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Abstract

Background: Consider a meta-analysis where a 'head-to-head' comparison of diagnostic tests for
a disease of interest is intended. Assume there are two or more tests available for the disease,
where each test has been studied in one or more papers. Some of the papers may have studied
more than one test, hence the results are not independent. Also the collection of tests studied may
change from one paper to the other, hence incomplete matched groups.

Methods: We propose a model, the proportional odds ratio (POR) model, which makes no
assumptions about the shape of OR,, a baseline function capturing the way OR changes across
papers. The POR model does not assume homogeneity of ORs, but merely specifies a relationship
between the ORs of the two tests.

One may expand the domain of the POR model to cover dependent studies, multiple outcomes,
multiple thresholds, multi-category or continuous tests, and individual-level data.

Results: In the paper we demonstrate how to formulate the model for a few real examples, and
how to use widely available or popular statistical software (like SAS, R or S-Plus, and Stata) to fit
the models, and estimate the discrimination accuracy of tests. Furthermore, we provide code for
converting ORs into other measures of test performance like predictive values, post-test
probabilities, and likelihood ratios, under mild conditions. Also we provide code to convert
numerical results into graphical ones, like forest plots, heterogeneous ROC curves, and post test
probability difference graphs.

Conclusions: The flexibility of POR model, coupled with ease with which it can be estimated in
familiar software, suits the daily practice of meta-analysis and improves clinical decision-making.

Background disease there may be several diagnostic tests invented,
A diagnostic test, in its simple form, tries to detect pres-  where each of the tests is subject of one or more studies.
ence of a particular condition (disease) in a sample. Usu-  One may also want to combine all such studies to see how

ally there are several studies where performance of the  the competing tests are performing with respect to each
diagnostic test is measured by some statisticc. One may  other, and choose the best for clinical practice.

want to combine such studies to get a good picture of per-

formance of the test, a meta-analysis. Also, for a particular
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To pool several studies and estimate a summary statistic
some assumptions are made. One such assumption is that
differences seen between individual study results are due
to chance (sampling variation). Equivalently, this means
all study results are reflecting the same "true" effect [1].
However, meta-analysis of studies for some diagnostic
tests show that this assumption, in some cases, is not
empirically supported. In other words, there is more vari-
ation between the studies that could be explained by ran-
dom chance alone, the so-called "conflicting reports".
One solution is to relax the assumption that every study is
pointing to the same value. In other words, one accepts
explicitly that different studies may correctly give "differ-
ent" values for performance of the same test.

For example, sensitivity and specificity are a pair of statis-
tics that together measure the performance of a diagnostic
test. One may want to compute an average sensitivity and
an average specificity for the test across the studies, hence
pooling the studies together. Instead, one may choose to
extract odds ratio (OR) from each paper (as test perform-
ance measure), and then estimate the average OR across
the studies. The advantage is that widely different sensitiv-
ities (and specificities) can point to the same OR. This
means one is relaxing the assumption that all the studies
are pointing to the same sensitivity and specificity, and
accepts that different studies are reporting "truly different"
sensitivity and specificity, and that the between-study var-
iation of them is not due to random noise alone, but
because of difference in choice of decision threshold (the
cutoff value to dichotomize the results). Therefore the
major advantage of OR, and its corresponding receiver-
operating-characteristic (ROC) curve, is that it provides
measures of diagnostic accuracy unconfounded by deci-
sion criteria [2]. An additional problem when pooling
sensitivities and specificities separately is that it usually
underestimates the test performance [[3], p.670].

The above process may be used once more to relax the
assumption that every study is pointing to the same OR,
thus relaxing the "OR-homogeneity" assumption. In other
words, in some cases, the remaining variation between
studies, after utilizing OR as the summary performance
measure, is still too much to be attributed to random
noise. This suggests OR may vary from study to study.
Therefore one explicitly assumes different studies are
measuring different ORs, and that they are not pointing to
the same OR. This difference in test performance across
studies may be due to differences in study design, patient
population, case difficulty, type of equipment, abilities of
raters, and dependence of OR on threshold chosen [4].
Nelson [5] explains generating ROC curves that allow for
the possibility of "inconstant discrimination accuracy”, a
heterogeneous ROC curve (HetROC). This means the
ROC curve represents different ORs at different points.
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This contrasts with the fact that the homogeneous-ROC is
completely characterized by one single OR.

There are a few implementations of the heterogeneous
ROC. One may classify them into two groups. The first
group is exemplified by Tosteson and Begg [6]. They show
how to use ordinal regression with two equations that cor-
respond to location and scale. The latent scale binary
logistic regression of Rutter and Gatsonis [4] belong to
this group. The second group contains implementations
of Kardaun and Kardaun [7], and Moses et al [8]. Moses et
al explain a method to plot such heterogeneous ROC
curve under some parametric assumptions, and they call
it summary ROC (SROC).

When comparing two (or more) diagnostic tests, where
each study reports results on more than one test, the per-
formance statistics (in the study results) are correlated.
Then standard errors computed by SROC are invalid.
Toledano and Gatsonis [9] use the ordinal regression
model, and account for the dependency of measurements
by generalized estimating equations (GEE). However, to
fit the model they suggest using a FORTRAN code.

We propose a regression model that accommodates more
general heterogeneous ROC curves than SROC. The
model accommodates complex missing patterns, and
accounts for correlated results [10]. Furthermore, we show
how to implement the model using widely available sta-
tistical software packages. The model relaxes OR-homoge-
neity assumption. In the model, when comparing two (or
more) tests, each test has its own trend of ORs across stud-
ies, while the trends of two tests are (assumed to be) pro-
portional to each other, the "proportional odds ratio"
assumption. We alleviate dilemma of choosing weighting
schemes such that do not bias the estimates [[11], p.123],
by fitting the POR model to 2-by-2 tables. The model
assumes a binomial distribution that is more realistic than
a Gaussian used by some implementations of HetROC.
Also, it is fairly easy to fit the model to (original) patient
level data (if available).

Besides accounting better for between-study variation, we
show how to use the POR model to "explain why" such
variation exists. This potentially gives valuable insights
and may have direct clinical applications. It may help
define as to when, where, how, and on what patient pop-
ulation to use which test, to optimize performance.

We show how to use "deviation" contrast, in parameteri-
zation of categorical variables, to relax the restriction that
a summary measure may be reported only if the respective
interaction terms in the model are insignificant. This is
similar to using grand mean in a "factor effects" ANOVA
model (compared to "cell means" ANOVA model).

Page 2 of 13

(page number not for citation purposes)



BMC Medical Research Methodology 2004, 4:27

We show how to use nonparametric smoothers, instead of
parametric functions of true positive rate (TPR) and/or
false positive rate (FPR), to generate heterogeneous ROC
for a single diagnostic test across several studies.

Our proposed POR model assumes the shape of the heter-
ogeneous ROC curve is the same from one test to the
other, but they differ in their locations in the ROC space.
This assumption facilitates the comparison of the tests.
However, one may want to relax the POR assumption,
where each test is allowed to have a heterogeneous ROC
curve with a different shape. One may implement such
generalized comparison of the competing diagnostic tests
by a mixed effects model. This may improve generalizabil-
ity of meta-analysis results to all (unobserved) studies.
Also, a mixed effects model may take care of remaining
between-study variation better.

Methods

Average difference in performances

To compare two diagnostic tests i and j, we want to esti-
mate the difference in their performance. However, in
reality such difference may vary from one paper (study) to
the other. Therefore A;; = PERF, - PERF; ,, where the dif-
ference A depends on paper index p, where PERF, , is
observed performance of test i in paper p. To simplify
notation, assume that a single number measures perform-
ance of each test in each paper. We relax this assumption
later, allowing for the distinction between the two types of
mistakes (FNR and FPR, or equivalently TPR and FPR). We
decompose the differences

(1) Ayj,= PERF, - PERF, ;= 6, + &,
where &; is the 'average' difference between the two tests,
and g;;, is deviation of the observed difference within
paper p from the average &, ;. The 6, ;is an estimator for the
difference between performance of the two tests. Note by
using deviation parameterization (similar to an ANOVA
model) [[12], pp.51 & 45] we explicitly accept and
account for the fact that the observed difference varies
from one paper to the other, while estimating the 'average'
difference. This is similar to a random-effects approach
where a random distribution is assumed for the A;; , and
then the mean parameter for the distribution is estimated.
In other words, one does not need to assume 'homogene-
ous' difference of the two tests across all the papers, and
then estimate the 'common' difference [13].

The observed test performance, PERF, may be measured in
several different scales, such as paired measures sensitivity
and specificity, positive and negative predictive values,
likelihood ratios, post test odds, and post test probabili-
ties for normal and abnormal test results; as well as single
measures such as accuracy, risk or rate ratio or difference,
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Youden's index, area under ROC curve, and odds ratio
(OR). When using OR as the performance measure, the
marginal logistic regression model

2) logit(Result,) = + f,*Disease,, + f,*PaperlD,, +
8 p 0 1 bt L Pap pt
*Disease, * PaperlD + *TestID + *Dis-
3 pt p pt 4 pt
ease, *TestID,, +  fg*TestID,*PaperID,, +  f,*Dis-
easey,* TestID,,* PaperID,,,

implements the decomposition of the performance.
Model (2) is fitted to the (repeated measures) grouped
binary data, where the 2-by-2 tables of gold-standard ver-
sus test results are extracted from each published paper. In
the model (2) Result is an integer-valued variable for pos-
itive test result (depending on software choice, for
grouped binary data, usually Result is replaced by number
of positive test results over the total sample size, for each
group); Disease is an indicator for actual presence of dis-
ease, ascertained by the gold standard; PaperID is a cate-
gorical variable for papers included in the meta-analysis;
and TestID is a categorical variable for tests included.
Regression coefficients £, to £, can be vector valued,
meaning having several components, so the correspond-
ing categorical variables should be represented by suitable
number of indicator variables in the model. Indexes p and
t signify paper p and test t. They define the repeated meas-
ures structure of the data [10]. Note model (2) fits the gen-
eral case where there are two or more tests available for the
disease, where each test has been studied in one or more
papers. Some of the papers may have studied more than
one test; hence the results are not independent. Also the
collection of tests studied may change from one paper to
the other, hence incomplete matched groups.

From model (2) one can show that

LOR, = p; + p*PaperlD, + pf5*
B7* TestID,, * PaperID,,

TestID,, +
and therefore the difference between performance of two
tests i and j, measured by LOR, is

LOR,; - LOR, = p5* TestID, - ps*
P7* TestID,;* PaperID,; - B,* TestID,;* PaperID,;

TestIDpj +

where we identify J;; of the decomposition model (1)
with the g;* TestID,; - B5*TestID,;, and identify J;; , with
P7* TestID,;* PaperID,; - B,* TestID,;* PaperID,;.

If there is an obvious and generally accepted diagnostic
test that can serve as a reference category (RefCat) to
which other tests can be compared, then a "simple"
parameterization for tests is sufficient, However, usually it
is not the case. When there is no perceived referent test to
which the other tests are to be compared, a "deviation
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from means" coding is preferred for the tests. Using the
deviation parameterization for both TestID and PaperID
in the model (2), one can show that S;*TestID,, is the aver-
age deviation of the LOR of test t from the overall LOR
(the S,), where the overall LOR is the average over all tests
and all papers. Therefore f;*TestID,, of model (2) will be
equivalent to the g, ; of the decomposition model (1), and
B;* TestID,, * PaperID,, equivalent to & ..
Proportional odds ratio model

Model (2) expands each study to its original sample size,
and uses patients as primary analysis units. Compared to
a random-effects model where papers are the primary
analysis units, it has more degrees of freedom. However,
in a real case, not every test is studied in every paper.
Rather majority of tests are not studied in each paper.
Therefore the data structure of tests-by-papers is incom-
plete with many unmeasured cells. The three-way interac-
tion model (2) may become over-parameterized. One
may  want to drop the term fs* Dis-
ease,,* TestID,, * PaperID,,. Then for the reduced model

(3) logit(Result,) = p, + p;*Disease,, + p,*PaperID,, +
Ps* Disease,,,* PaperID,, + f5,* TestID,, + fs* Disease,,* TestID,,,

we have LOR, = B + p5* PaperID,, + f5* TestID,,, where the
paper and test effects are completely separate. We call this
reduced model the Proportional Odds Ratio (POR)
model, where the ratio of odds ratios of two tests is
assumed to be constant across papers, while odds ratio of
each test is allowed to vary across the papers. Note the dif-
ference with the proportional odds model where ratio of

odds is assumed to be constant [14]. In the POR model

(4) OR, = OR,* Pt 1=1,2, ., kp=1,2, ., m

where t is an index for the k diagnostic tests, and p is an
index representing the m papers included in the analysis.
OR, is a function capturing the way OR changes across
papers. Then to compare two diagnostic tests i and j

(ﬁt_ﬂ')
ORPI/ ORp] =e J

where the ratio of the two ORs depends only on the differ-
ence between the effect estimates of the two tests, and is
independent of the underlying OR, across the papers.
Thus the model makes no assumptions about the shape of
OR, (and in particular homogeneity of ORs) but merely
specifies a relationship between the ORs of the two tests.

One may want to replace the PaperID variable with a
smooth function of FPR or TPR, such as natural restricted
cubic splines. There are two potential advantages. This
may preserve some degrees of freedom, where one can
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spend by adding covariates to the model to measure their
potential effects on the performance of the diagnostic
tests. Thus one would be able to explain why performance
of the same test varies across papers. Also, this allows plot-
ting a ROC curve where the OR is not constant across the
curve, a flexible ROC (HetROC) curve.

(5) logit(Result,) = f, + p;*Disease, + B,*S(FPR,) +
B5*Disease,*S(FPR,,) + B, *TestID,, + f5* Disease,,* TestID,,
+ fBs* Xy + P5* Disease, * X,

To test the POR assumption one may use model (2) where
the three-way interaction of Disease and TestID with
PaperlID is included. However, in majority of real datasets
this would mean an over-parameterized model. Graphics
can be used for a qualitative checking of the POR assump-
tion. For instance, the y-axis can be LOR, while the x-axis
is paper number. To produce such plot, it may be better to
have the papers ordered in some sense. One choice is to
compute an unweighted average of (observed) ORs of all
the tests the paper studied, and use it as the OR of that
paper. Then sort the papers based on such ORs. The OR of
a test may vary from one paper to the other (with no
restriction), but the POR assumption is that the ratio of
ORs of two tests remains the same from one paper to
another. If one shows ORs of a test across papers by a
smooth curve, then one expects that the two curves of the
two tests are proportional to each other. In the log-OR
scale, this means the vertical distance of the two curves
remains the same across the x-axis. To compute the
observed LOR for a test in a paper one may need to add
some value (like 1/2) to the cell counts, if some cell
counts are zero. However, this could introduce some bias
to the estimates.

Among the approaches for modeling repeated-measures
data, we use generalized estimating equations to estimate
the marginal logistic regression [15]. Software is widely
available for estimation of parameters of a marginal POR
model. These include SAS (genmod procedure), R (func-
tion geese), and STATA (command xtgee), with R being
freely available open source software [16].

One may use a non-linear mixed effects modeling
approach on the cell-count data for estimation of param-
eters of the POR model. The Paper effect is declared as ran-
dom, and interaction of the random effect with Disease is
included in the model, as indicated in model (2). How-
ever, such mixed effects non-linear models are hard to
converge, especially for datasets where there are many
papers studying only one or a small number of the
included tests (such as the dataset presented as example in
this paper). If the convergence is good, it may be possible
to fit a mixed model with the interaction of Disease, Test,
and the Paper random effect. Such model relaxes the POR
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assumption, besides relaxing the assumption of OR-
homogeneity. In other words, one can use the model to
quantitatively test the POR assumption. One should
understand that the interpretation of LOR estimate from a
marginal model is of a population-average, while that of
a mixed model is a conditional-average. Therefore there is
a slight difference in their meaning.

Expanding the proportional odds ratio model

One may use the frameworks of the generalized linear
models (GLM) and the generalized estimating equations
(GEE) to extend the POR model and apply it to different
scenarios. By using suitable GLM link function and ran-
dom component [[17], p.72], one may fit the POR model
to multi-category diagnostic tests, like baseline-category
logits, cumulative logits, adjacent-categories and continu-
ation-ratio logits [[17], chapter 8]. A loglinear 'Propor-
tional Performance' (PP) regression may be fitted to the
cell counts, treating them as Poisson. Also, one may fit the
PP model to the LORs directly, assuming a Gaussian ran-
dom component with an identity link function. Compar-
ing GEE estimates by fitting the model to 2-by-2 tables
versus GEE estimates of the model fitted directly on LOR
versus a Mixed model fitted on LOR, usually statistical
power decreases across the three. Also, there is issue of
incorporation of sample sizes that differ across studies.
Note some nuisance parameters, like coefficients of all
main effects and the intercept, won't need to be estimated
as they are no longer present in the model fitted directly
on LORs.

One may avoid dichotomizing results of the diagnostic
test by using the 'likelihood ratio' as the performance
measure, and fitting a PP model to such continuous out-
come. For a scenario where performance of a single test
has been measured multiple times within the same study,
for example with different diagnostic calibrations (multi-
ple thresholds), the POR estimated by the GEE incorpo-
rates data dependencies. When there is a multi-layer and/
or nested clustering of repeated measures, software to fit a
mixed-effects POR model may be more available than an
equivalent GEE POR.

When POR is implemented by a logistic regression on 2-
by-2 tables, it uses a grouped binary data structure. It takes
a minimal effort to fit the same logistic model to the
"ungrouped" binary data, the so-called "individual level"
data.

Methods of meta-analysis that allow for different out-
comes (and different numbers of outcomes) to be meas-
ured per study, such as that of Gleser and Olkin [18], or
DuMouchel [19], may be used to implement the POR
model. This would prevent conducting parallel meta-
analyses that is usually less efficient.
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Comparison: 21 diagnostic tests for "deep vein thrombosis"
Outcome: Log Odds Ratio (LOR)

Diagnostic Test
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Worse than overall LOR Betfer than overall LOR

0 i 2 3 4

Figure |
Comparing performance of each diagnostic test to the over-
all LOR

Results

Deep vein thrombosis

To demonstrate how to fit the POR model, we use a recent
meta-analysis of diagnostic tests for deep vein thrombosis
(DVT) by Heim et al. [20]. In this meta-analysis there are
23 papers and 21 tests, comprising 483 potential perform-
ance measurements, while only 66 are actually observed,
thus 86% of cells are not measured. We fitted the reduced
marginal logistic regression model (3). Table 1 shows the
parameter estimates for Test effects. SAS code to estimate
the parameters is provided [see additional file 1].Data
files are provided in Additional file 2.

Since we have used deviation contrast for the variables,
estimate of /3, is the "overall mean" for the log-OR. This is
similar to an ANOVA analysis where the overall mean is
estimated by the model. Therefore the average OR is equal
to exp(2.489) = 12.049. Components of f; estimate devi-
ation of LOR of each test from the overall LOR. Software
gives estimates of SEs, plus confidence intervals and p-val-
ues, so inference is straightforward.
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Table I: Parameter estimates for test effects
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Coefficient Test Deviation* 95% Confidence Limits p value**

Bst | Asserachrom 0.524 0.2293,0.8186 0.0005
2 Auto Dimertest 0.222 -0.1466, 0.5912 0.2376

3 BC D-Dimer -0.993 -2.4195, 0.4333 0.1724

4 D-Dimer test 0.225 0.1, 0.3494 0.0004

5 Dimertest -2.092 -2.3392, -1.8439 <.0001

6 Dimertest EIA -0.929 -1.1756, -0.6825 <.0001

7 Dimertest GOLD EIA -0.193 -0.4784, 0.0935 0.1871

8 Dimertest Il -0.731 -0.9774, -0.4843 <.0001

9 Enzygnost 0.399 0.1209, 0.6766 0.0049

10 Fibrinostika 0.857 0.6865, 1.0266 <.0001

Il IL Test 0.809 0.0914, 1.5256 0.0271

12 Instant LA 0.558 0.216, 0.9006 0.0014

13 Liatest -0.143 -0.3375, 0.051 | 0.1486

14 LPIA 0.182 -0.0354, 0.3997 0.1007

15 Minutex -0.323 -0.8394, 0.193 0.2197

16 Nephelotex 0.654 0.4325, 0.8745 <.0001

17 NycoCard -0.797 -1.0434, -0.5506 <.0001

18 SimpliRED 0.393 0.1467, 0.6398 0.0018

19 Tinaquant 0.703 0.0113, 1.3948 0.0464

20 Turbiquant -0.328 -1.6596, 1.0032 0.629

21 VIDAS 1.004 0.365, 1.6424 0.0021

B Overall LOR 2.489 2.4175, 2.5606 <.000|**+*

* estimate of deviation from overall LOR

** p-value for null hypothesis of Deviation = 0
*Fkp-value for null hypothesis of LOR = 0

t LOR(Resulty,) = f3; + B5*PaperID,, + fs*TestID,,

A forest plot may be used to present the results of the
modeling in a graphical way. This may connect better with
clinically oriented audience. In Figure 1 we have sorted
the 21 tests based on their LOR estimate.

The horizontal axis is log-OR, representing test perform-
ance. The dashed vertical line shows overall mean LOR.
For each diagnostic test the solid square shows the LOR,
while the horizontal line shows the corresponding 95%
CL. If the horizontal line does not intersect the vertical
line, the test is significantly different from the overall
mean LOR.

Note that the CIs in the plot are computed by adding the
overall LOR to the CI for the deviation effect of each par-
ticular test. This ignores the variability of the overall LOR
estimate. One can estimate the LOR of a test and its CI
more accurately by some extra computations, or by fitting
a slightly modified model. A method is illustrated and
implemented [see additional file 1]. However, the gain in
accuracy was small in this particular example. The model
also estimates paper effects. However, one may not be
interested in those primarily.

One can translate LOR to other measures of test perform-
ance. There are numerous types of these measures. We
provide code to convert the LOR estimated by the POR
model to such measures. Note that majority of them,
unlike LOR, are in pairs. This means in order to compare
two tests, one needs to use two numbers to represent each
single test. For example, sensitivity-specificity is a pair. If a
test has a higher sensitivity than the other test, while hav-
ing a lower specificity, it is not immediately clear which
test is better. Also, note that some performance measures
are independent of disease prevalence, while others
depend on prevalence. This means the same test would
perform differently for populations with different disease
prevalence.

Note in order to compute some of the performance meas-
ures, one needs to assume a prevalence and sensitivity or
specificity. We assumed a disease prevalence of 40%, and
a specificity of 90%, for Table 2, as the tests are mainly
used for ruling out the DVT.

We suggest graphs to compare tests when using such
"prevalence-dependent paired performance measures"
[21]. In Figure 2 we have used a pair of measures,
‘probability of disease given a normal test result' and
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Table 2: Other performance measures for the 21 diagnostic tests of DVT

Diagnostic Test DOR Prev. Spec. Sens. AUC PPV NPV LRAT LRNT PTO PTOAT PTONT PTPAT PTPNT
I Asserachrom 20.3 0.4 0.9 0693 0888 0822 08I5 6.933 0.341  0.667 4.622 0.227 0.822 0.185
2 Auto Dimertest 15.0 0.4 0.9 0.626 0.864 0.807 0.783  6.258 0416  0.667 4.172 0.277 0.807 0217
3 BC D-Dimer 4.5 0.4 0.9 0332 0732 0688 0669 3315 0.743  0.667 2210 0.495 0.688 0.331
4 D-Dimer test 15.1 0.4 0.9 0.626 0.865 0.807 0.783  6.263 0415 0.667 4.175 0.277 0.807 0.217
5 Dimertest 1.5 0.4 0.9 0.142 0566 0486 0611 1.419 0.953  0.667 0.946 0.636 0.486 0.389
6 Dimertest EIA 4.8 0.4 0.9 0346 0741 0.697 0.674  3.459 0.727  0.667 2.306 0.485 0.697 0.326
7 Dimertest GOLD EIA 9.9 0.4 0.9 0525 0.826 0.778 0740 5.248 0.528  0.667 3.499 0.352 0.778 0.260
8 Dimertest Il 58 0.4 0.9 0392 0766 0.723 0.689 3.920 0.676  0.667 2613 0.450 0.723 0311
9 Enzygnost 18.0 0.4 0.9 0.666 0879 08l6 0802 6.66l 0371  0.667 4.440 0.247 0.8l6 0.198
10 Fibrinostika 284 0.4 0.9 0.759 0910 0835 0849 7.592 0268  0.667 5.061 0.178 0.835 0.151
Il IL Test 27.0 0.4 0.9 0.750 0.907 0.833 0.844 7.503 0.277  0.667 5.002 0.185 0.833 0.156
12 Instant LA, 21.1 0.4 0.9 0.701 0.890 0.824 0.8I8 7.006 0333  0.667 4.671 0.222 0.824 0.182
13 Liatest 10.4 0.4 0.9 0.537 0.831 0782 0745 537l 0514  0.667 3.581 0.343 0.782 0.255
14 LPIA 14.5 0.4 0.9 0616 0861 0804 0779 6.163 0426  0.667 4.109 0.284 0.804 0.221
I5  Minutex 8.7 0.4 0.9 0492 0813 0766 0727 4921 0.564  0.667 3.281 0.376 0.766 0.273
16  Nephelotex 23.2 0.4 0.9 0720 0.897 0.828 0.828 7.202 0311  0.667 4.801 0.207 0.828 0.172
17 NycoCard 54 0.4 0.9 0376 0.758 0715 0.684 3.763 0.693  0.667 2.509 0.462 0.715 0316
18  SimpliRED 17.9 0.4 0.9 0.665 0.878 0816 0.801 6.648 0372  0.667 4.432 0.248 0.816 0.199
19 Tinaquant 243 0.4 0.9 0730 0.900 0830 0.833 7.300 0300 0.667 4.867 0.200 0.830 0.167
20 Turbiquant 87 0.4 0.9 0491 0812 0766 0726 4.909 0566  0.667 3.273 0.377 0.766 0.274
21 VIDAS 329 0.4 0.9 0.785 0918 0840 0863 7.85I 0239  0.667 5.234 0.159 0.840 0.137

DOR = Diagnostic Odds Ratio

Prev. = Prevalence

Spec. = Specificity

Sens. = Sensitivity

AUC = Area Under Curve (assuming homogeneous OR)
PPV = Positive Predictive Value

NPV = Negative Predictive Value

LRAT = Likelihood Ratio For Abnormal Test
LRNT = Likelihood Ratio For Normal Test

PTO = Pre Test Odds

PTOAT = Post Test Odds Of Abnormal Test
PTONT = Post Test Odds Of Normal Test
PTPAT = Post Test Probability Of Abnormal Test
PTPNT = Post Test Probability Of Normal Test

‘probability of disease given an abnormal test result', the
dashed red curve and the dot-and-dash blue curve
respectively.

The way one may read the graph is that, given a particular
population with a known prevalence of disease like 40%,
we perform the diagnostic test on a person picked
randomly from the population. If the test turns normal,
the probability the person has disease decreases from the
average 40% to about 4% (draw a vertical line from point
0.4 on x-axis to the dashed red curve, then draw a horizon-
tal line from the curve to the y-axis). If the test turns
abnormal, the probability the person is diseased increases
from 40% to about 57%. The dotted green diagonal line
represents a test no better than flipping a coin, an unin-
formative test. The farther the two curves from the diago-
nal line, the more informative the test is. In other words,
the test performs better.

One can summarize the two curves of a test in a single
curve, by computing the vertical distance between the

two. The solid black curve in the figure is such "difference"
curve. It seems this particular test is performing the best in
populations with disease prevalence of around 75%.

One can use the difference curve to compare several tests,
and study effect of prevalence on the way the tests com-
pare to each other. In Figure 3 two tests VIDAS and D-
Dimer from the DVT example are compared. From the
model estimates we know that both tests perform better
than average. And that VIDAS performs better than D-
Dimer.

The black solid curve is comparing the two tests. For pop-
ulations with low disease prevalence (around 17%), the
D-Dimer is performing better than VIDAS. However,
when the prevalence is higher (around 90%), VIDAS is
preferred. Simultaneous confidence bands around the
comparison curve would make formal inference possible.
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Post-test probability difference for diagnostic test VIDAS

Random effects

A nonlinear mixed effects POR model fitted to cell counts
of the DVT dataset does not converge satisfactorily. We
fitted the mixed model to a subset of the data where only
two tests and seven papers are included, Table 3. For codes
refer to the additional file 1.

Five of the seven papers have studied both the tests. Result
of SAS Proc NLMixed still is sensitive to initial values of
parameters. The three-way interaction term of disease,
test, and paper in the mixed model (where POR is not
assumed) is insignificant, Table 4. A POR assumption for
the two tests may be acceptable.

The estimate of overall LOR from both the POR-mixed
model and POR-marginal model are significantly differ-
ent from zero. However, the mixed model estimate of
LOR is much smaller than the marginal one. For non-lin-
ear models, the marginal model describes the population
parameter, while the mixed model describes an individ-
ual's [[15], p.135]. The estimate of deviation of test
(NycoCard) from the overall LOR is closer in the two
models. Plus the marginal estimate is closer to 0 than the
mixed estimate. One expects coefficient estimates of
mixed model being closer to zero, compared to the fixed
model, while the mixed model CI's being wider.

http://www.biomedcentral.com/1471-2288/4/27
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Figure 3
Comparing post-test probability difference for VIDAS — D-
Dimer

Table 3: Data structure for two diagnostic tests

Test
Paper Instant L.A. NycoCard
3 Elias, A. 1996 (171) X X
8 Legnani, C. 1997 (81) X X
Il Leroyer, C. 1997 (448) X
12 Scarano, L. 1997 (126) X X
13 van der Graaf, F. 2000 (99) X X
21 Wijns, W. 1998 (74) X
22 Kharia, HS. 1998 (79) X
TOTAL 6 5

Meta-analysis of a single test: the baseline OR_, function
Sometimes one may be interested in constructing the
ROC curve for the diagnostic test. A homogeneous ROC
curve assumes the performance of the test (as measured by
LOR) is the same across the whole range of specificity.
However, this assumption may be relaxed in a HetROC.
We fitted a simplified version of model (5) for test
SimpliRED,

logit(Result,) = f3, + p;*Disease,, + f,*S(FPR,,) + p3*Dis-
ease,*S(FPR,,)
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Table 4: Comparing parameter estimates from three models

http://www.biomedcentral.com/1471-2288/4/27

POR-relaxed Mixed *

POR Mixed POR Marginal

overall LOR 1.389 (0.993, 1.786)
Test (NycoCard) -0.903 (-1.811, 0.006)
Test*Paper 0.016 (-1.556, 1.588)

0.868 (0.568, 1.169) 2.593 (2.522, 2.664)
-0.93 (-1.104, -0.755) -0.561 (-0.829, -0.293)

* logit(Result) = 3, + pB,*Disease + 3,*PaperID + f;*Disease*PaperlD + [*TestID + [s*Disease*TestlD + [ *Disease*TestID*PaperlD

10

0.8
1

06

True Positive Rate
04

i = Homogeneous ROC
; — Heterogeneous ROC with Spline DF = 2

02

00

0.0 0.2 0.4 0.8 0.8 1.0
False Positive Rate

Figure 4
Heterogeneous ROC curve for diagnostic test SimpliRED

where index t is fixed, and then used estimates of the coef-
ficients to plot the corresponding HetROC, Figure 4.

The eleven papers that studied test SimpliRED are shown
by circles where the area is proportional to the sample size
of the study. The black dashed curve is ROC curve assum-
ing homogeneous-OR. The red solid curve relaxes the
assumption, hence a heterogeneous ROC curve. The
amount of smoothing of the curve can be controlled by
the "degree-of-freedom" DF parameter. Here we have
used a DF of 2. Codes to make such plots are presented in
the additional file 1.

Model checking
Checking the POR assumption, model (2) may be used to
reject significance of the three-way interaction term. How-
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Figure 5

Observed log-odds-ratios of each diagnostic test

ever, the dataset gathered for the DVT meta-analysis is
such that no single paper covers all the tests. Moreover,
out of 21, there are 7 tests that have been studied in only
one paper. For Figure 5 we chose tests that have been stud-
ied in at least 5 of the 23 papers. There are 5 such tests.
Note that even for such "popular" tests, out of 10 pairwise
comparisons, 3 are based on only one paper (so no way to
test POR). Four comparisons are based on 4 papers, one
based on 3 papers, and the remaining two comparisons
are based on 2 papers.

We sorted the papers, the x-axis, based on average LOR
within that paper. We fitted Lowess smooth lines to the
observed LORs of each test separately. Figure 5 shows the
smooth curves are relatively parallel. Note the range of
LORs of a single test. The LORs vary considerably from
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one paper to the other. Indeed the homogeneity-of-ORs
assumption is violated in four of the five tests.

Also, to verify how good the model fits the data, one may
use an observed-versus-fitted plot. Plots or lists of
standardized residuals may be helpful finding papers or
tests that are not fitted well. This may provide a starting
point for further investigation.

Discussion

A comparison of the relative accuracy of several diagnostic
tests should ideally be based on applying all the tests to
each of the patients or randomly assigning tests to patients
in each primary study. Obtaining diagnostic accuracy
information for different tests from different primary
studies is a weak design [3]. Comparison of the accuracy
of two or more tests within each primary study is more
valid than comparison of the accuracy of two or more tests
between primary studies [22]. Although a head-to-head
comparison of diagnostic tests provides more valid
results, there are real-world practical questions that meta-
analysis provides an answer that is more timely and effi-
cient than a single big study [23]. Meta-analysis can
potentially provide better understanding by examining
the variability in estimates, hence the validity versus gen-
eralizability (applicability). Also, there may be tests that
have never been studied simultaneously in a single study,
hence meta-analysis can "reconstruct" such a study of
diagnostic tests.

Relaxing the assumption of OR homogeneity

In meta-analysis of two (or more) diagnostic tests, where
attention is mainly on the difference between perform-
ances of two tests, having a homogeneous estimate of per-
formance of each single test is of secondary importance,
and it may be treated as nuisance. The POR model
assumes differences between LORs of two tests are the
same across all papers, but does not assume the OR of a
test is the same in every paper. Hence no need for homo-
geneity of OR of a test across papers that reported it, but
shifting the assumption one level higher to POR.

Common versus average effect size

The POR model uses "deviation from means" parameter-
ization. Then one does not need to drop the interactions
coefficient g, in the model logit(Result) = 3, + 3, * Disease +
Po*PaperID + p;*Disease* PaperID, to interpret f;, the
overall LOR. This means the POR model explicitly accepts
that performance of the diagnostic test varies across the
papers, but at the same time estimates its mean value.
McClish explains if a test for OR homogeneity shows het-
erogeneity, there may be no 'common' measure to report,
but still there is an 'average' measure one can report. [13]

http://www.biomedcentral.com/1471-2288/4/27

Advantages of using 2-by-2 tables

We demonstrated how to fit the POR model to the cell
counts, rather than to the OR values. This, we believe, has
several advantages. 1. One does not need assuming
normality of some summary measure. This results in
binomial distributional assumption that is more realistic.
2. Also, different study sample sizes are incorporated into
the POR model without faulty bias-introducing weighting
schemes, as shown by Mosteller & Chalmers [25]. And
extension of the POR model to individual level patient
data is much easier. 3. The effective sample size for a meta-
analysis by a random model is the number of papers
included, which is usually quite small. There is a great
danger for overfitting. And the number of explanatory
variables one could include in the model is very restricted.
Since we use the grouped binary data structure, the
patients are the effective sample size, hence much bigger
degrees of freedom.

The way the random-effects model is usually imple-
mented is by extracting OR from each paper, and assum-
ing LOR being normally distributed. Then the distinction
between the two types of mistakes (FNR and FPR, or
equivalently TPR and FPR) is lost, since one enters the
LOR as datapoints into the model. The bivariate model by
Houwelingen et al [26] tries to fix this, by entering two
datapoints into the model for each test from each paper.
A fourth advantage of fitting the POR model to the cell
counts is that the two types of mistakes are included in the
model. Consider the logistic regression logit(Result) = 5, +
S *Disease + B,* PaperID . Then we have log(true positive/
false negative) = ), + f; + 5,* PaperID. Substituting a value
for the covariate (here PaperID) such as a modal or aver-
age value, and using the model estimates for the betas,
one gets the log-odds. Then one exponentiates it to get the
TP/EN, call it Q. Now it is easy to verify that sensitivity =
Q/(1+Q). Likewise we have log(false positive/true nega-
tive) = f3,+ f5,* PaperID, that we call = log(W). Then specif-
icity = 1/(1+W). Also, one can apply separate weights to
the log(true positive/false negative) and log(false
positive/true negative), to balance the true positive and
false positive rates for decision making in a particular clin-
ical practice.

When collecting papers from biomedical literature for
meta-analysis of a few diagnostic tests, it is hard to come
up with a complete square dataset, where every paper has
included all the tests of interest. Usually the dataset con-
tains missing values, and a case-wise deletion of papers
with missing tests means a lot of data is thrown away. A
method of analysis that can utilize incomplete matched
groups may be helpful. The POR model allows complex
missing patterns in data structure. Convergence of mar-
ginal POR model seems much better than non-linear
mixed model, when fitted to cell counts of incomplete

Page 10 of 13

(page number not for citation purposes)



BMC Medical Research Methodology 2004, 4:27

matched groups. This is an advantage for using GEE to
estimate POR.

The fact that one can use popular free or commercial soft-
ware to fit the proposed models, facilitates incorporation
of the POR modeling in the practice of meta-analysis.

Unwanted heterogeneity versus valuable variability

The POR model utilizes the variation in the observed per-
formance of a test across papers. Explaining when and
how the performance of the test changes, and finding the
influential factors, is an important step in advancing sci-
ence. In other words, rather than calling it 'heterogeneity’,
treated as 'unwanted' and unfortunate, one calls it 'varia-
bility' and utilizes the observed variability to estimate and
explain when and how to use the agent or the test in order
to optimize their effects.

Victor [32] emphasizes that results of a meta-analysis can
only be interpreted if existing heterogeneities can be ade-
quately explained by methodological heterogeneities. The
POR model estimates effect of potential predictors on
between-study variation, hence trying to 'explain' why
such variation exists.

The POR model incorporates risk of events in the control
group via a predictor, such as observed prevalence, hence
a 'control rate regression'. [26]

ROC curve

Although implementing the HetROC means that one
accepts the diagnostic test performs differently in different
FPRs along the ROC curve, in some implementations of
HetROC, such as method of summary ROC, one com-
pares tests by a single point of their respective ROCs. This
is not optimal. (The Q test of the SROC method is a single
point test, where that point on the ROC may not be the
point for a specific cost-benefit case.) In such method
although one produces a complete SROC, but one does
not use it in comparing the diagnostic tests. In the POR
model, one uses LOR as the measure for diagnostic dis-
crimination accuracy, and builds statistical test based on
the LOR-ratio, hence the test corresponds to whole ROCs
(of general form).

The ROC graph was designed in the context of the theory
of signal detectability [27,28]. ROC can be generated in
two ways, by assuming probability distribution functions
(PDFs) for the two populations of 'diseased’ and 'healthy’,
or by algebraic formulas [29]. Nelson claims the (alge-
braic) ROC framework is more general than the signal
detection theory (and its PDF-based ROC) [5]. The loca-
tion-scale regression models implement ROC via PDFs,
while the method of summary-ROC uses algebraic
approach. The POR model uses a hybrid approach. While

http://www.biomedcentral.com/1471-2288/4/27

POR may be implemented by logistic regression, the
smoothing covariate resembles the algebraic method.
Unlike location-scale regression models that use two
equations, POR uses one equation, hence it is easier to fit
by usual statistical packages. One may use a five-parame-
ter logistic to implement the HetROC. However, the
model cannot be linearized, then according to McCullagh
[14] it won't have good statistical properties. The POR
model not only relaxes assumption of Varl/Var2 = 1,
where Varl and Var2 are variances of the two underlying
distributions for the two populations, but even monoto-
nicity of ROC. Hence the model can be used to represent
both asymmetric ROCs and non-regular ROCs (singular
detection).

In building HetROC curve, the POR model accommo-
dates more general heterogeneous ROCs than SROC,
because it uses nonparametric smoother instead of arbi-
trary parametric functions used in SROC method. When
in the POR model the smoother covariate is replaced by
log{TPR*FPR/ [(1-TPR)*(1-FPR)]}, a HetROC similar to
SROC of Moses et al is produced.

When one uses a smooth function of FPR in the POR
model, it is equivalent to using a function of outcome as
predictor. This resembles a 'transition model'. Ogilvie and
Creelman [30] claim that for estimating parameters of a
best fitting curve going through observed points in the
ROC space, least squares is not good since both axes are
dependent variables and subject to error. They claim max-
imum likelihood is a preferred method of estimation.
Crouchley and Davies [31] warn that, although GEE is
fairly robust, it becomes inconsistent if any of the covari-
ates are endogenous, like a previous or related outcome or
baseline outcome. They claim a mixed model is better for
studying microlevel dynamics. We have observed that the
smooth HetROC curve may become decreasing at right
end, due to some outlier points. Using less smoothing in
the splines may be a solution.

When there is only one diagnostic test, and one is mainly
interested in pooling several studies of the same test, the
POR model estimates effect sizes that are more generaliz-
able. By using the smoother (instead of PaperID), one fits
a sub-saturated model that allows inclusion of other
covariates, hence it is possible to estimate effect of study
level factors on performance and explain the heterogene-
ity. Also it does not assume any a priori shape of the ROC,
including monotonicity. Plus, it enables graphing of the
HetROC. It does not need omission of interaction terms
to estimate the overall performance, and it does not need
assumption of OR homogeneity. If several performance
measurements of the same test is done in a single study,
like evaluating the same test with different diagnostic cal-
ibrations, the POR model provides more accurate
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estimates, by incorporating the dependence structure of
the data.

Random effects

When there is heterogeneity between a few studies for the
same diagnostic test, one solution to absorb the extra
between-study variation is to use a random/mixed effects
model. However, Greenland [33] cautions when working
with random effect models: 1. if adding random effect
changes the inference substantially, it may indicate large
heterogeneity, needing to be explained; 2. specific distri-
butional forms for random effects have no empiric, epide-
miologic, or biologic justification. So check its
assumptions; 3. the summary statistic from random-effect
model has no population-specific interpretation. It
represents the mean of a distribution that generates
effects. Random models estimate unit specific coefficients
while marginal models estimate population averages. The
choice between unit-specific versus population-average
estimates will depend on the specific research questions
that are of interest. If one were primarily interested in how
a change in a covariate affect a particular individual clus-
ter's mean, one would use the unit-specific model. If one
were interested in how change in covariate can be
expected to affect the overall population mean, one would
use the population-average model. The difference
between "unit-specific" models and "population-average"
models arises only in the case of a nonlinear link function.
In essence random-effect model exchanges questionable
homogeneity assumption for a fictitious random distribu-
tion of effects. Advantage of a random model is that SE
and CI reflect unaccounted-for sources of variation, and
its drawback is that simplicity of interpretation is lost.
When residual heterogeneity is small, fixed and random
should give same conclusions. Inference about the fixed
effects (in a mixed model) would apply to an entire pop-
ulation of cases defined by random effect, while the same
coefficient from a fixed model apply only to particular
units in the data set. Crouchley and Davies [31] explain
one of the drawbacks of their random model is that it rap-
idly becomes over-parameterized, and also may encoun-
ter multiple optima.

Follow-ups

We suggest these follow-ups: 1. the POR model has been
implemented both by marginal and mixed models. It
would be useful to implement a marginalized mixed POR
model; 2. in clinical practice, usually a group of diagnostic
tests is performed on an individual, for a particular dis-
ease. Some of these tests are requested simultaneously and
some in sequence. It would be useful, and practically
important, to extend the POR model such that it incorpo-
rates such sequence of testing and a priori results; 3. the
utility of POR model may be extended to meta-analysis of
therapeutics.
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Additional material

Additional File 1

In this file we present sample codes for a few of the models presented in
the paper. The estimation mostly has been done in SAS, while the graph-
ing (and some model-fitting) has been done in R.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2288-4-27-S1.doc]

Additional File 2

This zipped file contains 8 data files, in the .csv (comma separated value)
and .xls (MS Excel) formats. They are to be used with the SAS and R codes
we presented in the Appendix [additional file 1]. Five files are for the SAS
codes presented in the Appendix. The file names are "data5.xls",
"data5_t12&17.xIs", "ul25.xls", "data5_t18.xls", "data6.xls". Three
files are for the R codes presented in the Appendix. The file names are
"obsVSfit.csv", "dataNewExcerpt2.csv", and "data6_lor2.csv".

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2288-4-27-82.zip|
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