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Abstract
Background: Randomized trials stochastically answer the question. "What would be the effect of
treatment on outcome if one turned back the clock and switched treatments in the given
population?" Generalizations to other subjects are reliable only if the particular trial is performed
on a random sample of the target population. By considering an unobserved binary variable, we
graphically investigate how randomized trials can also stochastically answer the question, "What
would be the effect of treatment on outcome in a population with a possibly different distribution
of an unobserved binary baseline variable that does not interact with treatment in its effect on
outcome?"

Method: For three different outcome measures, absolute difference (DIF), relative risk (RR), and
odds ratio (OR), we constructed a modified BK-Plot under the assumption that treatment has the
same effect on outcome if either all or no subjects had a given level of the unobserved binary
variable. (A BK-Plot shows the effect of an unobserved binary covariate on a binary outcome in
two treatment groups; it was originally developed to explain Simpsons's paradox.)

Results: For DIF and RR, but not OR, the BK-Plot shows that the estimated treatment effect is
invariant to the fraction of subjects with an unobserved binary variable at a given level.

Conclusion: The BK-Plot provides a simple method to understand generalizability in randomized
trials. Meta-analyses of randomized trials with a binary outcome that are based on DIF or RR, but
not OR, will avoid bias from an unobserved covariate that does not interact with treatment in its
effect on outcome.

Background
Consider a randomized trial in which subjects are rand-
omized to either a control or experimental intervention.
The approach to statistical inference depends on the ques-
tion one would like to answer.

One question is "What would be the effect of an interven-
tion on outcome if we turned the clock backwards so that

subjects randomized to the experimental treatment
received the control treatment and vice versa?" Of course
this question cannot be answered empirically by direct
observation because one cannot go back in time. In a
landmark paper on causal inference, Rubin [1] presented
a stochastic answer, demonstrating that the estimated
treatment effect in a randomized trial is an unbiased esti-
mate of the treatment effect if the clock were turned
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backwards and the treatments were reversed. Rubin [1]
noted that estimates are generalizable to a target popula-
tion if the subjects in the study are a random sample from
the target population. (See [2] and [3] for additional dis-
cussions of the Rubin causal model including the require-
ment that the effect of treatment on one subject is
independent of the effect of treatment on another
subject.)

A broader question is "What is the effect of intervention in
a different population that is not a random sample from
the target population?" This question cannot be answered
empirically. (In fact, if it were required for valid generali-
zation of results, it would present a serious limitation of
the scientific method in medical decision making.) In the
most general situation in which the treatment effect varies
by population, the question is also unanswerable stochas-
tically. However a restricted version of this question can
be answered stochastistically. Our starting point is to pos-
tulate an unobserved baseline binary random variable.
Unobserved baseline variables have often been consid-
ered in discussing randomization. According to Meier [4]
"...the role of randomization is to distribute the effects of
baseline variables, both measured ones and those not
observed, in such a way that the statistical analysis makes
due allowance for them. It is precisely when there are hid-
den variables which may be influential that randomiza-
tion is most important." To make progress we assume no
interactive effect on probability of outcome between the
unobserved binary variable and treatment. This assump-
tion lies at the core of our ability to generalize results of
clinical trials to populations other than those from whom
the original sample in the trial was drawn. For some hypo-
thetical situations where the non-interaction assumption
for an unmeasured variable would be violated, see [5].

Using the above framework, we address the following
question, "What is the effect of intervention in a popula-
tion in which a different fraction have an unobserved
binary variable that does not interact with treatment in its
effect on outcome?" We investigate this question for three
common outcome measures, absolute difference (DIF),
relative risk (RR), and odds ratio (OR).

In related work, Gail et al [5] estimated the bias when one
fits a model without an unobserved variable to data gen-
erated from a randomized trial with an unobserved varia-
ble that does not interact with treatment in its effect on
outcome. For binary outcomes they found no bias with
DIF and RR but a bias with OR. However their complex
formulas provide little insight to the general health pro-
fessional and do not directly address our question related
to generalizability. In other related work, Anderson et al
[6] also showed no bias with linear and exponential (i.e.
multiplicative) models in the presence of an unobserved

variable. Although Anderson et al [6] presented a plot,
related to the BK-Plot, showing the effect of a continuous
unobserved variable, they did not relate the plot to
generalizabilty.

Methods
We start with a standard BK-Plot (Figure 1, left side) based
on hypothetical scenarios. The BK-Plot was originally
developed as a graphical approach to explain Simpson's
Paradox [7,8] and extended to other problems [9]. The
horizontal axis is the fraction of subjects with the unob-
served baseline variable at a given level. The vertical axis is
the probability of outcome, such as treatment success. The
plotted lines indicate the probability of outcome as a
function of the unobserved binary variable. One line cor-
responds to subjects randomized to the control group,
and the other line corresponds to subjects randomized to
the treatment group.

We consider three common outcomes measures: the abso-
lute difference in probability of outcome (DIF), the rela-
tive risk (RR), and the odds ratio (OR). Absolute
difference is derived from an additive model on the origi-
nal scale; relative risk is derived from a multiplicative
model on the original scale as plotted here (or an additive
model on a logarithmic scale); odds ratio can be plotted
on the original scale as done here, but is often derived
from an additive model on a logistic scale.

For each outcome measure we present a BK-Plot under the
assumption of no-interaction between treatment and the
two levels of the unobserved binary variable in their effect
on the outcome measure. In other words, to fulfill the
condition of no interaction between the treatment and the
unobserved binary variable, the outcome measure com-
paring treatment groups, whether DIF, RR or OR, has the
same value at the leftmost and rightmost points on the
horizontal axis. As the fraction of subjects with a given
level of the binary variable varies from 0 to 1, the BK-Plot
traces a linear combination of the outcome measure from
the leftmost to the rightmost points (Figure 1, left side).

To investigate how the outcome measure changes as the
proportion of subjects with a given level of the unob-
served binary variable varies from 0 to 1, we present a
modified BK Plot (Figure 1, right side), in which the out-
come measure is plotted against the fraction with the
unobserved binary variable. Because we assumed no inter-
active effect on the outcome measure between the unob-
served binary variable and treatment, the leftmost and
rightmost points of the plots on the right side of the Figure
are constrained to be equal.
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Results
Based on Figure 1, for DIF and RR, but not OR the out-
come measure was constant as the fraction of subjects
with a given level varied from 0 to 1. Although the graphic
is insightful, for the interested reader we provide the fol-
lowing algebraic derivation of these results. Suppose the
randomization groups are labeled z = treatment A or treat-
ment B. Let x = 0 or 1 denote the two levels of the unob-
served binary variable. Let p denote the proportion of
subjects with the unobserved binary variable at x = 1. Let
gz(p) denote the probability of outcome in randomization

group z when a fraction p have the unobserved variable at
level x = 1. Let fxz denote the probability of outcome in
randomization group z when all subjects are at level x of
the unobserved variable. (This represents the rightmost
point of the horizontal axis in Figure 1 when x = 1). The
marginal probabilities, i.e. the probabilities of outcome
when a fraction p have the unobserved variable at level x
= 1, are

gA(p) = f0A(1 - p) + f1A p

Figure 1
The left side represents a standard BK-Plot, where the diagonal lines correspond to the probabilities of outcome in two rand-
omization groups as a function of the fraction of subjects with the unobserved binary variable. The right side depicts a modified 
BK-Plot, where the outcome measure is plotted as a function of the fraction of subjects with the unobserved binary variable. 
We assume no interaction between the unobserved binary variable and treatment effect on the probability of outcome. Graph-
ically, this means that we created BK-Plots so that the outcome measure has the same value at the leftmost and rightmost 
points. DIF = absolute difference; RR = relative risk; OR = odds ratio.
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gB(p) = f0B(1 - p) + f1B p.

For an additive model, the outcome measure is the abso-
lute difference, fxA - fxB. Under the assumption of no inter-
action between treatment effect and the unobserved
binary variable, fxA - fxB = DIF for x = 0, 1. This implies a
constant difference in marginal probabilities, namely
gA(p) - gB (p)= DIF, which holds for all values of p.

For a multiplicative model, the outcome measure is the
relative risk, fxA/fxB. Under the assumption of no interac-
tion between treatment effect and the unobserved binary
variable, fxA/fxB = RR for x = 0, 1. This implies a constant
ratio of marginal probabilities, namely, gA(p)/gB(p) - RR,
which holds for all values of p.

The results differ when the outcome measure is the odds
ratio, fxA (1 - fxB)/(fxB (1 - fxA)). Under the assumption of no
interaction between treatment effect and the unobserved
binary variable, fxA (1 - fxB)/(fxB (1 - fxA)) - OR for x = 0, 1.
However, this does not imply that gA(p) (1 - gB(p))/(gB(p)
(1 - gA(p))) = OR for all p. In the Appendix we present a
calculation to quantify the possible bias from using OR in
a particular trial.

Discussion
There is a large literature discussing the relative merits of
using RR, DIF, and OR as outcome measures [10]-[14].
Our results concerning generalizability of DIF and RR, but
not OR, in the presence of an unobserved binary covariate
with no interaction, add important new information to
this discussion.

Because the analyst must weight all the issues, we think it
is helpful to present our perspective on some of the other
factors that affect the choice of outcome measure. We
believe the outcome measure should reflect the underly-
ing model if it is known. Also we agree that one should
consider how well the model of constant RR, DIF, OR fits
the data [10].

It is sometimes argued that DIF and RR should not be used
because extrapolated estimates might violate the con-
straints that 0 <DIF < 1 and RR > 0 [10]. (For example,
suppose that in 9 trials the probability of outcome in the
control group is .1 and the probability of outcome in the
intervention group is .6. so DIF = .5. Also suppose that in
1 additional trial, the probability of outcome in the con-
trol group is .65 and the probability of outcome in the
intervention group is .95 so DIF = .3. If all trials are equal
size, a weighted estimate of DIF with weights inversely
proportional to the variance yields DIFavg = .47. The esti-
mated probability of outcome in the last trial would then
be .65 + DIFavg = 1.12, which violates the constraint on
DIF.) In contrast to many other investigators we are not

concerned with this extrapolation problem. In many
meta-analyses the extrapolated estimates will not violate
the constraints. If an extrapolated estimate violates a con-
straint, it could be a valuable indication that the model is
inappropriate when applied to all the studies. If the con-
straint is violated only slightly, it might be sensible to fit a
model that constrains DIF and RR to lie in valid ranges
[11].

Sometimes it is argued that RR should not be used
because its value changes if the labels of the binary out-
come are reversed [10]. In particular, if RR is constant with
one set of labels it is typically not constant if the labels are
reversed. However, because the labels have an important
meaning (e.g. survive or die), we are not concerned that
RR changes with label reversal. In contrast, in latent class
models, the class labels are arbitrary, so it is helpful to
check the computations by verifying that the results are
the same if the labels are reversed. A more serious criticism
of RR is sensitivity to small counts [12]. We agree with this
criticism and do not recommend using RR with small
counts in one group.

We agree with much of the literature that, in terms of
interpretation, RR and DIF are preferable to OR. Accord-
ing to Sackett et al [14] "because very few clinicians are
facile at dealing with odds and relative odds, ORs are not
useful in their original form at the beside or examining
room". Walter [10] writes, "The OR is undeniably the
most difficult measure to intuit, so it likely to be less use-
ful than RD [DIF] or RR for communicating risk"

Besides the choice of outcome measure, other factors
affect the appropriateness of combining results from ran-
domized trials and should be considered by the analyst.
One factor is the variation in all-or-none compliance
among trials. To reduce the variation from this factor, one
can fit a model based on inherent compliance (i.e., with
baseline subgroups "always-takers", "compliers", and
"never-takers") [15,16]. These models have been applied
to meta-analyses involving DIF as an outcome [17,18].
Related models for RR [19,20] could be used for meta-
analyses involving RR. Our graphic supporting the use of
DIF and RR would directly apply to "compliers", who are
the subgroup of interest in these models for all-or-none
compliance.

Another factor affecting the combination of results from
randomized trials is the variation in treatment (e.g. varia-
tion in doses or levels of ancillary care). Despite the theo-
retical results in this paper, a large empirical study
comparing the use of RR and OR in meta-analyses found
little difference in heterogeneity when using RR and OR
[21]. A likely explanation is that the impact of variations
in treatment was larger than the bias from using OR.
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Conclusion
The issue of generalizability of randomized trials is impor-
tant in meta-analyses of randomized trials. To avoid bias
from an unobserved binary variable that does not interact
with treatment in its effect on outcome (and hence
increase generalizability of results), one should use DIF or
RR, but not OR, as an outcome measure.
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Appendix
If one has data from a randomized trial, the following cal-
culation shows the possible bias from using OR with no
interaction between treatment effect and the unobserved
binary variable. Suppose the fraction of subjects with the
unobserved binary variable is p = .5. From the trial we can
estimate gA = gA(.5) and gB = gB(.5). With p = .5, f0z will be
the same distance above gz as f1z is below gz. Therefore we
can write f0A = gA(1 - s), f1A = gA (1 + s), f0B = gB (1 - k), and
f1B = gB (1 + k), where k ≤ minimum(1/gB - 1, 1) and s ≤
minimum(1/gA - 1, 1). Let OR* = gA (1 - gB)/(gB (1 - gA))
denote the apparent odds ratio. Let OR*

x = fxA (1 - fxB)/(fxB
(1 - fxA)) denote the true odds ratio when all or none of the
subjects have the unobserved covariate. Under the
assumption of no interaction between the unobserved
covariate and treatment effect, OR*0 = OR*1. Solving this
equation for s gives

Substituting the above formula for s into OR*0 gives a
function of k that we denote OR*0 (k). This function rep-
resents possible values for the true odds ratio. For exam-
ple, if gA = .2 and gB = .4, the apparent odds ratio is OR* =
.375. However under the model the true odds ratio could
have values OR*0(.3) = .36, OR*0(.5) = .32, or OR*0(.9) =
.20.
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