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Abstract

Background: Standard effect measures such as risk difference and attributable risk are frequently used in
epidemiological studies and public health research to describe the effect of exposures. Recently, so-called impact
numbers have been proposed, which express the population impact of exposures in form of specific person or
case numbers. To describe estimation uncertainty, it is necessary to calculate confidence intervals for these new
effect measures. In this paper, we present methods to calculate confidence intervals for the new impact numbers
in the situation of cohort studies.

Methods: Beside the exposure impact number (EIN), which is equivalent to the well-known number needed to
treat (NNT), two other impact numbers are considered: the case impact number (CIN) and the exposed cases
impact number (ECIN), which describe the number of cases (CIN) and the number of exposed cases (ECIN) with
an outcome among whom one case is attributable to the exposure. The CIN and ECIN represent reciprocals of
the population attributable risk (PAR) and the attributable fraction among the exposed (AF,), respectively. Thus,
confidence intervals for these impact numbers can be calculated by inverting and exchanging the confidence limits
of the PAR and AF..

Examples: We considered a British and a Japanese cohort study that investigated the association between
smoking and death from coronary heart disease (CHD) and between smoking and stroke, respectively. We used
the reported death and disease rates and calculated impact numbers with corresponding 95% confidence intervals.
In the British study, the CIN was 6.46, i.e. on average, of any 6 to 7 persons who died of CHD, one case was
attributable to smoking with corresponding 95% confidence interval of [3.84, 20.36]. For the exposed cases, the
results of ECIN = 2.64 with 95% confidence interval [1.76, 5.29] were obtained. In the Japanese study, the CIN
was 6.67, i.e. on average, of the 6 to 7 persons who had a stroke, one case was attributable to smoking with
corresponding 95% confidence interval of [3.80, 27.27]. For the exposed cases, the results of ECIN = 4.89 with
95% confidence interval of [2.86, 16.67] were obtained.

Conclusion: The consideration of impact numbers in epidemiological analyses provides additional information
and helps the interpretation of study results, e.g. in public health research. In practical applications, it is necessary
to describe estimation uncertainty. We have shown that the calculation of confidence intervals for the new impact
numbers is possible by means of known methods for attributable risk measures. Therefore, estimated impact
numbers should always be complemented by appropriate confidence intervals.
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Background

Epidemiological effect measures, such as risk differences,
risk ratios, or attributable risks, are useful tools for pre-
senting the results of epidemiological studies. Since the
attributable risk can account for both the strength of the
association between exposure to a risk factor and the
underlying disease of interest and the prevalence of the
risk factor, it is probably the most commonly used epide-
miological measure for public health administrators to
locate important risk factors [1]. The population attribut-
able risk (PAR) of disease proposed by Levin [2] is a spe-
cific attributable risk, which describes the proportion of
cases that is preventable in a population if this particular
risk factor is completely eliminated [3]. If we consider per-
sons with an exposure to a risk factor and the presence of
a disease, the attributable fraction among the exposed
(AF,) defines the proportion of exposed cases that are
attributable to this risk factor [4].

In addition to these widely used effect measures, Heller et
al. [4] proposed new effect measures, so-called impact
numbers. In this paper, we consider three of these num-
bers, namely, the exposure impact number (EIN), the case
impact number (CIN), and the exposed cases impact
number (ECIN). The EIN is equivalent to the number
needed to treat (NNT) used in clinical trials as well as to
the number needed to be exposed (NNE) previously pro-
posed for use in epidemiological studies [5,6]. The NNT is
the average number of patients needed to be treated to
prevent an adverse outcome in one additional patient
compared with a control or standard treatment group [5].
The EIN or NNE defines the average number of persons
needed to be exposed to the risk factor for one additional
case of disease or death compared with the unexposed
persons [6]. The EIN (NNE, NNT) represents the recipro-
cal of the difference between the risks of exposed and
unexposed persons. Thus, the EIN describes the average
number of exposed persons among whom one case is
attributable to the risk factor [4]. The CIN is the reciprocal
of the PAR. Thus, the CIN defines the average number of
persons with the outcome among whom one case is
attributable to the risk factor [4]. The ECIN is the recipro-
cal of the AF, and can therefore be described as the average
number of exposed cases among whom one case is attrib-
utable to the risk factor [4]. In summary, these three
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impact measures relate the impact of an exposure to all
those exposed (EIN), all persons with the outcome (CIN),
and all those who are both exposed and have the outcome
(ECIN) in a population [4]. In practical applications, it is
always necessary to describe the uncertainty of estimated
parameters. For the EIN, methods already developed for
the NNT can be used [5]. However, no methods to calcu-
late confidence intervals for the new effect measures CIN
and ECIN have been proposed so far. In this paper, we
present simple methods to calculate the corresponding
confidence intervals based on known methods for interval
estimation of standard epidemiological effect measures.

Methods

Probabilities

In the simplest case, data from a cohort study can be pre-
sented by means of a 2 x 2 table that relates the two binary
variables "exposure" and "outcome" (disease or death).
The theoretical table containing the true probabilities is
shown in Table 1 (assuming a fixed follow-up time, no
persons lost to follow-up, and no censoring).

Let 0 < ;< 1 denote the cell probability for the four com-
binations of the two categories for disease and exposure
with the maximum likelihood estimator of m;

. Dy

nii = E], ( 1.1 )

where n;; is the random frequency falling into the cell (i,
J): e = T + T, Taj = Toj + Ty, N is the total number of sub-
jects (N = Ny + Ny), and N, and N, are the numbers of
exposed (N;) and unexposed (N,) persons in the cohort.
Then we define the following probabilities [3]:

P(D)=m=m, =my, +7;; (1.2)

T T
P(D|E)=m =—L=—"11 1.3
(DIE)=m = = (1.3)
P(D|E)=TC0:M—L (1.4)

To.  Tpo + To1

Table I: Proportions of exposed/unexposed persons and outcomes (2 X 2 table)

Status of disease/death from disease

yes(j=1) no (j = 0) z
Exposure exposed (i = I) T, o .
unexposed (i = 0) T, oo .
Z . .o |
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The estimators for the different probabilities are given by

fczﬂ,lzft()l"'fcll, (15)

. T T
frp=-l=—"11__, (1.6)
M. Ty +7

7ty = To1 __ To1
To.  Tpo + To1

(1.7)

where 7 is the estimator for the probability (or risk) of a
disease, Tt is the estimator for the probability (or risk) of
a disease for an exposed person, and T, is the estimator

for the probability (or risk) of a disease for an unexposed
person.

Standard epidemiological effect measures

The risk difference (RD) can be positive or negative and
ranges between -1 and 1. Here, we consider the situation
that the risk for a disease in the exposed group is higher
than in the unexposed group. In this case, we determine
the absolute risk increase (ARI = m; - m,). In situations
where the exposure has a protective effect, the absolute
risk increase can be replaced by the absolute risk reduction
(ARR =1, - m;) to have a positive risk difference in all cal-
culations. Nevertheless, a negative risk reduction is equiv-
alent to a positive risk increase.

For point and interval estimation of the population attrib-
utable risk (PAR) and the attributable fraction among the
exposed (AF,), it is helpful to consider two other com-
monly used relative effect measures, namely the risk ratio
or relative risk (RR) and the relative risk reduction (RRR).
The RR is the ratio of the probabilities of developing the
disease of interest between the exposed and unexposed
persons, i.e.

RR =L (2.1)
To
The RRR is given by
RRR =1-RR=1- -1 ="0"T1 (2.2)
To To
The PAR is given by
pAR = 20 (23)
T

and can equivalently be expressed as function of the RR
[3,7]
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m. (RR-1)

PAR=——— .
T (RR-1)+1

The AF, is given by

T — T
1

AE, = (2.5)

and can equivalently be expressed as function of the RR by

1
AE, =1-—.
RR

(2.6)

The domain of both the PAR and the AF, is given by the
interval |-eo, 1[. If the exposure is protective, PAR and AF,
are negative. However, in this case both effect measures
are not meaningful and alternative effect measures such as
the preventable fraction are applied in practice [7]. Here,
we consider the case of harmful exposures where the
application of the effect measures ARI, PAR and AF, are
meaningful. More details are given in the discussion.

Impact numbers
The impact numbers are defined by [4]

EIN=— = (3.1)
ARI T — Ty
RR-1)+1
CIN:nl'( )+ ,and (3.2)
Tcl,(RR—l)
ECON=—™ - KRR _ 1 (33)
T — Ty RR -1 1

1———
RR

It can be seen that EIN, CIN, and ECIN are the reciprocals
of ARI, PAR, and AF, (named aetiological fraction in [4]),
respectively. These three impact numbers relate the
impact of an exposure to all those exposed (EIN), all per-
sons with the outcome (CIN), and all those who are both
exposed and have the outcome (ECIN) in a population

[4].

Calculating confidence intervals

In the following, we demonstrate that point and interval
estimation of impact numbers can be performed if point
estimators with corresponding confidence limits for RD,
PAR, and AF, are available. We consider the situation of
prospective cohort studies with cross-sectional sampling
and fixed follow-up time to explain the methods. How-
ever, the basic principle is applicable also to other designs
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such as case-control studies so long as methods for point
and interval estimation of RD, PAR, and AF, are available.

Risk difference

We use the formulas given by Lui [3] for calculation of the
100(1-0)% confidence intervals for the ARI based on the
standard Wald method [8,9]. Let A = ;- T, be the ARI with

~

the unbiased point estimator A =m; —7y. Thus, the

100(1-0)% confidence interval for ARI is given by
{max{&—zlz \m(&),—l},min{ﬁ+ Zl—% \7A\R(&),1}:| (4.1)
with the variance estimator

ﬁl(l‘ﬁ1)+ﬁo(1‘f“o)
Ny No

VAR(A )= (4.2)
For large sample sizes and risks not close to 0 or 1, the
usual Wald method can be used to calculate confidence
intervals for risk differences. However, for small sample
sizes, other methods such as the Wilson score method [9-
11] should be applied [5].

Population attributable risk

To calculate the 100(1-0)% confidence interval for the
PAR we use the formulas given by Lui [3] which are based
upon the delta method [12].

Let © be defined by
@=_ro (4.3)
To. T

then PAR can be described by

T—Ty

PAR = =1-0. (4.4)

T

The maximum likelihood estimator of © is

A R
0=—2-

4.5
fco.ft.l ( )

Using the delta method, the asymptotic variance estima-

tor of © is
\7A\R(@)=@2\Z\T{(log(@)) (4.6)

with
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1-my; T, + Mg — 27,
Nno,n,l

\7A\R(log(@))): N

where N is the number of subjects.

Thus, an asymptotic 100(1-00)% confidence interval for

the PAR directly based on O is given through the follow-
ing formula:

{1—@)—zl(zx \ﬁ(@)),min{l—@Jrzla @(é),l”. (4.8)
Attributable fraction among the exposed

We use the relationship between the AF, and the RRR to
calculate confidence intervals for the AF,. Thus, we con-
vert the formulas for the confidence interval calculation
for the RRR given by Lui [3] into the formulas for the AF,
by interchanging the risks for exposed and unexposed per-
sons. Using (2.2) and (2.6), we can estimate AF, by

AFe =1-®@ (4.9)

with

oL -To (4.10)
RR m

The asymptotic variance estimator of @ is given by

— ~2| 1= 1-—
VAR(®) = To 2~M |

Nomtp N7y
Therefore, we can calculate the 100(1-a)% confidence
limits for the AF, by means of

-z, /@R(a),mm{@ vz g @z(a),lH.
2 2

Impact numbers

As EIN, CIN, and ECIN are the reciprocals of the effect
measures ARI, PAR, and AF,, we are able to calculate con-
fidence intervals by simply inverting and exchanging the
upper (UL) and lower (LL) confidence limits of the corre-
sponding epidemiological effect measure. The 100(1-a.)%
confidence limits for the EIN, CIN, and ECIN are therefore
given by

(4.11)

(4.12)

1 1
{UL(ARI)'LL(ARI)]’ (4.13)
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[ 1

_UL(PAR)'LL(PAR)]'and (4.14)
[ 1

_UL(AFe)’LL(AFe)]' (415)

All the formulas described above are programmed and
computed with SAS 9.1 to use them in practical applica-
tions. The SAS programs can be received from the first
author by request.

Examples

Example I: Smoking and coronary heart disease

We consider the data from a British cohort study that
investigated the association between smoking and death
from CHD [13]. The study included 34440 male doctors
who completed a questionnaire about their smoking hab-
its in 1951, and who were subsequently followed up for
20 years (from 11/1951 to 10/1971). This study was also
analysed by Heller et al. [4] to illustrate the use and inter-
pretation of impact numbers. They used the published
annual death rates for smokers and non-smokers from
this study, assuming a prevalence of smoking in the study
population of 30%, and calculated the impact numbers.
Our calculations are based on risks for smokers and non-
smokers. We also use the published annual CHD death
rates for smokers (m; = 0.669%) and non-smokers (7, =
0.413%), the sample size from this study (N = 34440),
and assume the prevalence of smoking to be 30% to create
a hypothetical 2 x 2 table. Table 2 shows the number of
respondents, according to whether or not they died from
CHD, and whether or not they were smokers.

The results in Table 3 are obtained by applying the meth-
ods described above. The CIN is 6.46, i.e. on average, of
the 6 to 7 persons who died of CHD, one case was attrib-
utable to smoking. The corresponding 95% confidence
interval of [3.84, 20.36] indicates a moderate estimation
uncertainty for CIN. The ECIN is 2.64, i.e. on average, of
the 2 to 3 smoking persons who died of CHD, one case

Table 2: 2 x 2 table for example |

Death from CHD

yes no >
Exposure smoker 69 10263 10332
non-smoker 100 24008 24108
2z 169 34271 34440

The absolute numbers in this table are calculated using the sample
size of the study (34440), the annual CHD death rates for smokers
(m, = 0.669%) and non-smokers (= 0.413%), and a hypothetical
prevalence of smoking of 30% in the study population.

http://www.biomedcentral.com/1471-2288/6/32

Table 3: Estimators and 95% confidence intervals for effect
measures in example |

Effect measure Estimator 95% Confidence interval

RR 1.6l [1.19,2.19]

ARI 0.0025 [0.0008, 0.0043]

EIN 395.21 [232.67, 1311.27]
PAR 0.1547 [0.0491, 0.2603]

CIN 6.46 [3.84, 20.36]

AF, 0.3789 [0.1889, 0.5689]

ECIN 2.64 [1.76, 5.29]

was attributable to smoking. The corresponding 95% con-
fidence interval of [1.76, 5.29] indicates a small estima-
tion uncertainty for ECIN.

Example 2: Smoking and stroke

In a second example we consider the data from the Japan
Public Health Centre (JPHC) study on cancer and cardio-
vascular diseases [14]. This study assessed sex-specific
relationships between smoking and risk of stroke in mid-
dle-aged Japanese men and women. Participants were fol-
lowed up for 11 years (1990 to 2001). The male cohort
included 19782 men; we exclude the ex-smokers in order
to compare current and never-smokers, and analyse a sub-
group of 15337 men. Table 4 presents the respective 2 x 2
table and shows the distribution of absolute numbers of
participants analysed.

In this example, the risk for a current smoker and a never-
smoker of having a stroke within an 11-year period is &, =
420/10519 = 0.0399 and ©ty, = 153/4818 = 0.0318, respec-
tively. We calculate the 95% confidence intervals for the
various effect measures (shown in Table 5). The CIN is
6.67, i.e. on average, of the 6 to 7 persons who had a
stroke, one case was attributable to smoking. The corre-
sponding 95% confidence interval of [3.80, 27.27] indi-
cates a moderate estimation uncertainty for CIN. The
ECIN is 4.89, i.e. on average, of the 5 smoking persons
who had a stroke, one case was attributable to smoking.
The corresponding 95% confidence interval of [2.86,
16.67] indicates a moderate estimation uncertainty also
for ECIN.

Table 4: 2 x 2 table for example 2

Status of stroke

yes no z
Exposure current smoker 420 10099 10519
never-smoker 153 4665 4818
z 573 14764 15337
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Table 5: Estimators and 95% confidence intervals for effect
measures in example 2

Effect measure Estimator 95% Confidence interval

RR 1.26 [1.05, 1.51]

ARI 0.0082 [0.0020, 0.0144]

EIN 122.37 [69.55, 508.69]

PAR 0.1500 [0.0367, 0.2634]

CIN 6.67 [3.80, 27.27]

AF, 0.2047 [0.0600, 0.3493]

ECIN 4.89 [2.86, 16.67]

Discussion

Some non-statisticians may have difficulties in interpret-
ing the RD, RR, PAR, or AF,, but may prefer measures,
such as the EIN, CIN, or ECIN. Thus, impact numbers may
help to communicate study results. Furthermore, the cal-
culation of confidence intervals for impact numbers can
add to the interpretation of study results by providing a
measure of estimation uncertainty. This is important
because estimated impact numbers may be used by policy
makers in decision-making procedures in health care.

We considered the situation of prospective cohort studies
and we used standard methods which are adequate for
large sample sizes. For example, we chose an interval esti-
mator using Wald's test statistic proposed by Walter to
show the principle of calculation confidence intervals for
PAR [3,15]. There exist more methods to calculate confi-
dence intervals for the PAR, for instance Walter [15,16]
proposed formulas for estimating the variance of the PAR
for different study designs. These methods are used in a
web page presented by Buchan for point and interval esti-
mation of PAR and RR [17]. Lui [18] compared 5 methods
to calculate confidence intervals for PAR and presented an
overview of the adequacy of these methods in different sit-
uations, for instance varying sample sizes, varying expo-
sure effects, or varying exposure probabilities. The use of
one of these alternative methods for interval estimation of
PAR should be considered in dependence on the actual
study design.

We considered the situation of prospective cohort studies
without confounders. The basic principle of inverting and
exchanging the confidence limits of the standard effect
measures is also applicable to studies investigating con-
founders or other designs such as case-control studies, so
long as adequate methods for adjusted point and interval
estimation of RD, PAR, and AF, are available.

We assumed a fixed follow-up time, no persons lost to fol-
low-up, and no censoring. In the case of varying follow-up
times, more complicated methods based upon survival
time techniques have to be developed.

http://www.biomedcentral.com/1471-2288/6/32

The following limitation of impact numbers should be
considered. It may be difficult for users to understand pos-
itive and negative values of effect measures. In the case of
the risk difference it is possible to switch between ARI and
ARR. However, negative results for PAR and AF, are not
useful in practice. Thus, in the case of protective expo-
sures, alternative effect measures such as the preventable
fraction are applied in practice [7]. This procedure leads to
easily interpretable point estimators in practice but does
not solve the problem of difficulties with confidence
intervals. In the case of statistically non-significant results,
the lower confidence limits for ARI, PAR, and AF, would
be negative. As the point of the zero effect of these three
parameters is zero, the "point" of the zero effect for the
corresponding impact numbers is infinity. Thus, the con-
fidence intervals for statistically non-significant impact
numbers consist of two regions, which is hard to under-
stand for users. This issue created a lot of discussion with
respect to the presentation of confidence intervals for
NNTs. The most satisfactory solution seems to be the pro-
posal of Altman who introduced the additional terminol-
ogy "number needed to treat for one person to benefit"
(NNTB) and "number needed to treat for one person to be
harmed" (NNTH) [19]. By using this terminology, confi-
dence intervals for statistically non-significant NNTs can
be presented as, e.g. "NNTB = 10 (NNTB 4 to e to NNTH
20)", which clearly indicates that the estimation uncer-
tainty is so large that both benefit and harm is compatible
with the considered data. This approach was also used for
NNEs in epidemiological studies [6]. As EIN is equivalent
to NNE, in principle, the same approach is applicable to
EINs. The only difficulty is to find a terminology describ-
ing benefit and harm for EINs in an intuitive way.

Unfortunately, the approach of extending the name of the
effect measure to distinguish between benefit and harm is
not applicable to PAR and AF,. As the domain for both
measures in the case of protective exposures is the interval
]-e=, 0 [and in the case of harmful exposures the interval
10, 1], the scales describing benefit and harm are different.
We consider example 2 for illustration of the problem. If
the total sample size of the study would be N = 1534
rather than N = 15337, the effect of smoking would be not
significant at the 5% level in the resulting 2 x 2 table. With
the same risks for stroke as in Table 4, 42 cases in 1052
smokers and 15 cases in 482 never-smokers are expected.
In this table, for example, the result for PAR would be 0.16
with 95% confidence interval of [-0.20, 0.52]. By using
formula (4.14) the result CIN = 6.1 with 95% confidence
interval of [1.9, -5.0] would be obtained. It is important to
know that not the values between -5 and 1.9 form the con-
fidence interval for CIN, but the values between 1.9 and e
and the values between -e- and -5. The confidence limits
have the following meaning. It is compatible with the
observed data that among 2 persons with stroke 1 case is
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attributable to smoking (harmful exposure) as well as that
for each group of 5 persons with stroke 1 additional case
will occur if smoking is eliminated from the population
(protective exposure). Therefore, the results are interpret-
able, but the easiness of the impact number is lost. Math-
ematically, the impact numbers provide no other
information than the corresponding classical epidemio-
logical effect measures. The impact numbers are just the
reciprocals of the epidemiological effect measures and
describe the exposure effect in terms of whole numbers
rather than percentages. In the case of statistically non-sig-
nificant study results, the interpretation of the impact
numbers is difficult and therefore the goal of presenting
the study results in an intuitive way is not reached. Thus,
we recommend to use the impact numbers for the presen-
tation of study results in public health research only in the
case of studies showing statistically significant exposure
effects.

In the situation of statistically non-significant study
results, just the absolute and relative frequencies should
be presented complemented by point and interval esti-
mates of a relation effect measure, which can be inter-
preted easily in all situations, e.g. the risk ratio. The
impact numbers are only useful in the situation of signif-
icant exposure effects where it is helpful to describe the
effect in different ways.

Conclusion

The calculation of confidence intervals is an essential and
fundamental tool to describe the uncertainty of point esti-
mators. This is also valid for impact numbers which help
us to communicate the impact of an exposure in the pop-
ulation considered. We showed that it is easy to calculate
intervals for the exposure impact number (EIN), the case
impact number (CIN), and the exposed cases impact
number (ECIN) by making use of existing interval estima-
tion methods for the risk difference (RD), the population
attributable risk (PAR), and the attributable fraction
among the exposed (AF,). In epidemiological studies
demonstrating statistically significant exposure effects, the
consideration of impact numbers provides additional
information to aid the interpretation of the results of epi-
demiological studies. In practice, estimated impact num-
bers should always be complemented by corresponding
confidence intervals.

Abbreviations
AF, - attributable fraction among the exposed

ARI - absolute risk increase
ARR - absolute risk reduction

CIN - case impact number
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CHD - coronary heart disease

ECIN - exposed cases impact number

EIN - exposure impact number

NNE - number needed to be exposed

NNT - number needed to treat

NNTB - number needed to treat for one person to benefit

NNTH - number needed to treat for one person to be
harmed

PAR - population attributable risk (Levin)
RD - risk difference

RR - relative risk

RRR - relative risk reduction
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