

where vcancerH0 = p and vcancerHA= p-d are the variances for
one subject under the null and alternative hypotheses re-
spectively.

Now consider the design of a randomized trial with an all
death endpoint. Let k denote the probability of death
from causes unrelated to either cancer or screening. Under
the null hypothesis the probability of death from all caus-
es is p + k in each group. Under the alternative hypothesis
the probability of death from all causes is p + k in the con-
trol group and (p + k)-(d-e) in the screened group, where e
is the additional probability of non-cancer deaths due to
screening. Therefore d-e is the probability of death from
all causes in the control group minus the probability of
death from all causes in the screened group. Assuming a
binomial distribution for the number of deaths from all
causes, the sample size (for both groups combined) for an
all death endpoint is

Nall = 2 (1.96 Sqrt [2 vallH0 ] + .84 Sqrt [vallH0 + vallHA])2/
(d-e)2,

where vallH0 = (p + k)(1-p-k) and vallHA= (p+k-d+e) (1-p-
k+d-e) are the variances for one subject under the null and
alternative hypotheses respectively.

For purposes of illustration, suppose that p=. 005, k=. 15
(these values are based roughly on data from a colorectal
cancer screening trial [4]), and d=. 001. To minimize Nall,
we set e = 0. With these specifications, a study with a can-
cer death endpoint would require Ncancer = 150,000 par-

ticipants while a study with an all death endpoint would
require Nall = 4.1 million participants.

For practical considerations, we recommend using cancer
death as an endpoint with careful review of the death
records to minimize sticky-diagnosis and slippery linkage
bias. We also recommend that "cancer" deaths include
any non-cancer deaths attributable to screening or treat-
ment for the cancer.

We also recommend that all deaths and their causes be re-
ported. If, after adjusting for multiple comparisons, there
is a statistically significant difference between groups in
the estimated probability of a particular non-cancer cause
of death, the investigators should reexamine the death
records to check for potential biases. If there are no poten-
tial biases, the investigators will need to consider the pos-
sibility that screening or treatment was responsible for the
difference.

(2) Use a simple "causal" estimate to adjust for nonattend-
ance and contamination occurring immediately after ran-
domization
Two complications in the analysis of many randomized
trials for cancer screening are (a) non-attendance, where-
by some subjects randomized to a screening invitation do
not attend the screening, and (b) contamination, whereby
some subjects randomized to no screening invitation re-
ceive screening outside the trial. The standard approach
for handling these complications is to fold them into the
interpretation of an intent-to-treat estimate. Let p0 (p1)
denote the cumulative fraction of subjects in the control
(intervention) group who died from cancer. The intent-to-
treat estimate, dITT= p1-p0, is the estimated effect of rand-
omization to a screening invitation versus no screening
invitation. However, in the presence of non-attendance
and contamination, the intent-to-treat estimate is a biased
estimate of the efficacy of screening, which is the effect of
receiving screening.

If some reasonable assumptions hold (to be discussed)
there is a simple, but not well-known, method for obtain-
ing unbiased estimates of the effect of receiving screening
in the presence of non-attendance and contamination. Let
f0 (f1) denote the fraction of subjects in the control (inter-
vention) group who receive screening, where f1 > f0. As
discussed below, the "causal" estimate is

dcausal =(p1- p0) / (f1- f0),

which is the estimated effect (change in the probability of
cancer death) of receiving screening among subjects who
would receive screening if randomized to the intervention
group but not if randomized to the control group. This es-
timate is not unique to screening but applies to any trial
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in which nonattendance or contamination occurs soon af-
ter randomization.

Glaziou et al [5] proposed using dcausal to estimate the ef-
fect of receiving screening. Baker and Lindeman [6] and
Angrist [7] independently proposed a "causal" model for
all-or-none compliance in comparative studies that gives
rise to this type estimate and sharpens the interpretation.
By "causal" we mean a formulation based on potential
outcomes, as for example whether or not a subject receives
screening if randomized to a particular group. See [7] for
a more precise definition. For related models applied to
cancer screening see also Baker [8], Cuzick [9], and McIn-
tosh [10]. The "causal" model relies on the following two
assumptions if estimates are to be unbiased.

Assumption 1
There are three types of subjects: always-takers who would
receive screening if randomized to either group, never-tak-
ers who would not receive screening if randomized to ei-
ther group, and compliers who would receive screening if
randomized to the intervention group but not the control
group. (In other words, no subjects would receive screen-
ing if randomized to the control group but not rand-
omized to the intervention group).

Assumption 2
For always-taker and never-takers the probability of cancer
death is the same for each treatment group. (In other
words, when a control subject switches to screening im-
mediately after randomization, the screening regime is
identical to that in intervention group, and when an inter-
vention subject immediately refuses screening, the lack of
screening is identical to that in the control group.)

Unfortunately neither of the assumptions is verifiable, but
they are reasonable, and therefore have "face" validity. Al-
though the analysis is not by intent-to-treat, it makes use
of the randomization to avoid selection bias.

When computing f0 and f1, it is important to count only
subjects who switch treatment immediately after rand-
omization, so as not to violate Assumption 2. With this
modification dcausal is unbiased even if additional sub-
jects switch treatment later in the study, as for example, if
some subjects are screened initially but refuse subsequent
screenings. The effect of later switching is folded into the
interpretation. Thus dcausal, is the estimated effect of im-
mediately receiving screening with the understanding that
the effect is likely attenuated from later switching of treat-
ments.

In designing a randomized trial of cancer screening one
should adjust the sample size for anticipated non-attend-
ance and contamination. Suppose the anticipated fraction

receiving immediate screening is f0 and f1 for the control
and intervention groups, respectively. As derived by Zelen
[11], the adjusted sample size is the sample size if there
were full attendance and no contamination divided by
(f1- f0)2.

(3) Use a simple adaptive estimate to adjust for dilution 
following the last screen
In a typical randomized trial of cancer screening, screen-
ing is offered for a limited time and subjects are followed
after screening has stopped. This leads to a dilution of
treatment effect, as will be explained. Consider a special
baseline variable B such that B = 1 if (i) the subject would
not be detected with cancer if screened, (ii) the subject
would become a cancer case after the time of the last
screen, and (iii) the subject would die from the cancer
during the follow-up period. Otherwise B = 0. In other
words B = 1 indicates a set of cancer deaths that could not
have benefited from screening. We can identify subjects
with B = 1 in the screened group but not in the control
group. Let D denote the number of subjects with B = 1 in
the screened group. By virtue of the randomization, there
will be approximately D subjects with B = 1 in the control
group. As the length of follow-up after the last screening
increases, the amount of dilution D increases, which in-
creases the variance of the estimated treatment difference.

In estimating the relative risk of randomization to screen-
ing or no screening, the value of D affects the point esti-
mate because D is added to both the numerator and
denominator. But when estimating a difference in treat-
ment effect between the groups, the value of D cancels.
Nevertheless, the point estimate of a difference in treat-
ment effect will likely change systematically during fol-
low-up. The reason is that as follow-up increases, the
point estimate includes longer-term effects of screening
on cancer mortality. For example, suppose that screening
reduces cancer mortality up to five years after the last
screening. If one used the estimated difference in cancer
mortality at the end of a 3-year follow-up period, this es-
timate would likely be biased relative to the true differ-
ence at 5 years. Thus, the longer the longer the follow-up
period (up to some point) the less chance for bias due to
excluding long-term effects of screening. But as men-
tioned previously, the longer the follow-up period the
greater the dilution. Thus with longer follow-up, there is a
variance-bias tradeoff for estimating the difference in can-
cer mortality.

Because of this variance-bias trade-off, the results of a ran-
domized screening trial vary with the length of follow-up
after the last screening. For example, consider data from
the Health Insurance Plan of Greater New York (HIP)
Study [12] in which approximately 62,000 women were
randomized to either no screening or an invitation for
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four annual breast cancer screenings. We estimated the re-
duction in the probability of cancer death among compli-
ers at years 5, 10, and 15 since randomization pretending
each of these times was fixed in advance of the study (Fig-
ure 1). At 5 and 10 years after randomization, the lower
bound of the 95% confidence interval was above zero;
however this was not the case for 15 years after randomi-
zation. A major problem is how to best to analyze these
data.

One approach is a limited mortality analysis [2] that
counts cancer deaths over the entire follow-up period but
only among participants with cancer up to time tcatch-up
after randomization. The time tcatch-up is the time when
the number of cases in the control group first equals or
surpasses (catches-up to) the number of cases in the inter-
vention group. The presumption is that cases surfacing af-
ter tcatch-up only dilute the estimated effect. One problem

is that tcatch-up does not occur if there is overdiagnosis. A
related problem is that tcatch-up might not occur for a very
long time, making its calculation impractical. Another
problem is that equal numbers of cases in both groups do
not guarantee an unbiased test [13].

A second approach is to test if screening reduces cancer
mortality rates using a special weighted logrank statistic
for survival data [14,15].

A third approach is to select follow-up times based on
maximum power given parameter estimates from previ-
ous trials and the effect size that one would like to detect
[16].

As a fourth approach, we propose a simple adaptive meth-
od to compute estimates and confidence intervals for the
effect of screening when there is follow-up after the last
screen. To the best of our knowledge this method is new
to the screening literature. In this analysis, "adaptive" re-
fers to using the data to select the follow-up time, with ap-
propriate adjustment in computing confidence intervals.
Let p0(t) and p1(t) denote the cumulative fraction of sub-
jects who die from cancer up to time t in the control and
intervention groups, respectively. Letting n denote the
number of subjects in each group, we define

z(t)= (p0(t) - p1(t)) / (Sqrt [p0(t) + p1(t)]/n),

which is the difference between p0(t) and p1(t) divided by
its standard error, i.e., the z-value associated with a nor-
mally distributed random variable. If screening reduces
the probability of cancer death, z(t) will generally increase
over the time t that screening is offered and perhaps a little
longer. However at some point after screening has
stopped z(t) will generally decrease over time because
p0(t) and p1(t) will each increase by roughly the same
amount from cases that arose after screening had stopped
(i.e. the effect of dilution). See also [16] for a justification
of this behavior of z(t) based on modeling natural history
in breast cancer screening. We assume that screening does
not cause cancer deaths; otherwise it would be possible
for z(t) to decrease for reasons other than dilution. This
motivates selecting as the follow-up time the time t* that
maximizes z(t) with an estimated effect of

dcausal(t*)=(p1(t*) -p0(t*))/ (f1- f0).

We interpret dcausal(t*) as the effect of receiving screening
in compliers before dilution attenuates any effects. For
dcausal(t*) to be correctly interpretable as an effect of re-
ceiving screening, we assume that after perhaps some ini-
tial fluctuations p1(t) -p0(t) is generally increasing or
constant over time until dilution reduces z(t). In other
words, although there may be a brief increase in cancer

Figure 1
Effect of Follow-up on Estimated Reduction in Breast
Cancer Deaths Data are from the HIP Study of
breast cancer screening. The plot shows point estimates
and 95% confidence intervals for estimated reduction in
breast cancer deaths, per 10,000 compliers (participants who
would have receive breast cancer screening if offered) due to
screening. "Fixed" refers to fixing the follow-up time before
examining the data. The estimated reduction is computed as
negative dcausal(t), where t is the fixed follow-up time. "Adap-
tive" is the proposed method that bases the follow-up time
on the maximum, over time, of a Z-statistic, where confi-
dence intervals are computed by bootstrapping. The esti-
mated reduction is computed as negative dcausal(t*), where t*
is the follow-up time based on the adaptive approach.
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deaths due to screening soon after the start of the trial, we
assume that after screening stops, screening does not start
causing more cancer deaths than in the control group.
Otherwise we might incorrectly attribute a small differ-
ence between p1(t) -p0(t) to the effect of dilution when it
is due to delayed harms of screening and early treatment.

Computing confidence intervals by ignoring the fact that
t* was based on the data represents "cutpoint optimiza-
tion" [17] and is thus inappropriate. To compute a confi-
dence interval for dcausal(t*) that accounts for the adaptive
choice of t*, we use the following bootstrap [18] ap-
proach.

For purposes of illustration we applied this method to
data in [2] on breast cancer screening from the Health In-
surance Plan of Greater of New York (HIP) Study. For each
year after randomization we randomly generated a
number of cancer deaths in each group based on a Pois-
son distribution with mean value equal to the observed
number of deaths in that year and group. From these ran-
domly generated data we computed t* and dcausal(t*). We
repeated this calculation 10,000 times to obtain distribu-
tions for t* and dcausal(t*). The mean value of these distri-
butions is the estimate and the lower 2.5 % and upper
97.5% quantiles gives the 95% confidence interval. For t*
we obtained an estimate of 7.3 years with a 95% confi-
dence interval of 4 to 13 years. For dcausal(t*), the estimate
and 95% confidence interval are shown in Figure 1.

To compute sample size for a randomized trial with fol-
low-up after the last screening, we propose the following
approach to account for the adaptive nature of the test sta-
tistic. The first step is to create anticipated data with m sub-
jects per group under the null and alternative hypotheses.
The second step is to treat the anticipated data as observed
data and compute bootstrap estimates of the variance. Let
vadpativeH0 and vadaptiveHA denote the bootstrap estimate of
the variance divided by m under the null and alternative
hypothesis, respectively. In other words vadpativeH0 and va-

daptiveHA are the bootstrap estimates of variance for one
subject. The sample size with cancer death endpoint and
adjustment for non-attendance and contamination is

Nadaptive= 2((1.96 Sqrt [2 vadpativeH0] + .84 Sqrt [vadpativeH0
+ vadaptiveHA])2/d2)/(f1- f0)2.

One other issue in design is the duration of screening. It
should be sufficiently long so that any reduction in cancer
mortality would be apparent before dilution has an effect.

Discussion
In cancer therapy trials, the standard statistical approach
is an intent-to-treat analysis using a non-adaptive statistic
with an all death endpoint. Why are we advocating a dif-

ferent approach for cancer screening trials? On a funda-
mental level, cancer-screening trials differ from therapy
trials because of the high amount of "noise" relative to the
"signal" of screening effect. This "noise" arises because
cancer deaths are rare relative to all deaths, non-attend-
ance and contamination immediately after randomiza-
tion are common, and discontinuation of screening leads
to a dilution of cancer deaths due to cases arising after
screening has stopped.

With the proposed analysis, we can reduce the "noise" at
the "price" of a few reasonable assumptions. In using a
cancer death endpoint with careful review of death
records, we assume that deaths caused by screening via
unanticipated pathways, such as cardiovascular disease,
are correctly attributed to screening. In using the simple
"causal" model to adjust for nonattendance and contami-
nation, we assume that (i) a subject who switches treat-
ment immediately after randomization does in fact
receive the same treatment as in the other treatment
group, and (ii) no subject would receive screening outside
the trial if randomized to the control group and refuse
screening if randomized to the intervention group. In us-
ing the adaptive statistic to estimate the effect of screening
in a trial with follow-up after the end of screening, we as-
sume that screening does not increase cancer mortality af-
ter some point in time.

Even with the proposed method for reducing "noise", the
sample sizes for randomized cancer-screening trials are
substantial, typically requiring tens of thousands of sub-
jects. Thus randomized screening trials should only be un-
dertaken when there is strong preliminary evidence for a
potential benefit of screening that could outweigh attend-
ant harms. In this regard, it is important to have a well-de-
signed strategy for selecting the most promising early
detection markers for evaluation in a randomized cancer-
screening trial [19–21].

Our focus has been on randomized trials for evaluating
the efficacy of cancer screening and the attendant harms.
However observational studies have a role particularly
when investigating secondary questions involving the ef-
fect of age to begin screening, interval between screenings,
or small changes in the screening modality. Case-control
studies are applicable with special considerations for can-
cer screening [22]. Periodic Screening Evaluation (PSE) is
a method for using data from subjects of various age who
receive at least two regularly scheduled screenings to esti-
mate the reduction in cancer mortality from periodic
screening over a range of ages [23,24]. The main assump-
tions of PSE are (1) once a cancer is detectable on screen-
ing it would be detectable on later screenings (2) given
age, year of birth adds no information for predicting the
detection rate on the first screen, (3) no selection bias in
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using refusers to estimate survival from detection in the
absence of screening. The paired availability design (PAD)
is a method for combining data from various before-and-
after studies that adjusts for different fraction receiving the
intervention in a manner similar to that for nonattend-
ance and contamination [25]. For applications to screen-
ing, PAD requires a well-defined geographic region in
which screening has been introduced, with little in- or -
out- migration and no other changes over time that would
affect the endpoint of cancer mortality.

We emphasized estimating the reduction (if any) in can-
cer deaths due to screening. For a balanced evaluation,
one should also estimate the probability of an unneces-
sary biopsy [23] and other harms attendant to screening
and interventions triggered by the screening process.

Conclusion
The proposed guidelines combine recent methodological
work on screening endpoints and noncompliance/con-
tamination with a new adaptive method to adjust for di-
lution in a study where follow-up continues after the last
screen. They should greatly help investigators design and
analyze randomized trials for the early detection of can-
cer. Because the assumptions are reasonable, we recom-
mend these guidelines as one of the primary analyses.
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