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Abstract
Background: Birth weight and length have seasonal fluctuations. Previous analyses of birth weight
by latitude effects identified seemingly contradictory results, showing both 6 and 12 monthly
periodicities in weight. The aims of this paper are twofold: (a) to explore seasonal patterns in a
large, Danish Medical Birth Register, and (b) to explore models based on seasonal exposures and
a non-linear exposure-risk relationship.

Methods: Birth weight and birth lengths on over 1.5 million Danish singleton, live births were
examined for seasonality. We modelled seasonal patterns based on linear, U- and J-shaped
exposure-risk relationships. We then added an extra layer of complexity by modelling weighted
population-based exposure patterns.

Results: The Danish data showed clear seasonal fluctuations for both birth weight and birth length.
A bimodal model best fits the data, however the amplitude of the 6 and 12 month peaks changed
over time. In the modelling exercises, U- and J-shaped exposure-risk relationships generate time
series with both 6 and 12 month periodicities. Changing the weightings of the population exposure
risks result in unexpected properties. A J-shaped exposure-risk relationship with a diminishing
population exposure over time fitted the observed seasonal pattern in the Danish birth weight data.

Conclusion: In keeping with many other studies, Danish birth anthropometric data show complex
and shifting seasonal patterns. We speculate that annual periodicities with non-linear exposure-risk
models may underlie these findings. Understanding the nature of seasonal fluctuations can help
generate candidate exposures.

Background
Birth weight has long been acknowledged as an important
measure of neonatal health [1]. In addition to providing

insights into prenatal development, this variable is known
to be associated with a wide range of important cognitive,
behavioural and health outcomes in infancy, childhood

Published: 15 October 2007

BMC Medical Research Methodology 2007, 7:45 doi:10.1186/1471-2288-7-45

Received: 20 June 2007
Accepted: 15 October 2007

This article is available from: http://www.biomedcentral.com/1471-2288/7/45

© 2007 McGrath et al.; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17937794
http://www.biomedcentral.com/1471-2288/7/45
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Medical Research Methodology 2007, 7:45 http://www.biomedcentral.com/1471-2288/7/45
and adulthood. While there is widespread agreement that
birth weight shows seasonal fluctuations [2,3], there is a
lack of between-location agreement about features such
as: (a) the timing (or phase) of maximum weight, and (b)
the presence of a single peak (unimodal, 12 month perio-
dicity) or two peaks (bimodal, 6 and 12 month periodic-
ities). With respect to the phase of peak birth weight,
some populations had regular, sine wave-like 12 month
periodicities, with peak birth weight in spring [4], while
other studies found no apparent seasonal fluctuation [5],
or a summer peak for birth weight [6,7]. With respect to
periodicity, several studies have reported bimodalilty,
with 6 and 12 month signals [4,7,8].

Apart from seasonal fluctuations in birth weight, birth
length also has an annual periodicity [4,9,10]. Using a
population sample drawn from the Danish Medical Birth
Register, Wohlfahrt and colleagues reported annual fluc-
tuations in birth length [11], with peak birth length in
April (Spring), and a second smaller peak in October.
Finally, the frequency of premature birth, a variable that
can influence both birth weight and birth length, has been
shown to have both six and twelve month seasonality in
different sites [12].

Our ability to analyse seasonality in time series data has
improved substantially in recent decades, with more
robust and flexible statistical models now available to
capture the complexities of the data [13]. Recently, we
applied these methods to examine the interaction
between seasonal fluctuations in birth weight and latitude
in four regions in Australia [14]. In keeping with a previ-
ous study from Japan [8], we identified: (a) a signal with
a 6 month periodicity in addition to the expected 12
month signal, and (b) the amplitude of the two signals
varied over latitude (in particular, the amplitude of the
smaller 6 month signal increased further away from the
equator).

The interpretation of these data has been a challenge to
the research community. The presence of both 6 month
and 12 month signals have lead to the understandable
conclusion that at least two different 'source generators'
must be driving these signals. To further complicate mat-
ters there are two scenarios, either: (a) two source genera-
tors of different amplitudes, each with 12 month
periodicities, but phase shifted by 6 months (summing to
produce both 6 and 12 month periodicities), or (b) one
source generator with a signal of 12 months and a second
source generator with a nested harmonic with a 6 month
period. It is difficult to identify biologically plausible can-
didate exposures that would explain such patterns.

To date, seasonality models have been based on the
unspoken assumption that the Exposure-Risk Relation-

ship (ERR) is linear. In other words, as the seasonally-fluc-
tuating exposure changes over the year, the biological
variable of interest responds in a linear fashion. However,
J-shaped or U-shaped ERRs are relatively common in peri-
natal epidemiology and related research [15-22]. It seems
that important developmental systems are able to adjust
to a wide range of inputs (i.e. the pathways are 'buffered'),
and adverse outcomes only emerge above and/or below
certain critical thresholds. If, for example, birth weight
was compromised by both high and low ambient temper-
atures during the last trimester, seasonal analyses from
sites that had a wide range of temperature would be
expected to have a six month periodicity (drop in birth
weight in both summer and winter). We predict that expo-
sures with a 12 month periodicity, but an underlying non-
linear (J-shaped or U-shaped) ERR, will result in time
series which generate both 6 and 12 month periodicities.

A second unspoken assumption of seasonal analyses to
date is that the entire population experiences the full
range of exposure. There is reason to believe that some
portions of the population may only experience parts of
the exposure range. For example, some portion of the
population may be 'partitioned' to one segment of the J-
or U-shaped ERR. Using our previous hypothetical rela-
tionship between ambient temperature during the third
trimester and birth weight, if sites that were exposed to
only one temperature extreme (i.e. temperature only
ranged between optimal and high, or optimal and low),
then seasonal analyses from such sites would show a 12
monthly periodicity. By partitioning different fractions of
the populations within different subregions of the J- or U-
shaped ERR (e.g. the linear upper segment versus the non-
linear lower segment), we predict that the resultant
summed time series of the dependent variable will be
altered.

We are not aware that these two assumptions have been
previously explored in seasonality research. Because the
models involve a number of stages and are perhaps not
intuitive, modelling exercises can assist in demonstrating
their properties. We aim to provide alternative models
that could help explain some of the complexities of sea-
sonal fluctuations in birth weight and birth length data, as
well as explain some of the differences in published
results.

Methods
In the first part of the results we will present the data from
the Danish Medical Birth register [23], and in the second
part we will present various models based on linear versus
nonlinear exposure-risk relationships.
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Danish perinatal data
Data were derived from the Danish National Centre for
Register-based Research. We examined birth weight and
birth length in all live-born, singletons with gestations of
at least 37 weeks born between 1973 and 2002 (includes
births in 2002). In order to reduce the possible influence
of migrant-status on birth anthropometry, we included
only births where both the mother and father had been
born in Denmark.

We applied similar techniques to those used in the study
of Australian perinatal registers [14]. Records of individ-
ual birth weights were summarised into a time series of
monthly means. The trend and seasonality in these means
were then extracted using the 'combined' method
described in Barnett and Dobson [13]. This method splits
the time series into three parts: long-term trend, season(s)
and residual noise. The trend is fitted using a cubic spline,
and hence is possibly non-linear. Season (at time t) is
modelled using a sinusoidal form:

Season [time = t] = amplitude × cosine (period × t + 
phase),

where the phase controls the location of the seasonal
peak, and the amplitude controls its size. For the analyses
presented here the period was fixed to follow a 6 or 12
month cycle. It is possible to specify multiple seasonal
components with different periods. An important feature
of this method is that it is a dynamic model, and hence the
estimated seasonal pattern is allowed to change over time.
Methods based on averaging the entire dataset by month
[7,24] assume that the amplitude and phase of the sea-
sonal pattern remains constant over time (known as a sta-
tionary model). This dynamism of the model is created by
allowing the amplitude and phase to vary over time,
hence the above equation becomes

Season [time = t] = amplitude [time = t] × cosine (period 
× t + phase [time = t]).

This is known as a non-stationary model, because season
is not necessarily fixed in time. The non-stationarity in the
amplitude and phase are modelled using an autoregres-
sive structure, so that the seasonal estimate at time t is
dependent on the estimate at time t-1. Using this structure
any change in seasonality (e.g. a decreasing amplitude
over time) is assumed to occur gradually.

Because the model is dynamic and involves the non-linear
cosine function it cannot be fitted using standard meth-
ods, such as maximum likelihood. Instead the method
uses Markov chain Monte Carlo (MCMC) to estimate the
joint distribution of the parameters. These distributions
are estimated empirically by iteratively sampling each

parameter. Given the empirical joint distribution the
mean and 95% confidence interval are then easily calcu-
lated. We used 5000 MCMC samples with a burn-in of
1000.

The model assumes that the residual noise is normally dis-
tributed, and this assumption was checked using the Sha-
piro-Wilk test. Because the original paper by Wohlfahrt
and colleagues [11] reported a bimodal distribution of
birth length, we used a model with two peaks at 6 and 12
month periods (bimodal model). Full details of the pro-
gram (written in SAS) can be downloaded from the WHO
MONICA website [25].

We combined data for males and female babies. Although
males are generally heavier than females at birth, the
trends over time and seasonal changes in weights and
lengths were similar. Hence combining the data for this
analysis is justified. We plotted the estimated trends (and
95% confidence intervals) in birth weight and length over
time. We also plotted estimates of the overall seasonal
pattern by time. Because the time series is long, we plotted
seasonal patterns once every five years, and also for the
last year (2002).

Modelled time series data
In order to explore the assumptions of standard seasonal
analyses, we first modelled time series data with a sea-
sonal (i.e. 12 month) periodicity, but varied both the
nature of the exposure-risk relationship (e.g. linear, non-
linear), and the distribution of the population within the
exposure range. The exposure-risk relationship is analo-
gous to a dose-response relationship. The outcome may
not always be a risk (e.g. odds of disease), but may be a
continuous measure (e.g. birth weight).

If different populations are exposed to limited doses of
the exposures (e.g. as might be expected at different lati-
tudes for temperature and ultra-violet radiation-related
exposures), then the resulting time series may also reflect
the 'local' properties of the non-linear curve (i.e. the pop-
ulation maps on to a limited section of the J-shaped
curve). We assumed a single symmetric sinusoidal sea-
sonal exposure (a period of 12 months), with a peak in
January. We examined a range of likely exposure-risk rela-
tionships and generated the associated time series of sea-
sonal risk. The exposure-risk and seasonal-risk
relationships were plotted. In a second analysis we varied
the Population Exposure Distribution (PED) into low,
medium and high groups. We assigned a number of dif-
ferent weights to these groups to simulate different popu-
lations.

Finally, by way of demonstration, we attempted to build
a model that mimics key aspects of the Danish perinatal
Page 3 of 10
(page number not for citation purposes)



BMC Medical Research Methodology 2007, 7:45 http://www.biomedcentral.com/1471-2288/7/45
data. We assumed a fixed J-shaped ERR across time, and
examined the impact of shifting the PED on the seasonal
distribution.

Results
Seasonality in Danish neonatal anthropometry
The Danish Medical Birth Register included 1 573 203
neonates (765 438 females, 807 765 males). Over the
entire epoch, the mean (and standard deviation) for birth
weight in males and females was 3533.2 (578.9) and
3412.0 (545.8) grams respectively. For birth length, the
mean (and standard deviation) for males and females was
52.2 (2.6) and 52.4 (2.5) centimetres respectively.

Figures 1a and 1b show the plot of mean trend in birth
weight (1a) and birth length (1b) and 95% confidence
intervals based on the original data. There were no sub-
stantial sex differences in secular trends in the neonatal
anthropometric measures (data not shown). Note that the
long-term trend in birth length changes around 1983–4.
After this date, weight and length rise over time in a simi-
lar fashion.

Figures 2a and 2b show six five-year (and one one-year)
epochs for weight and length derived from the 'combined
method' previously described. When plotted in these
'bins', the changes over time in seasonal features of these
measures are apparent. Note that for both anthropometric
measures, the amplitude of the larger spring peak has
diminished over time, while the small summer peak has
increased slightly. Before 1997, the highest monthly mean
birth weight was in April (spring). After 1997 the highest
monthly mean birth weight was September. Before 1989
the lowest mean birth weight was always in December
(early winter). After 1989, the lowest was either December

or January. A similar pattern was found for birth length.
The highest mean birth length was in April for every year
except for 1993 and 1994 when it was September. The
lowest birth length was in December or January. The find-
ings were unchanged when males and females were exam-
ined separately (data not shown). There was a gradually
decreasing peak mean birth weight in April over time. For
both sexes the mean increase in birth weight in April was
13.5 grams in 1973 and 5.4 grams in 2002.

Illustrations of the impact of non-linear ERR on 
seasonality
Concerning the first modelling exercise, Figure 3 demon-
strates the relationship between different linear and non-
linear ERRs and the derived seasonal time series. A linear
ERR with either a positive or negative slope led to a sea-
sonal risk pattern with a 12 month period. There was a dif-
ference in phase of 6 months between the negative and
positive linear ERR.

Changing the ERR from linear to U-shaped generated a
time series with a 6 month periodicity (i.e. double the fre-
quency of the parent 12 month periodicity). Altering the
ERR to J-shaped partitioned the resulting time series in a
dominant 12 month signal and a secondary 12 month sig-
nal phase-shifted by 6 months.

The seasonal patterns in Figure 3 assumed an equal and
full range of exposure in the population. In a second mod-
elling exercise (Figure 4) we examined the effect of parti-
tioning the population into different risk categories with
a U-shaped ERR. This resulted in an unexpected pattern of
two dominant 12 month signals, phase-shifted by 6
months, and a smaller signal with a 6 month periodicity.
The sum of these time series produced an overall time

Plot of mean trend in birth weight and length and 95% confidence intervalsFigure 1
Plot of mean trend in birth weight and length and 95% confidence intervals. (Raw data).
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series with an unexpectedly high risk status all year, but
with a 6 month period and relatively small amplitude.

Modelling Danish data
Finally, Figure 5 demonstrates the effect of an altered PED
on seasonal fluctuations based on a J-shaped ERR. Panel
5a recreates the seasonal pattern for 1973 by allocating
60% of the population to the low range and 40% to the
mid-high range. Panel 5b recreates the seasonal pattern
for 1988 by allocating 78% of the population to the low
range and 22% to the mid-high range. Panel 5c recreates
the seasonal pattern for 1998 by allocating 82% of the
population to the low range and 18% to the mid-high
range.

Discussion
In keeping with a previous study also based on the Danish
population sample [11], we found that both the birth
weight and birth length of Danish neonates displayed
prominent seasonal fluctuations. The amplitude of these
seasonal fluctuations changed over time. The features of
these fluctuations are consistent with models based on J-
shaped ERR and left-shifting the PED over time (i.e. the
population distribution of the exposure is shifted down to
low values).

In general, we note that J-shaped or U-shaped models of
exposure-risk result in substantial changes in the nature of
seasonally-generated time series. The findings have impli-
cations for those wishing to synthesise or understand
diverse and apparently conflicting seasonal data. Time
series with both 6 and 12 month periodicities may be the

result of an exposure with a J-shaped exposure-risk rela-
tionship.

Furthermore, if researchers are not aware of the underly-
ing U- or J-shaped models, different populations facing
different doses of the exposure could result in conflicting
results. For example, as shown in Figure 4, a population
with a low exposure would be restrained within one side
of the U-shaped curve. This results in a negative correla-
tion between the variables of interest. Studies done in
populations restrained to the opposite side of the U-
shaped curve would find a significant positive correlation,
and a time series with peak 6 months shifted from the pre-
vious example. Populations in the base of the U-shape
would find a relatively small amplitude, with an even, 6
month periodicity. Altering the distribution of the popu-
lation around this curve results in summed signals with
unexpected properties.

The results of this study highlight that interpreting overall
seasonal patterns should be done with care. The simplest
interpretation requires the assumption that exposure is
constant across the population. Many researchers examin-
ing seasonal patterns may not realise that they are making
this assumption, or the implications if it is violated. This
could lead to them wrongly concluding that two seasonal
exposures are at work (e.g. a 6 and 12 month exposure).

Our analyses of Danish birth anthropometric data clearly
show that the amplitudes did not remain constant over
time (Figure 2). This means that the time series of birth
weights and lengths are non-stationary. Hence the

Seasonal changes in weight and length and 95% confidence intervalsFigure 2
Seasonal changes in weight and length and 95% confidence intervals. Results plotted every five years and 2002. (Data derived 
from 'combined analysis').

a) Weight (g) b) Length (mm) 
Page 5 of 10
(page number not for citation purposes)



BMC Medical Research Methodology 2007, 7:45 http://www.biomedcentral.com/1471-2288/7/45

Page 6 of 10
(page number not for citation purposes)

The relationship between the exposure-risk relationship and the seasonal pattern of risk (over 2 years)Figure 3
The relationship between the exposure-risk relationship and the seasonal pattern of risk (over 2 years).
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assumptions of most standard time series methods–such
as those based on the periodogram, or those that average
results over months–are violated, and would have given
incorrect estimates of the seasonal pattern. The method

used here was able to model the non-stationarity, and
hence gave a more accurate fit to the data.

Depending on the cancellation of seasonal components
(as shown in Figure 4), a study may not have enough sta-

Seasonal change in Danish birth weight data (combined results for boys and girls) for three years (1973, 1988 and 1998), and fitted seasonal change based on a J-shaped exposure-risk relationship and a shifting population exposure over timeFigure 5
Seasonal change in Danish birth weight data (combined results for boys and girls) for three years (1973, 1988 and 1998), and 
fitted seasonal change based on a J-shaped exposure-risk relationship and a shifting population exposure over time. The first 
row of figures shows the hypothesised J-shaped exposure-risk relationship and the percent of the population in the low versus 
mid-high exposure groups. The second row of figures shows the estimated seasonal risk based on the observed data (solid 
line) and the estimated risk based on the J-shaped exposure-risk relationship (dotted line).

(a) 1973 (b) 1988 (c) 1998

The relationship between a U-shaped exposure-risk relationship and the seasonal pattern in risk (over 2 years), after partition-ing the population into three exposure groupsFigure 4
The relationship between a U-shaped exposure-risk relationship and the seasonal pattern in risk (over 2 years), after partition-
ing the population into three exposure groups.
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tistical power to detect an overall seasonal change in risk.
Power depends on the amplitude of the seasonal change
and the amount of data (number of subjects and length of
time). This could lead researchers to wrongly conclude
that a health outcome is not seasonal, when in fact its sea-
sonality is strong but depends on group.

We note with interest that our new model provides a par-
simonious explanation of the interaction between lati-
tude and seasonal fluctuations in birth weight noted in
both Japan [8] and Australia [14]. Both of these studies
reported bimodality (6 and 12 month periodicity). Both
studies reported a prominent peak in spring and a second-
ary peak in autumn. Both studies reported that the ampli-
tude of the spring peak was larger in sites closer to the
equator. Researchers interested in synthesising these
results may wish to examine candidate exposures that
have both (a) non-linear ERRs, and (b) latitude gradients
(i.e. the PED of the exposure will vary across latitudes).

With respect to seasonally-fluctuating exposures that may
underlie these findings, we speculate that low prenatal
vitamin D is a candidate that warrants closer inspection
[4]. Firstly, there is robust evidence that vitamin D levels
fluctuate over the seasons and also across latitudes [26].
Secondly, a nonlinear exposure-risk relationship between
maternal vitamin D levels and neonatal anthropometry
has been found [22]. The high prevalence of hypovitami-
nosis D in pregnant woman and the potential adverse
health outcomes for the fetus has been the focus of recent
editorial comments [27,28]. For example, low maternal
vitamin D levels have been associated with altered birth
anthropometry, with some studies finding an association
between vitamin D deficiency and larger birth weight and
length [29], while others have shown an association
between lower maternal vitamin D levels and shorter ges-
tation and smaller knee-heel length (a component of
birth length) [22]. Future studies would ideally examine
the relationship between maternal vitamin D status and
neonatal anthropometry across time (e.g. in different sea-
sons) and in a range of sites (e.g. high and low latitude).

Apart from neonatal anthropometry, J-shaped ERRs have
also been observed between temperature and cardiovascu-
lar disease [30,31], with large increases in risk associated
with cold-temperatures and smaller increases with hot
temperatures. A J-shaped ERR may provide a parsimoni-
ous explanation for the observed 6 and 12 month bi-
modal peaks in seasonal cardiovascular disease risk
[13,32].

With respect to the Danish data, our findings are in keep-
ing with other studies [11,33]. Mean birth weight rose in
a steady linear fashion over the period of observation
(1973–2002). Curiously, mean birth length appeared to

decline from 1973 to approximately 1985, and then rose
steadily in a parallel fashion to birth weight. Assuming
that the population mix remained stable over this period
(i.e. that the broad genetic 'mix' of the Danish population
was essentially stable, which is a fair assumption since
both the child and its parents were born in Denmark), the
change in secular trend in birth length suggests that factors
that impact on fetal growth changed over this time. The
mechanisms underlying this change remain unclear.
There is evidence showing that the estimation of gesta-
tional age improved over recent decades [34], however
this can not readily explain the nature of the current find-
ings.

The time series in the modelling exercises shown above
were generated without any noise and thus show ideal
shapes. In real-life situations measurement and random
error will lead to observed time series that are noisier than
those shown here. Methods to extract the seasonal com-
ponent after removing noise and trend should be used
[13]. We have limited our modelling by only investigating
models based on biologically plausible assumptions –
many exposures have J- and U-shaped ERRs. Furthermore,
the PED changes we used in the models are relatively
modest and within the range of many latitude-associated
exposures (e.g. vitamin D, temperature). Other combina-
tions of exposure-risk relationships (e.g. S- or V-shaped)
and population exposure distributions may also give
good fits to the observed seasonal pattern. The range of
possible ERRs and PEDs is very large, and it would require
a lot of computer power to search through all possible
models. Such a search would also be data-driven rather
than hypothesis-driven. Nevertheless, it is still important
to note that the models of seasonal change shown here are
just one possible fit to the data. Modelling can not replace
a thorough understanding of the biological properties of
candidate exposures. As with all epidemiology, analytic
methods such as the choice of linear versus non-linear
ERRs should be built on the best-available biology and
experimental data. Conversely, signals that emerge from
observational epidemiology can also help guide more
focussed biological research (e.g. dose-response studies in
animal models in order to refine the properties of the
ERR).

Conclusion
Epidemiology continues to explore the role of seasonality
in a surprisingly wide range of health outcomes [35].
More sophisticated statistical methods and more realistic
models of the exposure-risk relationship should assist the
research community to 'decipher' the seasonally-fluctuat-
ing signal from complex time series data.

We propose that non-linear Exposure-Risk Relationships
provide parsimonious models of time data series with
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both 6 and 12 month periodicities. Changing the Popula-
tion Exposure Distribution in these models leads to sur-
prising and informative changes in the overall seasonal
risk. We believe that non-linear models can provide con-
ceptually elegant solutions to a range of seasonally-fluctu-
ating health outcomes.
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ERR = Exposure-Risk Relationship

PED = Population Exposure Distribution
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