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Abstract
Background: Techniques for interim analysis, the statistical analysis of results while they are still
accumulating, are highly-developed in the setting of clinical trials. But in the setting of laboratory
experiments such analyses are usually conducted secretly and with no provisions for the necessary
adjustments of the Type I error-rate.

Discussion: Laboratory researchers, from ignorance or by design, often analyse their results
before the final number of experimental units (humans, animals, tissues or cells) has been reached.
If this is done in an uncontrolled fashion, the pejorative term 'peeking' has been applied. A statistical
penalty must be exacted. This is because if enough interim analyses are conducted, and if the
outcome of the trial is on the borderline between 'significant' and 'not significant', ultimately one of
the analyses will result in the magical P = 0.05. I suggest that Armitage's technique of matched-pairs
sequential analysis should be considered. The conditions for using this technique are ideal: almost
unlimited opportunity for matched pairing, and a short time between commencement of a study
and its completion. Both the Type I and Type II error-rates are controlled. And the maximum
number of pairs necessary to achieve an outcome, whether P = 0.05 or P > 0.05, can be estimated
in advance.

Summary: Laboratory investigators, if they are to be honest, must adjust the critical value of P if
they analyse their data repeatedly. I suggest they should consider employing matched-pairs
sequential analysis in designing their experiments.

Background
What does the term 'interim analysis' mean? A short defi-
nition is that it refers to the repeated analyses of data as
they accumulate. This is not a bad definition, since it can
be applied not only to clinical trials but also to laboratory
experiments.

Why does it matter? It matters in a statistical sense that is
not very different from that of making multiple compari-
sons within the same experiment. In either case, the risk

of Type I error (false-positive inference) increases progres-
sively as the number of tests of significance increases. I
have reviewed elsewhere the problem of making multiple
comparisons and ways of solving it [1,2]. Here I review the
topic of making serial comparisons on data as they accu-
mulate. To state this problem in a very crude, but none-
theless broadly accurate, fashion it is almost inevitable
that if the outcome is on the borderline of significance,
the outcome P ≤ 0.05 will ultimately occur – quite falsely
– if enough repeated interim analyses are made.
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In the context of clinical trials, the issue of interim analy-
sis is not a new one. It has been discussed in the statistical
literature since the 1960s, and has reached the level of
consciousness of clinical trialists over the last few years.
For instance, the number of 'hits' in a PubMed search
(National Library of Medicine, Washington DC) that I
conducted for (interim AND analysis) were: 1968–70 (0),
1978–80 (10), 1988–90 (67), 1998–2000 (214). In
2001–2003 there were 252 hits. In the earlier periods,
papers dealt chiefly with theoretical issues. In the later
periods, most were concerned with actual clinical trials.

Discussion
Clinical trials
Several statistical techniques for dealing with interim
analyses of clinical trials have been described. These
include, in order of appearance, the Armitage-McPherson
[3], Pocock [4,5], Haybittle-Peto [6,7] and O'Brien-Flem-
ing [8] methods. All these techniques depend on the
interim analyses being planned in advance. Excellent,
simple descriptions of these can be found in the book by
Friedman et al. [9]. A simulation study suggests that the
O'Brien-Fleming technique is the most powerful of these
[10]. Lan & DeMets introduced the notion of the adaptive,
α-spending, function, that could be applied to unplanned
interim analyses [11,12]. However, this has been severely
criticised by theoretical statisticians [13]. Then there is the
Bayesian approach, well-described by Jennison & Turn-
bull [14], but rarely employed.

Laboratory experiments
None of the techniques for interim analysis of clinical tri-
als is applicable, or easily adaptable, to the unplanned sta-
tistical analyses of laboratory experiments, usually
undertaken covertly rather than overtly.

There are good reasons and bad reasons for performing
interim analyses of laboratory experiments.

A good reason is that the investigators have made, in
advance, an estimate of minimal group (sample) size. But
they are not confident that it is a good estimate. This may
be, for instance, because they have had to base their esti-

mate on others' published data or because it is based on a
small set of pilot experiments. It is reasonable, therefore,
that they should analyze the results when their estimated
minimal group size has been attained. If their null
hypothesis is rejected, they can stop. If not, they can then
use these results to re-estimate minimal group size and
carry on.

A bad reason is that the investigators have not formally
estimated minimal group size, but have merely made a
guess. They carry out the first round of experiments, test
the results, and find that they are not quite 'significant'. So
they do a few more experiments. Still not quite there. So
they do a few more experiments – and so on until they
achieve P = 0.05, or give up.

What solutions are there to this problem? One is to
employ relatively simple methods for adjusting the critical
value of P. An altogether different approach is to use a
technique called matched-pairs sequential analysis. A
third approach, already hinted at, is to re-estimate mini-
mal group size.

Simple methods for adjusting the critical value of P
The Šidák inequality [15] plays an important role in mul-
tiple comparison procedures [1,2]. This means that the
adjusted critical value of P is given by the formula 1 - (1 -
P)k, where k is the number of interim analyses and the
nominal critical value of P is usually 0.05. Alternatively,
the raw P value resulting from a test of significance can be
adjusted by the formula P' = 1 - (1 - P)1/k.

The Šidák adjustment is a severe one (Table 1). Why is
this? It is appropriate for multiple comparisons when
these are completely independent. But it is obvious that
successive interim analyses are not independent of each
other, but to some degree correlated. This is also true of
many (most) sets of multiple comparisons [2]. For this
reason the Šidák adjustment is unsuited to planned
interim analyses. However, it may have a place for the sin-
gle, unplanned, interim analysis when, to put it bluntly,
the investigators should pay a high penalty.

Table 1: The results of applying the Šidák [15] and Armitage-McPherson [3] adjustments

No. of interim analyses (k) Nominal critical
P value

Adjusted critical P value

(Šidák) (Armitage-McPherson)

1 0.05 0.050 0.050
2 0.05 0.025 0.030
5 0.05 0.010 0.016
10 0.05 0.005 0.011
20 0.05 0.003 0.008
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The Armitage-McPherson adjustment [16,17] is a little
less severe than the Šidák adjustment (Table 1), but has
the same drawback that independence of the interim anal-
yses is assumed.

Matched-pairs sequential analysis
This technique is attributed to Wald [18]. He was able to
publish it only after World War II because during the war
it had been classified as an economical and sensitive tech-
nique for testing munitions. Armitage suggested it as a

technique for use in clinical trials [19,20]. However, it has
been used infrequently in this connection, for reasons
given below. Kilpatrick & Oldham were the first to use the
technique in an actual clinical trial [21], though in a
rather crude, one-sided, fashion. An interesting example
of its use is in a clinical trial of the therapeutic efficacy of
prayer [22]. My own experience with it is confined to a
trial of the efficacy of rose-preserving solutions (see Fig. 1)
[23].

An example of matched-pairs sequential analysis [23]Figure 1
An example of matched-pairs sequential analysis [23]. The experiment was designed to test the relative efficacy of: (A) a solu-
tion of inorganic chemicals dissolved in rainwater (Kaltaler solution); and (B) rainwater (tankwater), on the vase-life of roses. 
The end-point was time to first petal-fall. The graphical design relied on 2α = 0.05 or 0.01, 1 - β (power) = 0.95. θ was set at 
0.90. Left panel: 2α set at 0.05. Kaltaler solution was superior to rainwater because the upper boundary was crossed at N = 
11. A preference for B occurred only at preference number 5. Right panel: 2α set at 0.01. There was no significant difference 
because the right boundary was crossed at N = 23. A preference for B occurred only at preference numbers 5, 12, 17, 18 and 
23. Confirmatory post hoc exact, two-sided, tests of the null hypothesis that for a single binomial p = 0.50 gave P = 0.012 for the 
left-hand panel (ie. P = 0.05), and P = 0.011 (ie. P > 0.01) for the right-hand panel (StatXact 5, Cytel Software Corporation, 
Cambridge MA).
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A simplified description of the technique is as follows.
Matched pairs of subjects are assembled, and the mem-
bers of each pair are assigned randomly to one or the
other treatment to be investigated. The analysis is graphi-
cal. Horizontal, V-shaped, statistically-defined, upper and
lower boundaries are constructed. The outcome of the
trial for each pair is scored as a preference for treatment A
or treatment B, and entered into the graph. If the zigzag
line described by successive pairs crosses one or the other
boundary, it can safely be concluded that A is superior to
B (or vice versa) at a specified nominal level of significance
(for instance, two-sided P = 0.05). In the preferred closed,
or restricted, design a third boundary is placed across the
open end of the V. If this is crossed first, then at a specified
Type II error-rate it can be concluded that there is no sig-
nificant difference between the treatments [20]. The
advantage of this approach is that both the Type I and
Type II error-rates are controlled, and the maximum
number of matched pairs necessary to cross one or
another boundary can be predicted. The coordinates of
the graphical boundaries are determined by: (a) the
selected two-sided Type I error-rate (2α = 0.05, 0.01); (b)
the selected Type II error-rate, β, where (1 - β) = power to
reject the null hypothesis; and (c) the θ statistic. Typical
values of these are 2α = 0.05 or 0.01, β = 0.05, θ = 0.90
(see Fig. 1).

The strength of the matched-pairs technique is that it
ensures that an inference will be reached (A>B, B>A or A
= B) with a predictable maximum number of paired sub-
jects. However, it has serious practical limitations that
have greatly restricted its use in clinical trials. These are
that: (a) there must be a large reservoir of eligible patients
so that matching can be done; (b) the time from entry to
outcome must be short compared with the expected dura-
tion of the trial; and (c) the technique cannot be applied
to tests on survival curves such as the logrank (Mantel-
Haenszel) test. For these reasons, group sequential analy-

sis has been the technique preferred for clinical trials [24–
26].

If even amateur biostatisticians follow the instructions
given by Armitage [19,20], they should be able to design
the graphical boundaries for a closed (restricted)
matched-pairs sequential analysis. If they (or reviewers)
have doubts about the outcome, they can use an exact test
on a single binomial to confirm the inferences (see Fig. 1).

I have been unable to find an example of its use in labo-
ratory experiments, with the exception of my obscurely-
published trial of rose preservatives [23]. Yet there is an
almost unlimited supply of laboratory animals that can be
matched for characteristics such as sex, age and weight.
The outcome of the experiment is usually available within
hours, days or weeks. The only reservation is that if the
outcome of the experiment is measured on a continuous
scale, there may be some loss of power because for the
purpose of graphical analysis the outcomes are converted
into a binomial preference for one treatment over
another.

Later, Armitage and colleagues [16], and McPherson &
Armitage [3] addressed the matter from a somewhat dif-
ferent perspective and by different statistical techniques.
They called this 'repeated significance testing' (RST). The
requirement of matched-pairs remained, but they calcu-
lated (or obtained by simulation) the actual significance
levels corresponding to nominal levels for serial repeated
testing, for both binomial and continuous (normally-dis-
tributed) outcomes. This results in parabolic boundaries,
rather than the linear boundaries of Fig. 1[3]. If N (the
number of matched-pairs) is greater than 10–15, the par-
abolic and linear boundaries are very similar. An example
of their work is in Table 2 and Figure 2. If the outcome
measure is normally-distributed, the RST approach is to
be preferred. If investigators consider using this, it is best
that they consult an experienced biostatistician.

Table 2: Adjusted P values corresponding to a raw P = 0.05 for binomial and continuous outcomes, according to the number of matched-
pairs tested. After Armitage et al. [16]

Number of pairs Nominal critical
P value

Adjusted actual P value (P')

(binomial) (continuous normal)

1 0.050 0.050 0.050
10 0.050 0.055 0.194
20 0.050 0.107 0.248
50 0.050 0.171 0.320
100 0.050 0.227 0.374
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Armitage gave an easily-understood account of the
matched-pairs technique in 1975 [20]. His book is out of
print, but is available in libraries. Alternatively, biomedi-
cal investigators and biostatisticians can consult the origi-
nal accounts [3,16,19], or Whitehead's book [24].

A third approach
In planning a prospective clinical trial, it is mandatory
that minimal group sizes are estimated before the trial
starts. This is insisted on by institutional human ethics
committees.

Institutional animal ethics committees, at any rate in Aus-
tralia, now also insist that minimal group sizes are esti-
mated in advance. This can be done on the basis of earlier
studies in the same laboratory or, second best, studies
published by others. The convention is to make the esti-
mate on the basis that the critical value of P is 0.05 at a
power of 0.80 (80%). Very useful aids to making these
estimates are published tables [27], or interactive compu-
ter programs (for instance, nQuery Advisor, Statistical
Solutions, Boston MA).

But minimal group size estimates are only as accurate as
the data on which they are based. Often these data are sus-
pect, or the dataset is too small. So when investigators
have done the necessary number of experiments, analysed
the results, and find that P is just a little greater than 0.05,
it is not unreasonable that they should re-estimate mini-
mal group size on the basis of these experiments. If the

new estimate exceeds their original one, it is not unrea-
sonable that they should carry out further experiments so
that the revised estimate is achieved. Then, it is argued,
their new and definitive analysis needs no adjustment of
the P value.

Summary
There has been a twofold purpose to this review. One has
been to remind clinical investigators of the rules govern-
ing the interim analysis of results as they accumulate in
clinical trials. These rules are very firmly established,
thanks to the work of biostatisticians and of regulatory
bodies. The second, and more original, reason is to
acquaint biologists who are conducting laboratory exper-
iments with the price they should pay for analyzing their
results as they accumulate, usually to decide whether they
need to do more experiments to 'achieve' a magical P =
0.05. Whenever I chastise experimentalists for conducting
interim analyses and suggest that they are acting unstatis-
tically, if not unethically, they react with surprise.

I hope that this review may bring experimentalists and
clinical trialists closer together in their attitudes towards
the interim analysis of accumulating results. I believe that
laboratory experimenters have a good deal to learn from
clinical trialists. In particular, I commend to them
matched-pairs sequential analysis as a technique for
designing and analyzing their experiments.
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