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Abstract
Background: Because randomized cancer screening trials are very expensive, observational
cancer screening studies can play an important role in the early phases of screening evaluation.
Periodic screening evaluation (PSE) is a methodology for estimating the reduction in population
cancer mortality from data on subjects who receive regularly scheduled screens. Although PSE
does not require assumptions about natural history of cancer it requires other assumptions,
particularly progressive detection – the assumption that once a cancer is detected by a screening
test, it will always be detected by the screening test.

Methods: We formulate a simple version of PSE and show that it leads to an upper bound on
screening efficacy if the progressive detection assumption does not hold (and any effect of birth
cohort is minimal) To determine if the upper bound is reasonable, for three randomized screening
trials, we compared PSE estimates based only on screened subjects with PSE estimates based on all
subjects.

Results: In the three randomized screening trials, PSE estimates based on screened subjects gave
fairly close results to PSE estimates based on all subjects.

Conclusion: PSE has promise for obtaining an upper bound on the reduction in population cancer
mortality rates based on observational screening data. If the upper bound estimate is found to be
small and any birth cohort effects are likely minimal, then a definitive randomized trial would not
be warranted.

Background
Because randomized cancer screening trials are very ex-
pensive and sometimes difficult to implement, observa-
tional cancer screening studies can play an important role
in estimating the efficacy of cancer screening during early
phases of evaluation of the screening test. However the
standard methodology for observational cancer screening
studies has various limitations. Case-control studies re-
quire adequate case identification, eligibility criteria for

equal access of cases and controls to screening, distin-
guishing symptomatic and diagnostic tests, and adjust-
ments for self-selection bias [1]. Cohort studies often
involve natural history models which rest upon assump-
tions about the duration of preclinical cancer or the
growth rate of the tumor, the sensitivity of the screening
test, and how screening affects cancer mortality. Some ex-
amples can be found in [2–6]. Importantly natural history
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models based only on observational data must implicitly
assume no selection bias, a very tenuous assumption.

In contrast, periodic screening evaluation (PSE), which
combines estimates from screened subjects to estimate the
reduction in population cancer mortality associated with
periodic cancer screening [7–9], does not involve natural
history models and the associated assumptions. However
a different set of assumptions is required. In certain situa-
tions these assumptions may be more plausible than the
natural history assumptions, so in some circumstances,
the method may be complementary and possibly superi-
or, to the natural history modeling approach.

PSE starts with the following estimates based directly on
observed data from a few screenings at regular intervals
over various ages (1) age-specific rates of cancer detection
on first screening, interval cancers, and cancer detection
on subsequent screenings, and (2) cancer fatality rates fol-
lowing cancer detection at first screening, interval cases,
and cancer detection on subsequent screening. For evalu-
ation it is also necessary to estimate (1) the age-specific
rate of cancer detection in the absence of screening and (2)
the cancer mortality rate following detection in the absence
of screening. Because there are no randomized controls
the challenge is to estimate rates in the absence of screen-
ing in a manner that mitigates selection bias.

In estimating the cancer detection rate in the absence of
screening PSE mitigates selection bias in a unique man-
ner. As will be discussed, PSE estimates the age-specific de-
tection rate in the absence of screening as the sum of the
age-specific rates of detection for cancers on the first
screening, interval cancers, and cancers on subsequent
screenings, minus the age-specific rate of detection for
cancer on the first screening in subjects one year older.
This estimation assumes progressive detection, namely
that once a cancer is detected on screening it will always
be detected on screening. Previous versions of PSE made
this assumption. However progressive detection is not
likely to hold for many types of screening modalities. For-
tunately, as we discuss, if progressive detection is violated,
the estimated detection rate in the absence of screening is
an upper bound and this can lead to useful estimates.

In estimating the cancer fatality rate following detection
in the absence of screening, earlier versions of PSE used
data from refusers and simply assumed no selection bias.
To avoid this assumption (and the need to collect data
from refusers), we estimated the cancer mortality rate fol-
lowing detection in the absence of screening by the cancer
mortality rate in interval cancers. As we discuss, this also
leads to an upper bound (i.e. optimistic) estimate of
screening efficacy.

Thus, this version of PSE circumvents the problem of se-
lection bias by estimating an upper bound. The specific es-
timates of cancer detection rates and cancer fatality rates
after cancer detection are not meaningful as separate
quantities. Fortunately, one can longitudinally combine
the estimates to estimate an upper bound on the reduc-
tion in population cancer mortality associated with peri-
odic screening. (Given these data, it is not possible to
estimate reduction in population cancer mortality for oth-
er intervals between screenings or after periodic screening
has stopped). The longitudinal combination of cross-sec-
tional estimates, which also appears in earlier versions of
PSE [7–9], is similar to G-computation [10] and the meth-
od of Flanders and Longini [11].

If an upper bound estimate of screening efficacy is small,
a definitive randomized trial to evaluate the effect of
screening on cancer mortality would not be warranted.
Thus the upper bound estimate is helpful only if is not un-
reasonably large. To determine if the upper bound is rea-
sonable, we estimated its value using data from screened
subjects in randomized trials of colorectal cancer screen-
ing [12,13], breast cancer screening [14], and lung cancer
screening [15,16]. We then compared this estimate to a
modified PSE estimate using data from all subjects, so that
estimates of age-specific cancer detection in the absence of
screening and cancer mortality in the absence of screening
are based on data from randomized controls and refusers.

We also compared the PSE estimates with estimates based
on a comparison of outcomes in the two randomized
groups, adjusting for refusers and mitigating the effect of
dilution after stopping screening [17]. It is important to
bear in mind that the two estimates are answering differ-
ent questions. For PSE, the question is "What is the effect
of periodic screening starting at a given age and ending at
a later age?" For comparing randomized groups, the ques-
tion is "What is the effect of the particular screening pro-
gram in the intervention group?"

Methods
Simple formulation of PSE
We derive a simple formulation of PSE and show that it
gives an upper bound on the estimated reduction in pop-
ulation cancer mortality.

PSE requires two types of data from subjects who receive
two or more screenings at regular intervals. The first type
of data are the numbers of subjects who receive each
screen and who are detected with cancer as a result of
screening or in the interval between screens. (See Tables
1,2,3,4) The second type of data are numbers of subjects
with cancer who die from cancer and are in the risk set
each year after diagnosis. (See Table 5)
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PSE involves three steps: (1) estimate the age-specific inci-
dence of cancer associated with different types of detec-
tion: first screen, interval between screens, subsequent
screen, refusers, and controls, if available, (2) estimate
cancer fatality rates after cancer detection, and (3) com-
bine these estimates to estimate the reduction in popula-
tion cancer mortality associated with periodic cancer
screening.

Because PSE requires regular intervals, the analysis is re-
stricted to screenings that occur "on-time", namely, with-
in a window of time close to the length of interval. The
length of the window for on-time screenings is somewhat
arbitrary. A very wide window discards relatively few sub-
jects; however it may introduce bias into calculations that
are based on assuming the screening interval equals the
midpoint of the window. Alternatively, a narrow window
might discard too much data, increasing the chance for
bias from nonrandom exclusion of subjects. In designing
a study for PSE analysis, the screening intervals should be
as regular as possible. Without loss of generality in the
following discussion, we assume a regular interval be-
tween screens of 1 year.

Step 1: Age-specific cancer incidence
PSE requires estimates of age-specific cancer incidence for
the following types of cancer detection: type F, detection
on the first screening; type I, detection in the interval be-
tween screenings; type S, detection on screening subse-
quent to the first; and type A, detection in the absence of
screening. The incidence of type F detection at age a is
qF(a) = xF(a) / nF(a), where xF(a) is the number of subjects
detected with cancer as a result of a first screening at age a
and nF(a) is the number who received the first screening
at age a. The incidence of type I detection at age a is qI(a)
= xI(a) / nI(a) where xI(a) is the number of cases in the in-
terval after screening at age a and nI(a) is the number at
risk at the start of the interval. The incidence of type S de-
tection at age a is qS(a) = xS(a) / nS(a) where xS(a) is the
number of subjects detected with cancer as a result of an
"on-time" screening after a previous screening at age a and
nS(a) is the number of subjects who received an "on-time"
screening after the previous screening at age a. Although a
type S detection occurs on screening at age a + 1, for math-
ematical convenience, it is associated with screening at age
a. We cannot observe type A detection from data on sub-

Table 1: Age-specific breast cancer detection data from HIP study.

number detected number at risk

age F I S R* C* F I S R* C*

40 0 0 0 0 1 302 302 204 196 550
41 1 0 0 0 2 838 1032 619 552 1839
42 4 1 1 0 3 1044 1789 1170 970 3219
43 1 0 1 3 5 1084 2563 1578 1396 4642
44 0 2 1 2 8 1062 3134 1816 1619 5523
45 3 2 2 1 10 1040 3412 1831 1687 5696
46 1 3 2 5 8 985 3407 1748 1650 5618
47 3 3 3 3 8 1014 3336 1765 1653 5478
48 2 5 6 3 9 933 3207 1700 1583 5434
49 1 1 0 1 13 978 3211 1689 1602 5349
50 1 3 0 3 14 915 3082 1607 1635 5306
51 2 3 3 2 10 958 3079 1615 1618 5319
52 3 4 4 3 12 907 3021 1632 1665 5255
53 3 1 3 3 8 885 3032 1525 1629 5189
54 4 3 3 2 8 926 2954 1547 1593 5151
55 3 1 3 6 8 872 2891 1511 1559 5085
56 3 2 3 2 5 872 2841 1512 1559 5018
57 4 2 4 1 12 765 2746 1427 1548 4873
58 3 2 5 6 12 719 2540 1293 1495 4610
59 3 4 1 4 5 635 2378 1177 1400 4279
60 3 2 1 2 12 548 2125 1047 1294 3873
61 4 1 4 3 8 502 1890 911 1199 3487
62 0 0 1 0 10 534 1745 845 1055 3190
63 2 0 3 2 12 434 1565 787 949 2868
64 0 1 3 2 7 376 1422 704 869 2615

F = first screen, I = interval between screens, S = subsequent screen, R = refuser, C = control *data excluded for PSE with only screened subjects
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jects screened. However, as derived in [8], one can esti-
mate the probability of type A detection by

qA(a) = qF(a) + qI(a) + qS(a) - qF(a + 1),  (1)

if the following key assumption holds.

Assumption 1. Progressive Detection

Once a subject is detectable on screening the subject will
always be detectable on screening.

(The quantity qF(a + 1) in (1) is the cancer detection rate
on the first screening among subjects age a + 1 at first
screening.) The graphical proof of (1) in Figure 1 general-
izes the graphical proof in [8] to allow some subjects with
preclinical cancer to be missed on screening. In Figure 1,
Assumption 1 corresponds to δ = 0, where δ is the probabil-
ity that some individuals with preclinical cancer would be
detected if screened at age a but missed if screened at age
a + 1. As an example of Assumption 7, consider a woman
who would have been detected with breast cancer at age

50, but is not screened at age 50 for reasons unrelated to
the screening or any possibility of cancer. Under Assump-
tion 1, if the woman were screened at age 51, she would be
detected with cancer. There is sometimes confusion about
how this relates to sensitivity of the screening test. As
shown in Figure 1, Assumption 1 implies that the sensitivi-
ty of the screening test equals 1 if a previous screening test
would have detected cancer.

Ideally qF(a + 1) estimates the probability of detecting
cancer on a first screen at age a + 1 one year after the start
of the study. Because there are no data on subjects first
screened after a one year delay, we compute qF(a + 1) from
subjects age a + 1 at the start of the study. This procedure
requires the following additional assumption.

Assumption 2. No Birth Cohort Effect

Given age, year of birth provides no additional informa-
tion for predicting cancer incidence on the first screen.

Table 2: Age-specific colorectal cancer detection data from Minnesota Colon Cancer Control Study with annual screening

number detected number at risk

age F I S R* C* F I S R* C*

50 0 0 0 0 0 397 527 418 71 818
51 0 0 0 0 0 492 919 821 122 1377
52 0 0 0 0 0 518 1311 1186 165 1973
53 0 0 2 0 0 502 1675 1542 211 2509
54 0 2 2 0 1 536 2058 1923 248 3093
55 1 0 0 0 2 535 2251 2092 307 3711
56 0 0 2 1 3 551 2318 2157 359 4355
57 1 0 0 0 2 602 2442 2270 395 4965
58 0 1 1 0 6 603 2550 2405 446 5567
59 1 0 0 0 6 573 2820 2652 482 6189
60 0 2 2 0 5 651 3350 3125 527 6840
61 2 0 4 1 6 637 3823 3633 584 7480
62 1 0 5 1 11 655 4273 4077 633 8151
63 2 0 2 0 8 651 4747 4563 684 8770
64 2 1 7 3 7 635 5138 4910 719 9314
65 1 2 4 1 19 613 5231 5032 760 9854
66 2 1 4 0 26 596 5313 5124 779 10196
67 2 0 8 1 17 574 5318 5136 765 10185
68 2 2 3 1 19 501 5170 4998 767 10081
69 2 2 4 0 11 429 4944 4761 754 9911
70 1 1 2 3 18 411 4831 4673 753 9706
71 3 2 2 5 18 380 4658 4500 743 9376
72 0 1 5 5 15 313 4376 4243 730 8979
73 1 1 7 2 24 271 4140 4029 713 8474
74 0 0 7 1 22 252 3865 3746 673 8013
75 2 1 4 2 13 206 3574 3492 664 7512

F = first screen, I = interval between screens, S = subsequent screen, R = refuser, C = control * data excluded for PSE with only screened subjects
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Step 2: Cancer-fatality rates among cases
PSE also requires estimates of cancer fatality-rates among
cases. The estimated probability of death from cancer
within 5 years of type d cancer detection at age a is

pr (cancer death | type d detection at age a)

where hdi is the estimated case-fatality rate from cancer in
year i after type d detection, and Surv(a, a + i) is the prob-
ability of surviving competing risks from age a to age a +
i. See also Gooley et al [18]. For year j after type d detec-
tion (d = F, I, S), the estimated case-fatality rate from the
cancer under study is hdj = xdj / rdj, where xdj is the number
of cancer deaths among cases at year j after type d detec-
tion, and rdj the number of cases with type d detection
who are at risk at year j since detection.

We approximate Surv(a, a + i) by the probability of surviv-
ing from age a to age a + i obtained from demographic
data stratified by sex [19]. We approximate the probability
of surviving competing risks each year over five years as
the probability of surviving competing risks at the mid-
point of two years, i.e., Surv(a, a + i) = Surv(a, a + 3) for i
= 1,2,3,4,5. This lets us approximate (2) by

pr (cancer death in cases | type d detection at age i) =
Surv(a, a + 3) md,  (3)

where  is the estimated probabil-
ity of cancer death within five years of type d detection

conditional on no death from competing risk and Surv(a,
a + 3) is the approximate probability of surviving compet-
ing risks within five years of type d detection.

A major challenge is how to estimate mA, the probability
of cancer fatality within five years of type A detection (i.e.
in the absence of screening) conditional on no death from
competing risk. Previous approaches [1–3] used data from
refusers, substituting mR for mA. However this requires a
strong unreasonable assumption as well as data from
refusers, which is often not available.

As an alternative, we estimate an upper bound on the re-
duction in the population cancer mortality rate from
screening by estimating the cancer fatality rate in the ab-
sence of screening using data from interval cancers, name-
ly, substituting mI = mA. The reason this is an upper bound
is that cancers arising in the absence of screening are com-
posed of cancers that would have arisen in the interval
after a negative screening (had there been screening) and
cancers that would have been detected on a previous
screening (had there been screening). The latter cases are
presumably slower growing (a type of length-biased sam-
pling) with better survival, so using only the interval can-
cers artificially increases the estimated cancer-fatality rate
in the absence of screening. (One caveat is that the surviv-
al of interval cancers may be improved due to increased
awareness of treatment options that would occur as part
of a screening program. If the effect of length bias is rela-
tively small, substituting mI for mA might not be an upper
bound, although we believe it would be a reasonable
approximation.)

Table 3: Age-specific colorectal cancer detection data from Minnesota Colon Cancer Control Study with biennial screening

number detected number at risk

age F I S R* C* F I S R* C*

50 1 0 0 0 0 891 1015 658 102 1377
52 0 3 1 0 0 997 1789 1410 196 2510
54 2 1 1 0 3 1047 2594 2139 291 3723
56 1 1 2 1 5 1141 2986 2521 405 4979
58 1 2 3 1 12 1145 3279 2754 483 6212
60 2 1 3 1 11 1230 4227 3717 590 7508
62 3 6 3 3 19 1295 5123 4543 688 8774
64 6 2 3 2 26 1267 5914 5328 783 9734
66 5 5 7 3 43 1160 5924 5387 813 9821
68 3 2 7 4 30 961 5740 5240 822 9548
70 3 8 5 2 36 761 5253 4881 821 8958
72 4 10 4 4 39 621 4640 4307 787 8097
74 3 10 2 0 35 460 4171 3871 727 7133

F = first screen, I = interval between screens, S = subsequent screen, R = refuser, C = control * data excluded for PSE with only screened subjects
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Step 3. Reduction in population cancer mortality rates due 
to periodic screening
PSE estimates the reduction in population cancer mortal-
ity rates due to starting periodic cancer screening at age a
instead of age b, where ages a and b lie in the range of ages
at initial screening. (This estimate accounts for competing
risks through the use of Surv(a, a + 3)). To avoid different

rates of overdiagnosis between comparison groups, PSE
compares population cancer mortality rates in two hypo-

thetical scenarios involving full compliance: Scenario ,

periodic screening from age a until age b and Scenario ,

no periodic screening from age a to age b-1 followed by

Figure 1
Graphical proof that qA(a) + δ = qF(a) + qI(a) + qS(a) - qF(a + 1) The seven lines represent all possible situations in which cancer 
is diagnosed over the interval (a, a + 1). Therefore, the sum of all their probabilities represents the incidene of cancer over that 
interval. Each row corresponds to a unique potential history of cancer detection, so the probabilities on the left and right side 
of each row are identical. The labels on each side are different because the realized events differ depending on whether screen-
ing started at time 0 (left side) or time 1 (right side). Defining qd (a) = ∑j qdj (a) and setting the left side sum of probabilities 
equal to the right side sum gives the formula on top. Under Assumption 1, that once a subject is detectable on screening, the 
subject will always be detectable on screening, δ = 0.

probability      time 0     time 1  probability
if first                                if first
screen                   screen at     screen at                  screen at
at age a               age a                       age a+1  age a+1  
                      |                                   |
________________________________________________________
� ��� � � � ����� ��

      ------ -------------                                       
� ��� � � � �� ���� ��       ------ ---------------------------                     +
� ��� � ���        ------ --------------------------- -----         �

� ��� � � ����� ��
                             ----                             

� ��� � � � ����� ��
        ----- --------------        

� ��� � � ���� ��    ----- ------------------          +1)
� ��� � � � ���� ��       ------ ---------------------------                     +1)
__________________________________________________________

-----preclinical cancer
  screen-detected       missed on screening      =clinical detection� � �

___________________________________________________________

�

�
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screening at age b. Scenario  involves either detection on

the first screen at age a or detection in the interval or on

subsequent screens to age b. Scenario  involves either

detection in the absence of screening from ages a to b - 1
or detection on a first screen at age b. Screening at age b in
both Scenarios  and  avoids differential overdiagnosis

rates because, if Assumption 1 holds, both scenarios  and

 specify equal probabilities of detecting cancer by age b.

More formally we can write the reduction in population
cancer mortality rates associated with starting periodic
cancer screening at age a instead of age b as

g = pr (cancer mortality under Scenario )

- pr (cancer mortality under Scenario ),  (4)

where

pr (cancer mortality under Scenario )

= pr (cancer death in cases | type A detection

at age i)

+ qF(b) pr(cancer death in cases | type F detection at age b)

pr (cancer mortality under Scenario )

= qF(a) pr(cancer death in cases | type F detection at age a)

pr (cancer death in cases | type I detection at

age i)

pr (cancer death in cases | type S detection at

age i)

and cancer death in cases refers to death from cancer in
cases within five years of cancer detection. Accounting for
deaths from competing risks, the estimated probability of
type d detection at age i, conditional on being alive at age
a, is

p (type d detection at age i) = Surv(a, i) qd(i)  (5)

Substituting (5) and (3) into (4) gives

Table 4: Age-specific lung cancer detection data from Mayo Lung Project

number detected number at risk

age F I S R* C* F I S R* C*

51 2 1 1 0 0 375 3086 2363 54 706
52 5 1 2 0 0 392 3147 2444 88 1264
53 4 0 3 0 1 365 3113 2414 117 1732
54 4 1 1 1 1 374 3125 2417 114 1684
55 5 2 4 0 4 354 3106 2419 139 1736
56 4 1 2 0 2 364 3126 2414 322 1722
57 3 0 6 0 1 366 3100 2417 136 1663
58 5 0 4 0 3 317 2985 2353 110 1664
59 4 1 3 1 1 330 3005 2385 101 1641
60 4 2 5 0 10 315 2933 2330 74 1601
61 5 0 4 0 2 301 2836 2275 61 1526
62 5 1 2 0 3 302 2742 2162 57 1485
63 5 0 3 0 5 248 2563 2072 60 1504
64 6 2 9 1 3 242 2410 1903 59 1389
65 3 4 2 1 5 232 2224 1768 65 1355
66 5 1 2 0 0 170 2004 1612 65 1272
67 3 1 6 0 2 176 1834 1446 64 1176
68 5 3 3 0 2 149 1550 1213 54 1099
69 3 0 5 0 3 124 1357 1068 29 963

F = first screen, I = interval between screens, S = subsequent screen, R = refuser, C = control (after 6 year washout period) * data excluded for PSE 
with only screened subjects
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To simplify (6), we define

Substituting (7) into (4) gives the following simple
estimate,

basic = (QA mA + qF1(basic) mF) - (qF0(basic) mF + QI mI + QS

mS.  (8)

To increase the stability of basic, we used averages over k =

3 intervals, for the probabilities of detection on the first
screenings at age a and at age b,

Substituting (9) into (8) gives the modified estimate

modified = (QA mA + qF1 mF) - (qF0 mF + QI mI + QS mS).

(10)

Invoking (1), we substitute qF0 + QI + QS - QF1 for QA (10).
As discussed previously to obtain an upper bound, we also
set mA = mI. This gives the following estimated upper
bound in the reduction in population cancer mortality
from periodic screening and its asymptotic variance

upp = (qF0 - qF1) (mI - mF) + QS (mI - mS),  (11)

Table 5: Data on numbers of cancer deaths following detection

year since 
detection

number of cancer deaths number at risk at start of year

F I S R* C* F I S R* C*

Minnesota Colon Cancer Control Study (annual screening)
1 2 1 1 3 36 26 19 77 27 259
2 3 2 2 1 10 24 18 74 24 217
3 0 2 2 2 17 21 16 72 23 202
4 0 1 3 0 7 20 13 69 20 177
5 0 1 0 2 6 20 12 64 19 165
Minnesota Colon Cancer Control Study (biennial screening)
1 2 9 0 7 36 34 51 41 21 259
2 0 4 2 0 10 31 42 40 14 217
3 4 3 3 0 17 30 37 38 13 202
4 2 0 1 1 7 26 33 33 12 177
5 0 0 3 1 6 23 31 29 11 165
HIP study of breast cancer screening
1 2 2 1 9 19 54 47 57 59 210
2 2 6 2 5 27 52 44 56 49 189
3 0 5 0 2 12 50 38 54 44 161
4 1 1 1 2 12 50 33 54 41 148
5 3 2 3 1 9 48 31 53 38 133
Mayo Lung Project
1 32 11 11 2 21 80 21 67 4 48
2 7 5 13 1 4 46 10 56 2 20
3 6 0 2 0 4 36 5 41 0 13
4 3 0 1 0 2 29 4 37 0 4
5 1 0 1 0 0 25 3 29 0 1

F = first screen, I = interval between screens, S = subsequent screen, R = refuser, C = control *data excluded for PSE with screened subjects

g Surv a i q i Surv i i m Surv a b q b Surv b bbasic A A F
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Upper bound if Assumption 1 is violated
There are two basic scenarios in which Assumption 1 could
be violated. First the cancer, or at least the detectable part
of cancer, could regress over time. This would most likely
occur if the cancer were at a very early stage. Of course, ear-
ly lesions are the principal targets of screening tests. Sec-
ond, chance fluctuations in the results of the screening test
might mask cancer detection, particularly if the interval
between the screening tests were small. For example if the
screening test were based on a sampling of cells, the
screening test may, by chance, not include any of the tu-
mor cells. For many screening modalities Assumption 1
may not hold.

As shown in Figure 1, if Assumption 1 did not hold, PSE
would estimate the cancer incidence rate in the absence of
screening as qA(a) + δ, for δ > 0, instead of qA(a). Thus if
Assumption 1 were not satisfied, PSE would overestimate
the cancer incidence rate in the absence of screening
which overestimates the reduction in the population cancer
mortality rate. On the other hand, a violation of Assump-
tion 1 would also imply that some cancers detected on
screening in  would not have been detected on the last

screening in  which would lower the reduction in the

population cancer mortality rate in (4). However we think
this latter situation would have a small impact relative to
the former which involves the entire span of ages at
screening and not just the last age at screening.

Thus (11) is an upper bound for two reasons. First it uses
interval cancers to estimate fatality rates following cancer
diagnosis in the absence of screening. Second it is an up-
per bound if Assumption 1 is violated.

Validation methodology
If an upper bound is too large it will not be useful. To in-
vestigate the upper bound, we used data from three rand-
omized screening trials to compare PSE estimates based
on screened subjects with PSE estimates based on all
subjects.

In computing PSE estimates for all subjects, the progres-
sive detection assumption is not necessary. To estimate
qA(j) we use a simple noncompliance adjustment for ran-
domized trials (see [17] and references therein), qA(j) =
(qC(j) - qR(j) π) /(1 - π) where qC(j) is the age-specific can-
cer incidence rate in controls, qR(j) is the age-specific can-
cer incidence rate in refusers, and π is the fraction of
subjects who refused screening. Also with data from a ran-
domized trial it is not necessary to use interval cancer cas-
es to estimate the case fatality rate in the absence of
screening. Instead we estimate mA = (mC - mR π) /(1 - π),
where subscript C refers to randomized controls and R re-
fers to refusers. Substituting (QC - QR π) /(1- π) for QA in
(10) and using mA gives the following estimated reduction
in population mortality from cancer screening and its
variance,

where π is treated as known, which is reasonable due to
the large sample size.

We computed (12)-(15) using data from the following
three randomized screening trials.

Minnesota Colon Cancer Control Study (MCCCS)
Between 1975 and 1978 investigators randomized ap-
proximately 45,000 subjects to either 5 annual fecal occult
blood screenings, 3 biennial screenings, or no screening
[6,7]. Due to a lower than expected death rate among con-
trols, the investigators resumed screening between 1982
and 1986. After a hiatus of screening of between 3 and 5
years, the annual screened group received 5 additional an-
nual screenings and the biennial screened group received
3 additional biennial screenings. Approximately 14 per-
cent of subjects randomized to screening did not receive
screening. Each screening cycle consisted of six Hemocult
slides with planned definitive work-up if any slide showed
evidence of occult blood. Screenings for the annual
groups were labeled as on time if they were done in the 9
to 15 month time window since the previous screening.
Screenings for the biennial group were labeled as on-time
if they were done 20 to 28 months since the previous
screening. (The longer time window was used to keep the
loss of data arbitrarily to no more than 15%) Excluding
the first screening after the resumption of screening, ap-
proximately 93 percent of the annual subsequent screen-
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ings and 85 percent of the biennial subsequent screenings
were on-time. The age range for the analysis was 50 to 75.
For estimating the age-specific incidence of cancer among
controls, we used data collected up to the time of the last
screen, which was 16 years after the start of the study. We
increased the precision of the estimated age-specific can-
cer incidence on the first screen by pooling data on the
first screening in the annual and biennial arms. For annu-
al cancer screening, age was divided into intervals of 1
year. For biennial screening, age was divided into intervals
of 2 years.

Health Insurance Plan of Greater New York (HIP) Study
Starting in 1963, approximately 60,000 women were ran-
domly assigned to either a study group invited for four an-
nual mammograms and physical examinations or to a
control group that received no screening within the study
[8]. Approximately 1/3 of the subjects in the study group
refused the first screening and received no screenings.
Screenings were labeled on-time if they were done 9 to 15
months after a previous screening. Approximately 79 per-
cent of second screenings, 76 percent of third screenings,
and 73 percent of fourth screenings were on time. The age
range for the analysis was 40 to 64. For estimating the age-
specific incidence of cancer among controls, we used data
collected up to the time of the last screen, which was 4
years after the start of the study.

Mayo Lung Project (MLP)
Between 1971 and 1976 approximately 9,200 male heavy
smokers who tested negative on a prevalence (initial)
screening were randomized to either a study group urged
to undergo radiologic and cytological screening examina-
tions every 4 months for 6 years or a control group that at
study entry received a recommendation for annual chest
X-rays with no further reminders [9,10]. Approximately 7
percent of the study group subjects did not receive any
screenings.

Because PSE requires a single screening time at each round
of screening, we restricted PSE to the screenings in which
the time between cytology and x-ray was less than 3
weeks. Screenings were labeled as on-time if they were
done within 3.5 to 5.5 months of the previous screening
and the time between cytology and x-ray was less than 3
weeks. Approximately 85 percent of the subsequent
screenings were on-time.

Only yearly age data were available. Because the screen-
ings in the Mayo Lung Project were scheduled at 4 month
intervals, yearly cancer incidence data for types I and S de-
tection are approximated using the sums of counts for
three successive screens. Because all subjects in the control
group had an initial screening, we pooled data for detec-

tion rates on initial screenings in the study and control
groups.

Unfortunately the initial screening in the control group
greatly complicated the validation, which requires that no
screening be performed in the control group. In order to
better approximate a control group that received no
screening, we only used data in controls starting 6 years af-
ter randomization. The underlying assumption is that by
6 years, most cancers detected on the prevalence screening
would have progressed to clinical cancer in the absence of
intervention. (This may not be true because of the likely
possibility of overdiagnosis [10] and lead times that may
exceed 6 years, but it may serve as a useful approximation
if the amount of overdiagnosis is small). Due to the 6-year
wash-out period, we start the age range for PSE at 51 in-
stead of 45. We chose 6 years for the washout period as a
compromise. We thought a longer washout period would
have greatly restricted the age range under study and a
shorter washout period would have had a much more lim-
ited effect.

We illustrate the calculations for the analysis of the HIP
data on breast cancer screening. The probability of a wom-
en surviving competing risk from age 40 to each successive
age up to age 64 is 1., 1., 0.99, 0.99, 0.99, 0.99, 0.99, 0.98,
0.98, 0.98, 0.97, 0.97,0.96, 0.96,0.95, 0.95,0.94,
0.93,0.92, 0.92,0.91, 0.9, 0.89, 0.87. Using these proba-
bilities and data from Tables 1 and 5, we computed qF =
.00166, qFs = .00373, QI = .0151, QS = .0338, mI = .334,

and mS = .123, Substituting into (11) gave upp = .00676.

To estimate the variance we computed vI = .00497, vS =
.00189, VF0 = .00000056, VF1 = .0000023. Substituting
into (12) gave var( upp) = .0000090.

Results
To determine if the PSE estimated upper bound from
screened subjects is reasonable, we computed its value
(and 95% confidence interval) along with the PSE esti-
mate (and 95% confidence interval) based on all subjects
(Figure 2). To account for the correlation we also comput-
ed the estimated difference (and 95% confidence interval)
between the two types of PSE estimates (Figure 3).

In addition, we computed the estimated cancer mortality
reduction between the two randomized groups (and 95%
confidence intervals) (Figure 2). To compute this estimate
we first computed the estimated efficacy of receiving
screening among subjects who would receive screening if
offered. This equals the intent-to-treat estimate divided by
the fraction in the screening group who did not refuse any
screening [17]. For the HIP study and the Mayo Lung
Project, in which screening stopped well before the end of
follow-up, we also computed an adaptive estimate to mit-
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igate the effect of dilution [17]. The adaptive estimate is
the estimate at the time after screening stops when the es-
timate divided by its standard error is largest. Confidence
intervals for the adaptive estimate are based on
bootstrapping.

Minnesota Colon Cancer Control Study (MCCCS)
There is a large overlap in the confidence intervals for the
PSE estimated upper bound from screened subjects and
PSE estimates from all subjects (Figure 2). Also, the 95%

confidence interval for the estimated difference includes
zero (Figure 3), indicating that the upper bound estimate
is reasonable. The estimated mortality reduction in the
screening program is similar to the PSE estimates (Figure
2) because the long-duration of screening (5 annual or 3
biennial screenings followed by 3–5 years hiatus followed
by 5 annual or 3 biennial screenings) in the trial approxi-
mated the 21 years of periodic screening.

Figure 2
Estimated reduction in cancer deaths per 10,000 due to periodic cancer (with 95% confidence interval). MCCCS-1 is Minnesota 
Colorectal Cancer Control Study, ages 50 to 71, annual screens, MCCCS-2 is Minnesota Colorectal Cancer Control Study 
ages 50 to 71, bienniel screens, HIP is Health Insurance Program study of annual breast cancer screening, ages 40 to 64, MLP is 
Mayo Lung Project, ages 51 to 69 with screens every 4 months. Positive numbers on the horizontal axi represent cancer deaths 
averted; negative numbers represent excess cancer deaths from screening.
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100 200�100 0
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Health Insurance Plan of Greater New York (HIP) Study
As in the previous example, there is a large overlap in the
confidence intervals for the PSE estimated upper bound
from screened subjects and PSE estimates from all subjects
(Figure 2). Also, similar to the previous example, the 95%
confidence interval for the difference included zero (Fig-
ure 3) indicating that the upper bound estimate is reason-
able. The PSE estimates were higher than the estimated

effect of the screening program in the trial because the
former was based on 24 annual screenings and the latter
was based on only 4 annual screenings.

Mayo Lung Project (MLP)
Unlike the other examples the confidence intervals for
PSE estimates from screened subjects and PSE estimates
from all subjects differed considerably (Figure 2). We

Figure 3
Difference per 10,000 deaths between PSE randomized estimate and PSE nonrandomized upper bound estimate (with 95% confidence 
interval). MCCCS-1 is Minnesota Colorectal Cancer Control Study, ages 50 to 71, annual screens, MCCCS-2 is Minnesota 
Colorectal Cancer Control Study, ages 50 to 71, bienniel screens, HIP is Health Insurance Program study of annual breast can-
cer screening, ages 40 to 64, MLP is Mayo Lung Project, ages 51 to 69 with screens every 4 months.
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think Assumption 1 may not have held due to the short in-
terval between screens and to the fact that the perform-
ance of sputum cytology screening depends on sampling
of the tumor cells. Although the 95% confidence interval
for the difference included zero (Figure 3), its large width
means that a substantial bias cannot be ruled out. The PSE
estimates were higher than the estimated effect of the
screening program in the trial because (i) the former is
based on 24 years of screening while the latter is based on
only 6 years and (ii) the effect in the latter was reduced by
a prevalence screening in the controls. PSE for screened
subjects does not use any data from the control group.
With PSE for all subjects, we assumed a wash-out period
to try to remove the effect of the prevalence screen.

The results indicate that a PSE estimated upper bound
based on subjects screened is not unreasonable when
compared to the PSE estimate based on all subjects in the
randomized trial. Because of sampling variability it is not
surprising that the point estimate of the upper bound can
be smaller than the point estimate based on all subjects.

We caution that violations of Assumption 2 could have a
substantial impact. Assumption 2 depends on the cumula-
tive effect of birth cohort from ages a to b. According to
Moran [21] the relative bias due to violation of Assumption
2 is particularly large if the age-specific incidence on the
first screen changes little with age and interval and subse-
quent cancers are relatively rare. In that case Moran ad-
vised that other methods be applied. One way to reduce
bias from Assumption 2 is to only estimate the effect of
screening for at most 5 years. That way the cumulative
birth cohort effect would be limited to only 5 years.

Conclusion
We think the major role of PSE is to rule out screening mo-
dalities that have little benefit. This information is useful
when making policy decisions about screening, or when
considering a large randomized trial to definitively com-
pare benefits and harms of screening strategies. Because
PSE is estimating an upper bound when Assumption 1 is vi-
olated, if PSE estimates little reduction in population can-
cer mortality, the true reduction in population cancer
mortality due to periodic screening is likely small. If any
effects of birth cohort are minimal, further evaluation
with a randomized trial would not be warranted.
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