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Abstract
Background: Many randomized trials involve missing binary outcomes. Although many previous
adjustments for missing binary outcomes have been proposed, none of these makes explicit use of
randomization to bound the bias when the data are not missing at random.

Methods: We propose a novel approach that uses the randomization distribution to compute the
anticipated maximum bias when missing at random does not hold due to an unobserved binary
covariate (implying that missingness depends on outcome and treatment group). The anticipated
maximum bias equals the product of two factors: (a) the anticipated maximum bias re were
complete confounding of the unobserved covariate with treatment group among subjects with an
observed outcome and (b) an upper bound factor that depends only on the fraction missing in each
randomization group. If less than 15% of subjects are missing in each group, the upper bound factor
is less than .18.

Results: We illustrated the methodology using data from the Polyp Prevention Trial. We
anticipated a maximum bias under complete confounding of .25. With only 7% and 9% missing in
each arm, the upper bound factor, after adjusting for age and sex, was .10. The anticipated
maximum bias of .25 × .10 =.025 would not have affected the conclusion of no treatment effect.

Conclusion: This approach is easy to implement and is particularly informative when less than 15%
of subjects are missing in each arm.

Background
Missing outcome data are common in clinical studies
[1,2]. Many approaches assume missing at random
(MAR) as a base case. MAR means that the probability of
missing depends only on observed variables [3]. Four
strategies for examining the bias or sensitivity of results
when MAR does not hold are to (i) fit all saturated MAR
and non-MAR missing-data models [4,5], (ii) add a pa-
rameter to various MAR models to make them non-MAR
and test if the fit is significantly improved [6,7], (iii) im-

pute the missing data in one arm using the observed pro-
portion of events in the other arm [8,9], (iv) estimate
results under a non-MAR missing-data mechanism with
key parameters specified by the investigator [1,10]-[13].
We propose a variation of method (iv) for randomized tri-
als with binary outcome that explicitly uses the randomi-
zation distribution to reduce user input. To our
knowledge this is the only method that exploits the rand-
omization distribution for missing-data adjustment.
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We illustrate the methodology using data from the Polyp
Prevention Trial (PPT) in which 2079 men and women
with recently removed colorectal adenoma were rand-
omized to receive either intensive counseling to adopt a
low-fat diet (intervention) or a standard brochure on
healthy eating (control) [14]. The binary outcome was at
least one adenoma detected on colonoscopy following
randomization. In the control arm 9% of the subjects
were missing the outcome, and in the intervention arm
7% were missing the outcome. Dropping the data from
subjects with a missing outcome gives an estimated differ-
ence of -.002 (s.e.=.022) in the probability of adenoma re-
currence between the intervention and control groups.
Thus there was very little evidence that intensive coun-
seling to adopt a low-fat diet reduced the probability of
adenoma recurrence. An important question was whether
or not an adjustment for the missing outcomes would
have changed this conclusion.

Methods
Adjusting for Observed Covariates
As a starting point, we assume the data are missing at ran-
dom (MAR). Let Y denote the binary outcome of adeno-
ma recurrence. Let Z = 0 denote random assignment to the
control group and Z = 1 denote random assignment to the
intervention group. Also let R = 0 if the outcome is miss-
ing and 1 if the outcome is observed. Suppose we also
have data on the observed variable S, which represents ei-
ther strata formed by the cross-classification of categorical
baseline covariates or outpoints of a continuous variable.
Under the MAR assumption, the probability of missing
depends on Z and S but not Y, namely,

pr(R = 1|z, s, Y = 1) = pr(R = 1 | z, s).  (1)

Because R and Y are conditionally independent given Z
and S, it follows from (1) that

pr(Y = 1|z, s, R = 1) = pr(Y = 1|z, s).  (2)

In other words, under the MAR assumption in (1), the
probability of adenoma recurrence conditional on treat-
ment assignment and baseline covariates is the same in all
subjects as in subjects not missing outcome. Baker and
Laird [6] proved the related result that under MAR the
maximum likelihood estimate of the probability of out-
come conditional on covariates is the same in all subjects
as in subjects not missing outcome.

With binary outcomes, the overall measure of treatment
effect is typically a difference, a relative risk, or an odds ra-
tio. We focus on the difference because it is easy to inter-
pret [15] and because it simplifies our formulation. Let ∆s
denote the treatment effect for stratum 5, namely

∆s = pr(Y = 1|Z = 1, s) - pr(Y = 1|Z = 0, s).  (3)

By virtue of the randomization pr (S = s|Z = 1) = pr(S = s|Z
= 0) = pr(S = s). Therefore we can write the overall treat-
ment effect as

∆ = Σs∆s pr(S = s).  (4)

If the missing-data mechanism is given in (1), then from
(2), the treatment effect in stratum s (3) equals the treat-
ment effect in stratum s among subjects with observed
outcomes,

∆s = pr (Y = 1|Z = 1,s, R = 1) - pr(Y = 1|Z = 0, s, R = 1).  (5)

Let nzsy denote the number of subjects in treatment group
z and stratum s who have observed outcome y. Based on
(5), we estimate ∆s by

ds = qs1 - qs0, where qsz = nzs1/nzs+,  (6)

where "+" denotes summation over the indicated sub-
script. Let Nzs denote the number of subjects (with either
observed or missing outcomes) in treatment group z and
stratum s. We estimate pr(S = s) by ws = N+s/N++, giving an
overall estimate of treatment effect,

 = Σsdsws  (7)

The estimate in (7) is closely related to the estimate pro-
posed by Horvitz and Thompson [16]. It is also maximum
likelihood because it is a function of maximum likelihood
estimates of the parameters. Using the delta method, and

noting that  = d1w1 + d2w2 + .... dh-1wh-1 + dh (1 -

), we obtain

where wh = 1 - .

Bias from an omitted binary covariate
Suppose that instead of (1), the probability of missing-
ness depends on treatment assignment, baseline strata,
and an unobserved binary covariate x. For our example
from the Polyp Prevention Trial, x could be an unreported
indicator of a family history of colon cancer. Then

pr(R = 1|z, s, x, Y = 1) = pr(R = 1|z, s, x).  (9)
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In other words the data would be MAR if x were observed.
The model in (9) implies that, when x is not observed,
missingness depends on outcome and on treatment group
via

We assume that for each level of x within stratum s, the
treatment effect is the same, namely

∆s = pr(Y = 1|Z = 1, s, x) - pr(Y = 1|Z = 0, s, x)

= pr(Y = 1|Z = 1, s, x, R = 1) - pr(Y = 1|Z = 0, s, x, R = 1)
from (9)  (11)

Importantly ∆s in (11) does not depend on x. Let

 denote the apparent treatment effect in stratum

s after collapsing over x, namely,

To formalize the relationship between  and ∆s

let

αxs = pr(Y = 1|Z = 0, s, x, R = 1)  (13)

ψs = α1s - α0s  (14)

φzs = pr(X = 1|z, s, R = 1),  (15)

εs = φ1s - φ0s.  (16)

Combining (11) and (13), we can write

pr(Y = 1|Z = 1, s, x, R = 1) = αxs + ∆s.  (17)

Substituting (13)-(17) into (12) gives

For a tabular display of these calculations see Table 1. For
a graphical depiction based on the BK-plot [17,18], see
Figure 1.

From (18) the bias from omitting x in stratum s is ψs εs.
The first factor

ψs = pr(Y = 1|Z = 0, s, X = 1, R = 1) - pr(Y = 1|Z = 0, s, X =
0, R = 1)  (19)

is the effect of X on subjects in the control group with ob-
served outcomes. By virtue of the MAR assumption in (9),
we could also write ψs = pr(Y = 1|Z = 0, s, X = 1) - pr(Y =
1|Z = 0,5, X = 0), which is the effect of X on all subjects in
the control group. The second factor,

εs = pr(X = 1|Z = 1, s, Z = 1) - pr(X = 1|Z = 0, s, R = 1),
(20)

ranges from -1 to 1 and measures the degree of confound-
ing between X and Z among subjects with observed out-
comes (i.e. R = 1). If εs = 0, there is no confounding and
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Figure 1
BK-plot of bias from an unobserved binary covariate among 
subjects not missing outcome. The upper diagonal line is the 
probability of outcome among subjects not missing outcome 
in randomization group Z = 1. The lower diagonal line is the 
probability of outcome among subjects not missing outcome 
in randomization group group Z = 0. For subjects in group 0, 
the fraction with X = 1 is φ0s and the probability of outcome 
is indicated by point A. For subjects in group 1, the fraction 
with X = 1 is φ1s and the probability of outcome is indicated 
by point B. The true treatment effect ∆s is the difference 
between the diagonal lines. The apparent treatment effect ∆s 
is the vertical distance between points A and B, which equals 
∆ + ψsεs, where εs = φ1s - φ0s and ψs = α1s - α0s = the slope of 
each diagonal line. To bound the overall bias Σsψsεspr(S = s), 
we specify an upper bound for εs based only on the fraction 
missing and a plausible value for the maximum of ψs based on 
the estimates of ψs if an observed covariate were missing.
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no bias because the distribution of X among subjects with
observed outcomes is the same in the control and study
group. If εs = ± 1 there is complete confounding and the
bias reaches the maximum value of ± ψs. Taking a weight-
ed average over all strata, the overall apparent treatment
effect is

and the overall bias is

bias = Σsψs εs ws.  (22)

Remarkably it is possible to obtain simple bounds on εs
based only on the proportion of subjects who are missing
in each randomized group in stratum s. Let

πzs = pr(R = 1|z, s)  (23)

denote the proportion of subjects in randomization group
z and stratum s with an observed outcome. As derived in
the Appendix See additional file: 1, the maximum εs,
which we call the upper bound factor, is

If only 15% of the subjects are missing in each arm ε(max)s
is less than .18. If we let ψmax denote the anticipated max-
imum value of ψs, then substituting (24) into (22) gives
the anticipated maximum bias,

biasmax = ± ψmax Σs ε(max)s ws,  (25)

where the anticipated maximum bias under complete
confounding, ψmax, is specified by the investigator; the
upper bound factor, ε(max)s, is based on the fraction with
observed outcomes in stratum s; and ws is the fraction of
subjects in stratum s.

Thus the investigator need only specify ψmax. One might
argue that if x were a strong unobserved inherited gene,
ψmax would be close to 1. However because, "eligible sub-
jects had no history of colorectal cancer, surgical resection
of adenomas, bowel resection, the polyposis syndrome, or
inflammatory bowel disease" [14], it is unlikely that many
subjects had an unobserved high-penetrance gene related
to the recurrence of adenomas. We therefore believe that
unobserved factors that might affect both adenoma recur-
rence and missingness could have an effect of similar mag-
nitude as observed baseline covariates. Thus to obtain a
plausible value for ψmax, we suggest estimating ψs, as
defined in (19), based on observed covariates. (See the Re-
sults section.) Of course the relationship between ob-
served covariates and missingness could differ
substantially from the relationship between an unob-
served covariate and missingness. Nevertheless, we be-
lieve that estimates of ψs from observed covariates are
helpful for specifying a realistic value for ψmax.

Table 1: Cell probabilities in a generic stratum s

randomization group unobserved covariate probability of outcome given group, 
unobserved covariate, s, not missing

probabilitity of unobserved covariate 
given group, s, not missing

probability of outcome given group, 
s not missing

Z X pr(Y = 1|z, s, x, R = 1) pr(x|z, s, R = 1) pr(Y = 1|z, s, R = 1)
= pr(Y = 1|z, s, x) if MAR

1 0 α0s + ∆s (1 - φ1s)
(α0s + ∆s) (1 - φ1s) + (α1s + ∆s) φ1s

1 α1s + ∆s φ1s

0 0 α0s (1 - φ0s)
α0s(1 - φ0s) + α1s φ0s

1 α1s φ0s

difference between randomization groups: ∆s + ψsεs, where εs = φ1s - φ0s, ψs = 
α1s - α0s

Under missing at random (MAR), the probabilities in the third column are the same for subjects not missing outcome as for all subjects, so ∆s rep-
resents the true treatment effect, which is the same for both levels of x. Because the distribution of x is different among subjects not missing out-
come in each randomization group, the apparent treatment effect is the difference in weighted averages over x in the last column, namely, ∆s + ψsεs. 
To bound the overall bias Σsψsεspr (S = s), we specify an upper bound for εs based only on the fraction missing and a plausible value for the maxi-
mum of ψs based on the estimates of ψs if an observed covariate were missing.
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Results
We applied our approach to data from the PPT trial strat-
ified by age and sex (Table 2). We first assumed MAR and
applied (7) and (8) to estimate the difference in the prob-
abilities of adenoma recurrence between the two groups.

We obtained  = -.003 with se( ).=.022, which is close to

the unstratified estimate and its standard error.

To compute the anticipated maximum bias (25) we first
computed ε(max)s using (24) and estimated ws from the
observed fractions (Table 2). This gave Σsε(max)s ws = .10.
We then specified ψmax, the anticipated maximum bias
under complete confounding. To obtain a plausible value
for ψmax, we estimated ψs in (19) pretending either sex or

age was the unobserved covariate x. This gave  = .23,

.18, .18, .19, for the four age categories when x = sex and

.07 and .09 for the two sex categories when x = age. Treat-

ing the largest  as a realistic lower bound for ψmax, we
specified a slightly larger value, ψmax = .25, so that the an-
ticipated maximum bias is biasmax = ± .25 × .10 = .025. The

MAR confidence interval is shifted to the right or left by
the anticipated maximum bias (Figure 2).

For purpose of comparison, we also computed estimates
and confidence intervals under a worst (best) case impu-
tation [9,19], where missing outcome data in each stra-
tum were imputed as no recurrence (recurrence) in
controls and recurrence (no recurrence) in the interven-
tion group. (These stratum-specific estimates were com-
bined over strata using weights inversely proportional to
the stratum-specific variances.) In the worst and best case
imputations the confidence intervals did not overlap zero
(Figure 2).

Our sensitivity analysis showed that the worst and best
case imputations were too extreme. Because the absolute
value of the anticipated maximum bias, .025, is smaller

than 1.96 × se ( ) = .043, the bias-adjusted confidence in-
tervals overlap zero. Thus the anticipated maximum bias
of ± .025 did not change our conclusion of little evidence
of an effect of treatment on adenoma recurrence. However
it did increase our uncertainty, as the more extreme lower
and upper bounds indicated that the true effect of treat-

Table 2: Results of Polyp Prevention Trial

stratum s adenoma difference in observed weight bias factor 
ε(max)s

stratum s recurrence rates of recurrence ds ws

sex age group no yes missing

control 573 374 94 (9%)
study 578 380 76 (7%)

men 30–49 control 33 22 5 (8%) -.23 .07 .09
study 58 12 3 (4%)

40–59 control 99 76 7 (4%) .01 .17 .05
study 94 76 9 (5%)

60–69 control 122 105 25 (10%) -.04 .23 .11
study 144 105 18 (7%)

70–79 control 65 76 26 (16%) -.04 .13 .20
study 70 71 29 (17%)

women 30–49 control 54 11 3 (4%) .03 .10 .07
study 47 12 4 (6%)

40–59 control 69 24 4 (4%) .02 .11 .04
study 69 27 4 (4%)

60–69 control 77 31 13(11%) .08 .12 .11
study 68 40 5 (4%)

70–79 control 54 29 11(12%) .22 .07 .12
study 28 37 4 (6%)

The overall estimate of the difference in probabilities of recurrence between study and control groups is  = Σsdsws = -.003 with a standard error 
.022. We define ε(max)s = max((1 - π0s)/π1s, (1 - π1s)/π0s), where πzs equals one minus the fraction missing in group z and stratum s. The anticipated 
maximum bias is ψmax Σs ε(max)s ws = ± .10 ψmax, where ψmax is the anticipated bias if there were complete confounding of the unobserved covariate 
and treatment.

∆

∆ ∆

ψs

ψs

∆
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ment could likely be higher or lower than indicated by the
original analysis.

Discussion
The key idea of our method is to incorporate non-MAR
missingness by postulating an unobserved binary covari-
ate. Although similar in spirit to using an unobserved
binary covariate with observational data [20], randomiza-
tion adds important extra information that can be usefully
exploited. Our formulation implies that the probability of
missingness depends on both outcome and treatment
assignment.

The proposed methods hinges on first selecting the appro-
priate baseline covariates. We agree with Myers [21] that if
one anticipates missing data, one should collect informa-
tion on the baseline covariates related to outcome that
might predict missing in outcome. We assumed that with-
in a stratum, the effect of treatment did not depend on the
unobserved binary covariate. We view this as a main effect
and thus a reasonable approximation.

We also agree with Shih [1] that one should collect infor-
mation on the cause of missingness. In particular we rec-
ommend reporting whether any of the missing outcomes
were definitely MAR, for example, due to random techni-
cal problems, to accidents, or to leaving the study for rea-
sons completely unrelated to the investigation. Suppose
that outcome was definitely MAR in a proportion vzs of
subjects. Then it is more informative to write vzs as pr(R =
1, not MAR|z, s) + vzs. Because vzs contains no information
about the effect of X on missingness, one can replace πzs
by πzs - vzs, which reduces ε(max)s and hence reduces the an-
ticipated maximum bias.

Although we applied our methodology to a cross-classifi-
cation of categorical covariates, it could also be applied to
continuous covariates or a univariate combination of co-
variates in a manner analogous to a propensity score [22].
Let u denote a vector of covariates and ez = pr(R = 1|z, u).
Following the derivation of propensity scores [22], we can
write, pr(R = 1|z, ez) = E(r|z, ez) = E(E(r|z, u)|z, ez) = E(ez|z,
ez) = ez. Therefore pr(R = 1|z, u) = pr(R = 1|z, ez), and thus
ez contains the same information for the probability of be-
ing observed as u. This calculation justifies using ez to
summarize the covariates predicting missingness. To form
five strata for randomized group z, we would compute ez
for each subject in group z and then divide the distribu-
tion of ez into quintiles.

Conclusion
The bias due to an unobserved binary covariate could
arise when the probability of missingness depends on
both treatment and outcome. Computation of the bias is
easy because it equals the maximum anticipated bias un-
der complete confounding multiplied by an upper bound
factor. The maximum anticipated bias might require some
expert input but some lower bound values can be
obtained using observed baseline covariate. The upper
bound factor is easily computed from the fraction missing
in each group. The methodology is particularly useful in
the common situation when no more than 15% of the
subjects (in excess of those definitely MAR) have missing
outcomes, so that the upper bound factor in the bias is less
than .18.

Contributions
SGB devised the basic model with the unobserved covari-
ate, worked out the unconstrained maximization, and
wrote the initial draft of the manuscript. LSF worked out
the constrained maximization and provided substantive
improvements to the manuscript.

Figure 2
Comparison of missing data adjustments for Polyp Preven-
tion Trial. The graph plots the estimated differences in the 
probability of adenoma recurrence between the intevention 
and control groups and the 95% confidence intervals. MAR is 
missing at random within strata. MAR ± bias shifts the MAR 
confidence interval based on the anticipated maximum bias. 
Worst and best case imputes missing data to the randomiza-
tion group that would give the largest positive and negative 
effect, respectively.
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