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Abstract
Background: It has generally been argued that parametric statistics should not be applied to data
with non-normal distributions. Empirical research has demonstrated that Mann-Whitney generally
has greater power than the t-test unless data are sampled from the normal. In the case of
randomized trials, we are typically interested in how an endpoint, such as blood pressure or pain,
changes following treatment. Such trials should be analyzed using ANCOVA, rather than t-test. The
objectives of this study were: a) to compare the relative power of Mann-Whitney and ANCOVA;
b) to determine whether ANCOVA provides an unbiased estimate for the difference between
groups; c) to investigate the distribution of change scores between repeat assessments of a non-
normally distributed variable.

Methods: Polynomials were developed to simulate five archetypal non-normal distributions for
baseline and post-treatment scores in a randomized trial. Simulation studies compared the power
of Mann-Whitney and ANCOVA for analyzing each distribution, varying sample size, correlation
and type of treatment effect (ratio or shift).

Results: Change between skewed baseline and post-treatment data tended towards a normal
distribution. ANCOVA was generally superior to Mann-Whitney in most situations, especially
where log-transformed data were entered into the model. The estimate of the treatment effect
from ANCOVA was not importantly biased.

Conclusion: ANCOVA is the preferred method of analyzing randomized trials with baseline and
post-treatment measures. In certain extreme cases, ANCOVA is less powerful than Mann-
Whitney. Notably, in these cases, the estimate of treatment effect provided by ANCOVA is of
questionable interpretability.

Background
Introductory statistics textbooks typically advise against
the use of parametric methods, such as the t-test, for the
analysis of randomized trials unless data approximate to
a normal distribution. Altman, for example, states that

"parametric methods require the observations within
each group to have an approximately Normal distribution
... if the raw data do not satisfy these conditions ... a non-
parametric method should be used" [1]. In some cases,
central limit theorem is invoked such that parametric
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methods are said to be applicable if sample size is suitably
large: "for reasonably large samples (say, 30 or more
observations in each sample) ... the t-test may be com-
puted on almost any set of continuous data" [2].

The rationale for recommending non-parametric over par-
ametric methods, unless certain conditions are met, is
rarely made explicit. But techniques for statistical infer-
ence from randomized trials can only fail in one of two
ways: they can inappropriately reject the null hypothesis
of no difference between groups (false positive or Type I
error) or inappropriately fail to reject the null (false nega-
tive or Type II error). Hence any recommendation to favor
one technique over another must be based on the relative
rates of these two errors.

Empirical statistical research has clearly demonstrated
that the t-test does not inflate Type I (false positive) error.
In a typical study, Heeren et al examined the properties of
the t-test to analyze small two-group trials where data are
ordinal, such as from a five point scale, and thus non-nor-
mal [3]. They found that where there was truly no differ-
ence between groups, the t-test would reject the null
hypothesis close to 5% of the time.

Thus concern over the relative advantages of parametric
and non-parametric methods has focussed on Type II
error [4]. Typically, researchers have created a large
number of data sets, in which observations were created
from a distribution incorporating a difference between
groups. Each data set is then analyzed by both parametric

and non-parametric methods in order to calculate the pro-
portion of times the null hypothesis is rejected (that is, the
power) [5-7].

The results have been fairly consistent. Where data are
sampled from a normal distribution, the t-test has very
slightly higher power than Mann-Whitney, the non-para-
metric alternative. However, when data are sampled from
any one of a variety of non-normal distributions, Mann-
Whitney is superior, often by a large amount. Bridge and
Sawilowsky, for example, concluded that" "the t-test was
more powerful only under a distribution that was rela-
tively symmetric, although the magnitude of the differ-
ences was trivial. In contrast, the [Mann-Whitney] held
huge power advantages for data sets which presented
skewness" [7]. Many workers have linked results showing
the superiority of non-parametric methods for non-nor-
mal distributions to claims that data rarely follow a nor-
mal distribution (as Micceri puts it: "The unicorn, the
normal curve and other improbable creatures" [8]). This
has led to implicit recommendations that non-parametric
techniques should be considered the method of choice
[7].

It is arguable, however, that these prior investigations are
flawed. The t-test and Mann-Whitney are used for contin-
uous variables such as blood pressure, depression, weight
or pain. Most commonly, we are interested in seeing how
these variables change following an intervention. This
reflects clinical practice where the patient presents with a
problem and asks the doctor to help improve it. In a typi-

Distribution of scores for a single die roll and the difference between two die rollsFigure 1
Distribution of scores for a single die roll and the difference between two die rolls. The change score tends towards a more 
normal distribution.
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cal study, a patient with hypertension, obesity or chronic
headache is randomized to drug or placebo to see whether
the drug is effective for reducing blood pressure, weight or
pain. The researchers might report that, say, blood pres-
sure fell by 5 mm in the placebo group but by 14 mm in
the drug group. Indeed, trials in which we are interested
only in post-treatment scores, and where change is not of
interest, are rather rare, being primarily confined to iatro-
genic symptoms such as post-operative pain or chemo-
therapy vomiting.

There are two implications for methodologic research on
the relative value of parametric and non-parametric tech-

niques. First, we should worry about the distribution of
change scores. It seems likely that change from baseline
would approximate more closely to a normal distribution
than the post-treatment score. This is because change
scores are a linear combination and the Central Limit The-
orem therefore applies. As a simple example, imagine that
baseline and post-treatment score were represented by a
single throw of a die. The post-treatment score has a flat
(uniform) distribution, with each possible value having
an equal probability (figure 1a). The change score has a
more normal distribution: there is a peak in the middle at
zero – the chance of a zero change score is the same as the
chance of throwing the same number twice, that is 1 in 6

Distribution of post-treatment and change scores from original and simulated data for headache severity ("moderate positive skew" distribution)Figure 2
Distribution of post-treatment and change scores from original and simulated data for headache severity ("moderate positive 
skew" distribution).
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– with more rare events at the extremes – there is only a 1
in 18 chance of increasing or decreasing score by 5 (Figure
1b).

Moreover, where an endpoint is measured at baseline and
again at follow-up, the t-test is not the recommended par-
ametric method. Analysis of covariance (ANCOVA),
where baseline score is added as a covariate in a linear
regression, has been shown to be more powerful than the
t-test [9-11]. It has several additional advantages: it adjusts
for any chance baseline imbalances; it can be extended to
incorporate randomization strata as co-variates, which
has been shown to increase power [12]; it can also be

extended to incorporate time effects where measures are
repeated.

In this paper, I report results from a study making the
more rational comparison between parametric and non-
parametric methods: ANCOVA and Mann-Whitney. Such
a comparison does not appear to have been reported pre-
viously. I aimed to compare relative power of the two
methods under a variety of distributions. As a secondary
objective, I aimed to determine whether ANCOVA pro-
vided an unbiased estimate for the difference between
groups where data did not follow a normal distribution. A
third, overarching aim was to investigate the distribution

Distribution of post-treatment and change scores from original and simulated data for shoulder pain ("uniform" distribution)Figure 3
Distribution of post-treatment and change scores from original and simulated data for shoulder pain ("uniform" distribution).
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of change scores between repeat assessments of a non-
normally distributed variable.

Methods
The starting point for this study was to obtain archetypal
data sets for analysis. I will follow Bridge [7] in choosing
empirical rather than theoretical distributions. I examined
the distribution of a large number of empirical data sets
and cross-referenced these with those described by Mic-
ceri, who systematically obtained 440 data sets from the
psychological and educational domains [8]. The most
common distribution appeared one with moderate posi-

tive skew. As an exemplar, I used a headache severity index
from a large (n = 401) randomized trial of headache
prophylaxis [13] (Figure 2). This distribution was also
used with scores reversed, to create a distribution with
moderate negative skew. A second pain data set, this time
from a trial on athletes with shoulder pain [14], provides
an example of a more uniform distribution (Figure 3).
Data on Ki67, an antigen that is a marker for cell prolifer-
ation, were obtained from a randomized comparison of
two hormonal treatments for breast cancer [15]. The dis-
tribution for Ki67 is comparable to Micceri's "extreme
asymmetry distribution" (Figure 4). For extreme negative

Distribution of post-treatment and change scores from original and simulated data for Ki67, a biomarker of cell proliferation ("extreme asymmetry" distribution)Figure 4
Distribution of post-treatment and change scores from original and simulated data for Ki67, a biomarker of cell proliferation 
("extreme asymmetry" distribution).
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skew, I used data from the physical functioning scale of
the SF36 (Figure 5), again taken from the headache trial.
As a comparison group, data were also drawn from a nor-
mal distribution with a mean of 5 and a standard devia-
tion of 1.

For each of the distributions, I created a polynomial that
converted normal data to a distribution with an approxi-
mately similar shape. For example, the distribution with
moderate positive skew in Figure 2 was simulated by sam-
pling x from the normal and creating a new variable equal
to 14.8+16.5x+7.5x2-1.15x3, rounded, like the original
scale, to the nearest 0.25. The simulation distributions

were compared to the empirical distributions by visual
inspection and comparison of the standard deviation,
skewness and kurtosis.

To run the simulations, a bivariate normal (mean 0,
standard deviation 1) with a specified correlation was cre-
ated for a trial of a given sample size equally divided in
two groups. The polynomial was applied and a treatment
effect introduced. The treatment effect was one of two
forms: a shift, for example, scores in the treatment group
were reduced by two points; and a ratio, for example,
treatment group scores were reduced by 20%. Results were
then analyzed by Mann-Whitney and ANCOVA, with p-

Distribution of post-treatment and change scores from original and simulated data for physical functioning scale of the SF36 ("extreme negative skew" distribution)Figure 5
Distribution of post-treatment and change scores from original and simulated data for physical functioning scale of the SF36 
("extreme negative skew" distribution).
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values obtained by asymptotic approximation for the
Mann-Whitney test. In some simulations, t-tests and
ANCOVA of log-transformed data were applied. The t-test
and Mann-Whitney used the follow-up score if correlation
was less than 0.5 and the change score otherwise. This
maximizes the power of these tests [11] and might be seen
as favoring unadjusted tests on the grounds that the corre-
lation between baseline and follow-up scores is not
known when the protocol for statistical analysis is written.
Note that the correlation cited in the results is the correla-
tion between baseline and follow-up in the control group.

Some previous workers have used the overall correlation
using both groups when investigating the properties of
ANCOVA [11]. The difference between these two values
was small in the context of our simulations, for example,
a correlation of 0.5 in the control group was equivalent to
a correlation of 0.476 for both groups combined.

Simulations were repeated 1000 times for each combina-
tion of sample size (10, 20, 30, 40, 60, 100, 200, 400,
800) and correlation (0.1, 0.2, 0.3 ... 0.9) using Stata 8.2
(Stata Corp., College Station, Texas). The exception was
extreme asymmetry data for the Ki67 biomarker. The
baseline and post-treatment distributions had quite dif-
ferent shapes and different polynomials were used to
model each. This constrained the range of possible corre-
lations, hence only the empirical correlation observed in
the original study was used, 0.4, with 5000 iterations.

Results were compared between different methods using
the "relative efficiency" (RE) measure. This gives the rela-
tive number of patients required for a study analyzed
using parametric methods so that power was equivalent to
the non-parametric alternative. Hence an RE of 1.25 indi-
cates that a particular trial analyzed by parametric statis-
tics would have to accrue 25% more patients than if it
were to be analyzed non-parametrically; an AE of 0.80
would indicate that the parametric method was superior
by an equivalent amount. The RE is calculated from
observed power of the tests, that is, the proportion of sim-
ulations in which the p-value was less than the α of 5%.

Table 2: Relative power of t-test and Mann-Whitney given as 
relative efficiency. Values less than 1 indicate greater power of t-
test; greater than 1 indicates superiority of Mann-Whitney. 
Results are combined across sample sizes and correlations.

Distribution Post-treatment
scores

Change
scores

Moderate positive skew: shift 0.9348 0.9835
Moderate positive skew: ratio 1.1382 1.0436
Moderate negative skew: shift 1.1833 1.0187
Moderate negative skew: ratio 0.9301 0.9825
Uniform: shift 0.9339 0.9846
Uniform: ratio 0.9488 0.9929
Extreme negative skew: shift 1.3769 1.1140
Extreme negative skew: ratio 1.6675 1.2046
Extreme asymmetry: shift 7.1461 0.5370
Extreme asymmetry: ratio 9.0091 0.6432
Normal: shift 0.9660 0.9726
Normal: ratio 0.9740 0.9760

Table 1: Shape parameters for the distributions produced by the simulations compared to those from the original empirical data. 
Parameters for the moderate negative skew are as for the moderate positive skew, except that the sign for skew is reversed.

Distribution Post-treatment scores

Standard deviation Skewness Kurtosis

Empirical Simulation Empirical Simulation Empirical Simulation

Moderate positive skew 17.01 17.02 1.62 1.63 5.71 6.00
Uniform 13.49 13.49 -0.11 -0.11 2.08 2.01
Extreme asymmetry 8.96 9.78 3.03 2.90 13.77 13.97
Extreme negative skew 22.17 21.88 -1.74 -1.79 5.88 5.85

Change scores

Standard deviation Skewness Kurtosis

Empirical Simulation Empirical Simulation Empirical Simulation

Moderate positive skew 10.40 18.80 0.35 0.01 4.49 5.15
Uniform 12.31 14.56 0.00 0.43 3.05 2.98
Extreme asymmetry 10.62 10.97 0.88 1.08 5.38 6.37
Extreme negative skew 15.51 15.02 0.00 0.75 6.31 8.52
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Where (1-βnp) and (1-βp) are the observed powers from
the simulations for the non-parametric and parametric
test respectively, RE is given by the formula:

Note that, although it is arguable that the null hypotheses
for different tests, say the t-test and Mann-Whitney, are
technically different, the conclusions drawn by investiga-
tors of a randomized trial given a particular p-value will be
the same, regardless of the analytic method used. Hence
direct comparison of the power of different tests is justi-
fied in this setting.

Results
The figures show the distributions of post-treatment and
change scores from the original data and associated simu-
lations. Visual comparison of subfigures (a) with (b), and
(c) with (d), suggests that the polynomials used for the
simulations produce distributions that are reasonably
similar to the related empirical distribution. Comparing
subfigures (a) to (c), and (b) with (d), it is apparent that,
as hypothesized, the change between baseline and follow-
up scores tends towards the normal distribution. These
visual impressions are confirmed in Table 1, which shows
estimates of the shape parameters for the distributions.
The shape parameters for the empirical and simulated
data are similar, and skewness is much closer to zero for
the change score compared to the follow-up score.

As a second check on the simulations, Table 2 compares
the power of t-test and Mann-Whitney. The data for post-
treatment scores were obtained by combining all data

from simulations where correlation was less than 0.5; the
change scores were from data where correlation was 0.5 or
more. These results broadly replicate those of previous
workers and therefore provide support for the methods of
the current study. In particular, the increase in relative effi-
ciency of the t-test under normality (or uniform) is trivial
compared to its loss in relative power under asymmetry.
Two aspects of Table 2 have not been reported previously.
First, RE can vary depending on whether the treatment
effect is a shift or a ratio change. Second, the power of
Mann-Whitney and t-test are more similar (RE closer to 1)
for change scores, presumably because change scores are
more normally distributed. An exception is for extreme
asymmetry, where Mann-Whitney has extremely poor
power for change scores.

Table 3 gives RE for each combination of sample size and
correlation for the moderate positive skew data, where the
treatment effect was a shift. ANCOVA is generally superior
to Mann-Whitney. Smaller sample sizes and correlations
near the extremes reduce the advantage of ANCOVA.
Table 4 shows the RE for each of the different distribu-
tions combining data for correlations between 0.4 and
0.7, which constitutes a typical range for correlations
described in the literature [16]. Mann-Whitney is superior
for some very small sample sizes, but RE is non-trivially
larger than 1 across sample sizes only for the extreme neg-
ative skew distribution with a ratio treatment effect. In
table 5, data are given by correlation, combining sample
sizes. The table has one particularly notable feature: for
some distributions, RE's drop dramatically between corre-
lation of 0.4 and 0.5. This is apparently because the end-
point analyzed changed from the post-treatment score to
the change score at correlations of 0.5 and above. This was
to maximize power following previous work on the power
of unadjusted tests based on the normal [9,11]. As it
seems possible that the relative power of analyzing change
and post-treatment scores may differ between the normal
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Table 3: Relative efficiency of ANCOVA and Mann-Whitney for the moderate positive skew data. Values less than 1 indicate greater 
power of ANCOVA; greater than 1 indicates superiority of Mann-Whitney. In blank cells, the power of one or both tests was 100%.

Sample size Correlation between baseline and post-treatment score

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.8125 0.9773 0.6017 0.9403 0.9722 0.8834 1.2129 1.0851 1.1320
20 1.0160 1.1093 0.8172 0.9348 0.7742 0.9905 0.8124 1.0058 1.0231
30 1.0000 0.9167 0.7785 0.8617 0.8027 0.7756 0.8689 0.8760 1.0096
40 0.8866 0.8596 0.8120 0.7332 0.7365 0.7556 0.9172 0.9067 0.929
60 0.8925 0.8996 0.7752 0.7632 0.7418 0.8277 0.8728 0.8841 0.9892

100 0.8822 0.8594 0.7816 0.7259 0.7071 0.8277 0.8639 0.8702 0.9259
200 0.8484 0.8030 0.7611 0.6920 0.6979 0.7591 0.8793 0.8888 -
400 0.8512 0.8292 0.7392 0.7113 0.6707 0.8029 0.8336 - -
800 0.8781 0.9087 - - - - - - -
Page 8 of 12
(page number not for citation purposes)



BMC Medical Research Methodology 2005, 5:35 http://www.biomedcentral.com/1471-2288/5/35
and asymmetric case, the data were reanalyzed using post-
treatment scores only (see Table 6). In the case of extreme
negative skew, the simulation was repeated with
ANCOVA on log-transformed data. Cleary, analyzing only
post-treatment score, irrespective of correlation, improves
the efficiency of Mann-Whitney considerably, but it is still
inefficient compared to log-transformed ANCOVA. That
said, log-transformed ANCOVA is slightly anti-conserva-
tive: when the simulation was repeated with no treatment
effect, the null hypothesis was rejected for 5.23% (rather
than the nominal 5%) of trials.

Table 7 compares the power of Mann-Whitney to
ANCOVA on raw and log-transformed data for the distri-
bution with extreme asymmetry. For this distribution, the
non-parametric test is generally superior, though there is
no simple relationship to sample size. Again, non-para-
metric analysis of change scores is dramatically less effi-

cient that use of post-treatment scores. To check these
data, the methods were used on the original data (n =
185). The p-values for Mann-Whitney on post-treatment
scores, Mann-Whitney on change scores, ANCOVA on raw
scores and ANCOVA on log-transformed scores were,
respectively: 0.0001, 0.672, 0.216 and 0.0003.

Table 8 compares the estimates of treatment effects from
ANCOVA with the parameter used to specify the treat-
ment effect. For the distributions with extreme skew, the
simulations were repeated without truncation, that is,
ignoring maximum and minimum scores. ANCOVA
appears to be unbiased where the treatment effect is a
shift. Where the treatment effect is a ratio, the estimate
given by ANCOVA is effectively the shift expected by a
patient with the mean baseline score. The size of the bias
under ratio change does not seem to be large and could be

Table 5: Relative efficiency of ANCOVA and Mann-Whitney combining all sample sizes. Values less than 1 indicate greater power of 
ANCOVA; greater than 1 indicates superiority of Mann-Whitney.

Distribution Correlation between baseline and post-treatment score

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Moderate positive skew: shift 0.9342 0.9257 0.8707 0.8532 0.8569 0.9030 0.9447 0.9538 0.9963
Moderate positive skew: ratio 1.1560 1.1300 1.1074 1.0800 0.8170 0.8656 0.9065 0.9231 0.9720
Moderate negative skew: shift 0.9392 0.9058 0.8837 0.8444 0.8799 0.9114 0.9421 0.9593 0.9885
Moderate negative skew: ratio 1.1766 1.1946 1.1467 1.0980 0.8851 0.9319 0.9671 1.0241 1.0390
Uniform: shift 0.9492 0.9170 0.8869 0.8480 0.8586 0.8977 0.9281 0.9723 1.0021
Uniform: ratio 0.9575 0.9384 0.8862 0.8499 0.8604 0.8849 0.9213 0.9467 0.9895
Extreme negative skew: shift 1.4019 1.3718 1.3339 1.3045 0.8987 0.9425 0.9475 0.9405 0.9345
Extreme negative skew: ratio 1.6914 1.6185 1.6101 1.5835 1.0153 1.0367 1.0247 1.0344 1.0062
Normal: shift 0.9700 0.9393 0.9142 0.8445 0.8372 0.8840 0.9065 0.9485 0.9734
Normal: ratio 0.9551 0.9506 0.9126 0.8791 0.8536 0.8859 0.9072 0.9293 0.9654

Table 4: Relative efficiency of ANCOVA and Mann-Whitney combining correlations 0.4 – 0.7. Values less than 1 indicate greater power 
of ANCOVA; greater than 1 indicates superiority of Mann-Whitney. In blank cells, the power of one or both tests was 100%.

Distribution Sample size

10 20 30 40 60 100 200 400 800

Moderate positive skew: shift 1.0221 0.8751 0.8292 0.8004 0.8085 0.7887 0.7549 0.7497 -
Moderate positive skew: ratio 1.5001 0.9832 1.0161 0.8441 0.7973 0.8079 0.7755 0.7689 0.8389
Moderate negative skew: shift 1.0045 0.9793 0.8080 0.8300 0.8088 0.7810 0.7772 0.7494 0.7404
Moderate negative skew: ratio 1.7878 1.3025 1.1354 1.0737 0.9367 0.8763 0.8949 0.8766 0.8612
Uniform: shift 0.8611 0.8162 0.8360 0.7854 0.7787 0.7938 0.7560 0.7404 0.8137
Uniform: ratio 0.8285 0.8462 0.7789 0.7685 0.7759 0.7799 0.7401 0.7747 -
Extreme negative skew: shift 1.2952 1.0213 0.9250 0.9802 1.0610 1.0431 1.0477 1.0479 -
Extreme negative skew: ratio 1.5027 1.1288 1.1332 1.2639 1.3322 1.3808 1.3442 1.2769 -
Normal: shift 0.9601 1.0049 0.8356 0.7336 0.7850 0.7865 0.7797 0.7560 0.7516
Normal: ratio 0.8230 0.9140 0.8959 0.8114 0.7702 0.8166 0.7855 0.7961 0.7781
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adjusted for by incorporating a term for baseline score by
treatment interaction.

Discussion
This study complements previous work on the relative
power of parametric and non-parametric statistics by
examining the common situation where an outcome is
measured before and after a randomly assigned treatment.
The study also appears to be novel in its incorporation of
different types of treatment effect: shift and ratio.

The immediate conclusions challenge the conventional
wisdom of the textbooks. There is no simple and obvious
manner in which non-parametric methods becomes supe-

rior once the distribution of data shifts away from normal.
It is true that under normality parametric methods are
trivially more efficient. But for non-normal data, the rela-
tive power of parametric and non-parametric statistics var-
ies from distribution to distribution and depends on
whether the size of the treatment effect depends on base-
line score (i.e. a ratio effect). Moreover, there is no simple
relationship between relative power and sample size and
no clear rationale for the frequently cited threshold of 30
– 50 patients per group indicating acceptability of para-
metric statistics.

In general, ANCOVA outperformed Mann-Whitney for
most distributions under most circumstances. This is

Table 6: Relative efficiency of ANCOVA and Mann-Whitney combining all sample sizes. Mann-Whitney is always analyzed using the 
post-treatment score. Values less than 1 indicate greater power of ANCOVA; greater than 1 indicates superiority of Mann-Whitney.

Distribution Correlation between baseline and post-treatment score

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Moderate postive skew: shift 0.9397 0.9184 0.8831 0.8433 0.8012 0.7384 0.6701 0.5627 0.4214
Moderate postive skew: ratio 1.1430 1.1415 1.1036 1.0849 1.0541 0.9759 0.9090 0.7662 0.5947
Moderate negative skew: shift 0.9293 0.9281 0.8844 0.8326 0.7973 0.7256 0.6631 0.5556 0.4077
Moderate negative skew: ratio 1.1724 1.1871 1.1453 1.1103 1.0568 0.9867 0.9004 0.7665 0.5783
Uniform: shift 0.9324 0.9136 0.8926 0.8609 0.7741 0.7341 0.6483 0.5632 0.4147
Uniform: ratio 0.9475 0.9385 0.8957 0.8497 0.8191 0.7507 0.6659 0.5723 0.4297
Extreme negative skew: shift 1.4043 1.3724 1.3504 1.2859 1.2534 1.1947 1.0992 0.9472 0.7523
Extreme negative skew: ratio 1.6803 1.6120 1.6265 1.5843 1.4941 1.4206 1.2697 1.0932 0.858
Extreme negative skew: shift. ANCOVA log transformed 0.9709 0.9600 0.9638 0.9043 0.8940 0.8633 0.8109 0.7443 0.6680
Extreme negative skew: ratio. ANCOVA log transformed 0.9502 0.9298 0.9317 0.9077 0.8662 0.8282 0.7834 0.7161 0.6408
Normal: shift 0.9712 0.9258 0.9081 0.8618 0.7841 0.7272 0.6423 0.5349 0.3896
Normal: ratio 0.9550 0.9557 0.9183 0.8692 0.8139 0.7652 0.6527 0.5427 0.4131

Table 7: Relative efficiency of ANCOVA and Mann-Whitney for the extreme asymmetry distribution. Values less than 1 indicate 
greater power of ANCOVA; greater than 1 indicates superiority of Mann-Whitney. In blank cells, the power of one or both tests was 
100%.

Sample size Post-treatment score Change score

ANCOVA v. Mann-Whitney log ANCOVA v. Mann-Whitney ANCOVA v. Mann-Whitney log ANCOVA v. Mann-Whitney

Shift Ratio Shift Ratio Shift Ratio Shift Ratio

10 3.0404 4.1864 0.8862 1.1179 1.2586 1.9736 0.5567 0.539
20 1.2037 2.6045 0.8073 1.2589 0.5480 0.7372 0.3473 0.2983
30 1.1503 1.7717 0.9409 1.2707 0.3084 0.3860 0.2472 0.2701
40 1.1730 1.4786 1.0233 1.4105 0.2643 0.2772 0.2446 0.2421
60 1.1853 1.2015 1.1118 1.4062 0.2115 0.2121 0.1898 0.2586
100 1.2682 1.0648 1.1842 1.4789 0.2224 0.1753 0.2065 0.2545
200 1.2880 0.9257 1.2570 1.5437 0.2078 0.1496 0.1985 0.2544
400 1.3576 0.9089 1.3112 1.5308 0.1961 0.1358 0.1816 0.2418
800 1.4222 - 1.4116 - 0.2038 - 0.1783 0.2444
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heartening because ANCOVA has a major advantage over
any non-parametric method: it provides an estimate for
the size of the difference between group, that is, an effect
size. Clinicians and patients generally want to know not
just whether a treatment helps, but how much it helps, so
they can determine whether it is worth the time, effort,
risks and expense. The CONSORT group, which issues rec-
ommendations on the reporting of randomized trials, has
stated that the results of a trial should stated as "a sum-
mary of results for each group, and the estimated effect
size and its precision (e.g., a 95% confidence interval)".
They go on to state that "although p-values may be pro-
vided ... results should not be re ported solely as p-values"
[17]. ANCOVA directly provides the effect size, which
appears to be unbiased; Mann-Whitney only the p-value.
It is true that an estimate, such as a difference between
medians with associated confidence interval, can be calcu-
lated separately from the Mann-Whitney and reported
alongside the p-value. Nonetheless, the need to use sepa-
rate techniques for estimation and inference must be seen
as a disadvantage. Moreover, the parametric methods are
also often to be preferred because estimates using medi-
ans may have little relevance for decision making. A good
example comes from health economics [18]: we want to
know the difference between the mean costs of two treat-
ments because multiplying this difference by the number
of patients we expect to treat gives us the expected finan-
cial impact of choosing one treatment over the other; the
difference in median costs has no practical application.

Accordingly, in apparent distinction to much of the prior
methodologic literature, ANCOVA should be the method
of choice for analyzing randomized trials with baseline
measures. Not only does it do something essential, pro-
vide an estimate, that Mann-Whitney cannot, but it
appears more powerful in most circumstances. The excep-
tion is instructive: Mann-Whitney consistently outper-
formed ANCOVA only for a data set with extreme skew
obtained from a biomarker study. Yet with such extreme
skew, the estimate provided by ANCOVA – the average
reduction in the biomarker – is of questionable interpret-

ability. Rather than conclude that treatment lead to a 1.5
point drop in Ki67, it seems more appropriate to say that
32% of patients in the treatment group had zero Ki67 at
follow-up compared to 14% of controls. In other words,
there appears to be a link between the power of ANCOVA
and the usefulness of the estimate it provides.

It should be remembered that the relative advantage of
ANCOVA is primarily restricted to analysis of randomized
trials. It has been argued [19] that ANCOVA with baseline
scores should not be used for non-randomized trials on
the grounds where baseline scores are not expected to be
equivalent. For example, in measuring how anxiety of
adolescent boys and girls changes after a stimulus, use of
ANCOVA would address the question: "What would be
the difference in changes between boys and girls given an
equivalent baseline score?". Yet we would not anticipate
that baseline anxiety levels of boys and girls would be the
same.

This paper has not examined lumpy or multimodal distri-
butions [8]. Yet given that the relative power of parametric
methods seems primarily affected by asymmetry – com-
pare the normal and uniform with the skewed distribu-
tions – the results cited here should apply to such
distributions. This paper also did not examine semi-para-
metric methods, such as ANCOVA on ranks. There is some
evidence that these methods are preferable to fully para-
metric alternatives for skewed distributions [20] and there
remains the possibility of using standard ANCOVA for
obtaining estimates of treatment effects and the semi-par-
ametric test for inference.
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