BIVIC Medical Research )
MEthOdOIOgy BioMed Central

Research article

Estimating the cumulative risk of false positive cancer
screenings
Stuart G Baker*!, Diane Erwin2 and Barnett S Kramer3

Address: 'Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, U.S.A, 2Information
Management Services, Inc., Rockville, Maryland, USA and 3Office of Disease Prevention, National Institutes of Health, Bethesda, Maryland, USA

Email: Stuart G Baker* - sb16i@nih.gov; Diane Erwin - d.erwin@btinternet.com; Barnett S Kramer - KramerB@OD.NIH.GOV
* Corresponding author

Published: 03 July 2003 Received: || February 2003
BMC Medical Research Methodology 2003, 3:11 Accepted: 03 July 2003
This article is available from: http://www.biomedcentral.com/1471-2288/3/1 |

© 2003 Baker et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all
media for any purpose, provided this notice is preserved along with the article's original URL.

Abstract

Background: When evaluating cancer screening it is important to estimate the cumulative risk of
false positives from periodic screening. Because the data typically come from studies in which the
number of screenings varies by subject, estimation must take into account dropouts. A previous
approach to estimate the probability of at least one false positive in n screenings unrealistically
assumed that the probability of dropout does not depend on prior false positives.

Method: By redefining the random variables, we obviate the unrealistic dropout assumption. We
also propose a relatively simple logistic regression and extend estimation to the expected number
of false positives in n screenings.

Results: We illustrate our methodology using data from women ages 40 to 64 who received up
to four annual breast cancer screenings in the Health Insurance Program of Greater New York
study, which began in 1963. Covariates were age, time since previous screening, screening number,
and whether or not a previous false positive occurred. Defining a false positive as an unnecessary
biopsy, the only statistically significant covariate was whether or not a previous false positive
occurred. Because the effect of screening number was not statistically significant, extrapolation
beyond 4 screenings was reasonable. The estimated mean number of unnecessary biopsies in 10
years per woman screened is .| | with 95% confidence interval of (.10, .12). Defining a false positive
as an unnecessary work-up, all the covariates were statistically significant and the estimated mean
number of unnecessary work-ups in 4 years per woman screened is .34 with 95% confidence
interval (.32, .36).

Conclusion: Using data from multiple cancer screenings with dropouts, and allowing dropout to
depend on previous history of false positives, we propose a logistic regression model to estimate
both the probability of at least one false positive and the expected number of false positives
associated with n cancer screenings. The methodology can be used for both informed decision
making at the individual level, as well as planning of health services.

Background the reduction in mortality from the cancer that is the
When evaluating cancer screening, it is important to esti-  object of the screening [1]. A frequent harm is a false pos-
mate both the benefits and harms. The major benefit is itive (FP) screening outcome. Although there are also risks
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from the screening procedure, such as perforation of the
colon in colorectal cancer screening using endoscopy,
diagnosis of medically unimportant "cancers" (overdiag-
nosis) and burdens due to time lost and travel to the
screening clinic, these will not be discussed here. A false
positive (FP) can be defined either narrowly as an unnec-
essary biopsy (i.e. a biopsy that does not detect cancer) or
broadly as unnecessary additional work-up (i.e. an addi-
tional work-up that does not detect cancer).

Gelfand and Wang (GW) [2-4] proposed methodology
for estimating the probability of a least one FP in n screen-
ings. We bolster and extend the methodology in GW. First,
we show that an unrealistic assumption of GW is unnec-
essary. GW thought that they needed to assume that drop-
ping out (either by loss-to-follow-up or refusing
additional screenings) is independent of the prior history
of false positives. This assumption is unrealistic [5] and
makes their approach untenable. We show that by refor-
mulating the problem with different random variables,
one can obtain essentially the same result without the
unrealistic assumption. Second we estimate an additional
quantity to that estimated by GW. GW only estimated the
probability of at least one false positive in n screenings. To
better quantify the cumulative burden of false positives,
we also estimated the expected number of false positives
in n screenings. Third, to simplify computations for some
data sets, we introduced a logistic regression model.

Methods

Obviating the Unrealistic Dropout Assumption

The proof obviating the assumption that dropout does
not depend on previous FP's is technical and deferred to
the Appendix (see Additional file: 1). However the main
idea can be readily summarized. Unlike GW who estimate
the probability of at least one false positive among n
screenings that have occurred, we estimate the probability
of a least one false positive if there were n screenings
regardless of whether or not they occurred. This seemingly
slight modification of the definition makes a large differ-
ence in the mathematical derivation, which in turn obvi-
ates the unrealistic assumption. Our much less restrictive
assumption is that dropout does not depend on future
false positives. This revised formulation has a parallel in
Kaplan-Meier estimation that requires only that censoring
not depend on future outcomes [6] and in discrete-time
censoring models that are formulated as missing-data
selection models [7].

Logistic Regression

To estimate parameters, GW used a Bayesian approach
with a proportional hazards model. For the clinically ori-
ented reader, the computations can be difficult. As an
alternative we propose a relatively simple logistic regres-
sion models that is appropriate for some data sets (with
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further elaboration in the Discussion). Our approach
requires fitting two logistic regressions. The first logistic
regression models the probability of FP on the first screen-
ing as a function of age. We let i index age interval at
screening, where i = 1, 2, 3,4, 5 corresponds to ages 40-
44, 45-49, 50-54, 55-59, 60-64, respectively. The logis-
tic regression can be written as

logit(pr(FP|i;a) = 0tg + Otygeiy (1)

where a,,,(;) = 0 because we have constant term o, The
data are a table of counts for age categories cross-classified
by FP outcome (yes or no). See supplemental file.

The second logistic regression models the probability of
FP on a screening after the first as a function of age at
screening, time since the last screening, the number of the
screening, and whether or not there was a previous FP. To
obtain a parsimonious model we have made two simpli-
fications. First we use screening number rather than
chronological time. For example, in one subject screening
might occur at times 0, 1, and 3, and in another subject,
screening might occur at times 0, 1, 2. In terms of the
model, both subjects have three screenings indexed by t =
1, 2, 3. This has the advantage of reducing the number of
missing-data patterns as there are, by definition, no miss-
ing "between" screenings. To model various patterns of
missingness would require a much more complicated for-
mulation, which is not warranted given the sparse data. To
account for different intervals between screenings we
included time since the previous screenings as a covariate
(which parallels the GW formulation). Our second sim-
plification is using an indicator of previous FP rather than
a more detailed history of FP because there are too few
data to adequately fit a model that conditions on various
prior patterns of FP.

As before we let i denote age interval at screening. We also
let j denote time since the last screening, where j=1,2,3,4
corresponds to 9-12 months, 13-15 months, 16-18
months, and greater than 18 months, respectively. We let
k denote whether or not there was a previous false posi-
tive, where k = 0, 1 corresponds to no and yes, respec-
tively. The logistic regression is

lOglt(pT(FP|l, j' 2 k'B)) = BO + Bage(i) + BtimeU) + Bscreen(l) +
Berg- (2)

where Bage(l) = Btime(l) = Bscreen(l) = BFP(l) = 0. The data are
counts for a cross classification of age interval, time inter-
val, screening number, an indicator of previous FP, and
the FP outcome. See Additional file: 2. The model in (2)
represents a standard application of logistic regression to
survival analysis [8,9].
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Estimating Cumulative Risk
We use the parameter estimates from the logistic regres-
sion to estimate the cumulative risk of an FP. Let

X e&n +é‘ngﬂ( i)
i =pr(Y=18)=———"—, (3)
14 %o+ 0age(i)
. eBO +f3m( i) *Bu»m( i) +Bmwn(l ;*Bw(o)
i = PT(Y =1| i,j,k,O;B) =

1+ eﬁo*ﬁw(l)+3nme(j)+BALmrn(z)+ﬁrp(1) '

eﬁu +Bugv( i )+ﬁtirrw( j )+ﬁsueen( t )*Bm 1)

bti]-:pr(Y:Hi,j,k,l;B): (5)

1+eﬁ0+Bagz(()+l3nmz([)+Smezn(t)+BPl’(l) '

where ¢ and P are the maximum likelihood estimates
from (1) and (2), respectively. For simplicity of exposi-
tion, suppose we want to estimate the cumulative risk of a
subject who remains in the same age category i over n
screenings with time between screenings in category j.
(However the method can be extended to those who age
from category i to category i + 1). The estimated probabil-
ity of at least one FP in n screenings (for n > 1) is

n

pij(”)=l_(l_ali)H(l_atij)' (6)

t=2
The estimated survival time until the first FP in n screen-
ings (forn>1)is 1 - py(n).

To better quantify the cumulative burden of FP's we also
estimate the expected number of FP's. The formula for the
estimated expected number of FP's in n screenings varies
with n. For example, for n = 4 the estimated expected
number of FP's is

e;j(4) = pr(4FP's) 4 + pr(3 FP's) 3 + pr(2 FP's) 2 + pr(1 FP)
L (7

where
pr(4 FP's) = a,;q53;
pr(3 FP's) = ay; 4y 35+ (1 - ay;) ayi 025

pr(2 FP's) = ay; qy 35+ (1 - ay) ayi Gy i+ (1 - ayy) (1 - ayy) asy;
q1)1i

pr(1 FP) = ay;qopsi + (1 - ay) agiqopnij + (1 - ay;) (1 - ayy) as;;
dojrij+ (1 -a;)(1 - ay;) (1 - asy) ag

and ¢ is the probability of h FP's over the last f time
periods for a subject age i and with time interval j since the

last screening. In this example

q3)3; = pr(3 FP's in last 3 screenings) = b,;b3;b,y
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a3 = pr(2 FP's in last 3 screenings) = by;bs;(1 - byy) +
baii(1 - bsy) by + (1 - byy)bsybyyy

q3i = pr(1 FP in last 3 screenings) = by;; (1 - bs;) (1 - byy)
+ (1= byy) bsyi (1 - byy) + (1 - byy) (1 - bsy) by

doj3ij = pr(0 FP's in last 3 screenings) = (1 - by;) (1 - bsy) (1

- byy),
51257 = pr(2 FP's in last 2 screenings) = by;byy;

Gr )2 = pr(1 FP in last 2 screenings) = b3ij (1- b4ij) +(1- b3ij)

4ijs
qoj2i= pr(0 FP's in last 2 screenings) = (1 - by;) (1 - by),
gyj157= pr(1 FP in last screening) = by;;,

qoj15= pr(0 FP's in last screening) = 1 - b;;.
An important special case occurs when the probabilities of
FP do not vary with screening number. This case is impor-
tant because it allows extrapolation to additional screen-
ings. With a,; = by and b;; = by; for ¢t = 2,3,...,n, the
estimated probability of at least one FP in n screenings is

pi(n) =1-(1-ay) (1-ay)" (8)

and the estimated expected number of FP's in n screenings
is

ei(n) = ali(1+nb1v]~)+27;zl(l—ali)(l—azﬁ)t_zazlj(1+(n—t)bi~)
+ (l—ali)(l—azg)nizaij. (9)

The most difficult part of implementation is computing
the variance. The asymptotic variances are

i

des: _ de;;
0 and var(eij):%var(e)%, (8)

op;i .
var(p;;) = a—g var(0)

where 6 = (GO' Qage(iyr BOI Bage(i)' Btime(j)f Bscreen(t)' BFP(k))' By
using computer software for symbolic derivatives [10], it
is not hard to compute (8). Alternatively one could com-
pute confidence intervals by using a bootstrap approach
[11].

Results

We applied the methodology to data on 4 annual screen-
ings in the Health Insurance Program of Greater New York
(HIP) breast cancer screening study [13]. Starting in 1963,
approximately 60,000 women were randomly assigned to
either a study group invited for four annual mammo-
grams and physical examinations or to a control group
that received no screening within the study. Approxi-
mately 1/3 of the subjects in the study group refused the
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Table I: Parameter estimates (standard errors) from logistic regression models for FP's

Narrow FP Broad FP

initial model final model final model
model for initial FP
oy -4.30 (.13) -4.14 (.06) -2.37 (.05)
ocage(Z) 23 (.17) .15 (.07)
aage(S) 29 (.17) -0l (.08)
uage(4) A3 (.19) .05 (.08)
otage(S) .00 (.22) -.02 (.09)
model for subsequent FP's
Bo -4.81 (.18) -4.89 (.06) -2.85 (.07)
Bage(Z) 24 (.19) -.02 (.07)
Bage(3) .00 (.19) -.16 (.08)
Bage(4) =32 (.21) -.28 (.08)
Bage(S) .07 (.21) -.24 (.08)
Biime(2) =02 (.11) -.13 (.05)
Biime(3) .10 (.20) -22 (.09)
Biime(4) 12 (.22) -.08 (.09)
Bueen3) -30(.13) -1 (05)
ﬁscreen(4) -07 ( I 3) -22 (06)
[SFP(,) 2.35(.14) 2.34 (.14) 1.64 (.05)

first screening and received no screenings. Our analysis
focused on the vast majority of screened women who were
between ages 40 and 64. In HIP, our broad definition of a
false positive was either (i) breast biopsy in which no can-
cer was detected or (ii) early re-examination with either
clinical or radiological recommendation and no cancer
detected on diagnostic work-up. Our narrow definition
was (i).

Parameter estimates from the logistic regressions are pre-
sented in Table 1. The methodology answers two ques-
tions an individual might pose.

Question 1. "If I were to have n number of screening tests
and stick to the schedule what are the chances that at least
one will be a false positive?"

Question 2. How many unnecessary biopsies or work-ups
am [ likely to need if I start on the screening program and
adhere to the schedule?"

Question is answered by the estimates in (6) and (8).
Question 2 is answered by estimates in (7) and (9). For an
economic analysis Question 2 is particularly useful as it
would help an analyst assign monetary costs to the cumu-
lative burden of FP's. Both questions are clearly important
to the patient.

Defining a FP as an unnecessary biopsy, we could not
reject a model for (1) with only a constant (deviance = .27

on 4 d.f, p =.99) nor a model for (2) with a constant and
a parameter for previous FP's (deviance = 3.66 on 9 d.f., p
=.93). Consequently we think it is reasonable to extrapo-
late beyond 4 screenings using (8) and (9). In answer to
Question 1, the estimated probability of at least one FP in
10 screenings is .08 with 95% confidence interval of (.07,
.09). In answer to Question 2, the estimated expected
number of FP's in 10 screenings is .11 with 95% confi-
dence interval of (.10, .12).

Defining an FP as an unnecessary work-up, most of the
parameter estimates were statistically significant, so we
kept all the covariates in the model. Because the parame-
ter for screening number was included, we could not
extrapolate beyond the 4 screenings that was the maxi-
mum number of screenings per subject in our data. For
purposes of illustration we selected i = 1 and j = 1 for com-
puting (6) and (7). In answer to Question 1, the estimated
probability of at least one FP in 4 screenings is .21 with
95% confidence interval of (.20, .22). In answer to Ques-
tion 2, the estimated expected number of FP's in 4 screen-
ings is .34 with 95% confidence interval of (.32, .34).

As an ancillary investigation, we also fit a logistic regres-
sion for the probability of dropout as a function of age cat-
egory, time interval since last screening, screening
number, false positive on the last screening, false positive
on an earlier screening, and interaction between of the
two false positive variables. For the HIP data, when FP was
defined broadly, there was no statistically significant asso-
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ciation between FP history and dropout. For FP defined
narrowly, there was a strong association between FP his-
tory and dropout.

Discussion

Our methodology is applicable to any screening test rec-
ommended on a periodic basis for which data come from
subjects with possibly different numbers of screenings.
Ideally one would like data from a study in which subjects
are representative of the general eligible population and
clinicians are representative of the clinicians who would
perform the screening in practice. Particularly when the FP
is an unnecessary work-up, the clinicians may vary in the
threshold used to determine a positive, as there is subjec-
tivity to the interpretation of the test. When FP is an
unnecessary biopsy, the variation among clinicians will
likely be small because a high level of FP's is unacceptable
[14]. In our data set there was no information on clini-
cian. If there are data on clinicians, it should be incorpo-
rated into the analysis. If the number of clinicians is small,
we suggest including a variable for clinician in the logistic
regression. If the number of clinicians is larger, it is best to
include a random variable for the effect of clinician.
Unfortunately the simple logistic regression is not appli-
cable and a more complicated model such as that in GW
would be needed.

The assumption that dropout does not depend on future
false positives could be violated if a subject drops out
because of self examination results (so she goes to her reg-
ular physician) that would have led to future false posi-
tives. To avoid this violation of the assumption, one could
ask women screened and women who dropped out if they
found any lump on self examination. By including a cov-
ariate for lump on self examination, the dropout process
depends on previous history and factors from the
likelihood.

Conclusion

We made three contributions. First we showed that previ-
ous methodology of GW did not require an unrealistic
assumption about the dropout process. This makes the
approach much more appealing. Second, we showed how
to estimate the expected number of false positives, which
we think is informative, in addition to the probability of
at least one false positive. Third we presented a logistic
regression formulation that is applicable for some data
sets and is relatively simple to implement. Our approach
can be applied to many types of cancer screening tests that
are recommended on a periodic basis. It is useful for both
advising individuals in a clinical setting and for health
resources planning.

http://www.biomedcentral.com/1471-2288/3/11
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