
BioMed Central

BMC Medical Research 
Methodology

ss
Open AcceResearch article
Demonstrating the robustness of population surveillance data: 
implications of error rates on demographic and mortality estimates
Edward Fottrell*1, Peter Byass1 and Yemane Berhane2

Address: 1Umeå International School of Public Health, Epidemiology and Public Health Sciences, Umeå University, Sweden and 2Addis 
Continental Institute of Public Health, P.O. Box: 26751/1000, Addis Ababa, Ethiopia

Email: Edward Fottrell* - edwardfottrell@yahoo.co.uk; Peter Byass - peter.byass@epiph.umu.se; Yemane Berhane - yemaneberhane@ethionet.et

* Corresponding author    

Abstract
Background: As in any measurement process, a certain amount of error may be expected in routine population
surveillance operations such as those in demographic surveillance sites (DSSs). Vital events are likely to be missed
and errors made no matter what method of data capture is used or what quality control procedures are in place.
The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles
has important implications for the role of DSSs as platforms for public health research and clinical trials. Such
knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with
realistic margins of error and validity.

Methods: This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP) DSS, Ethiopia,
covering approximately 336,000 person-years of data. Simple programmes were written to introduce random
errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age,
death, literacy and roof material (an indicator of poverty) were selected for the introduction of errors based on
their obvious importance in demographic and health surveillance and their established significant associations with
mortality.

Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age
and sex compositions and Poisson regression models of mortality rate ratios were compared between each of
the intentionally erroneous datasets and the original 'gold standard' 10-year data.

Results: The composition of the Butajira population was well represented despite introducing random errors,
and differences between population pyramids based on the derived datasets were subtle. Regression analyses of
well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in
the data.

Conclusion: The low sensitivity of parameter estimates and regression analyses to significant amounts of
randomly introduced errors indicates a high level of robustness of the dataset. This apparent inertia of population
parameter estimates to simulated errors is largely due to the size of the dataset. Tolerable margins of random
error in DSS data may exceed 20%. While this is not an argument in favour of poor quality data, reducing the time
and valuable resources spent on detecting and correcting random errors in routine DSS operations may be
justifiable as the returns from such procedures diminish with increasing overall accuracy. The money and effort
currently spent on endlessly correcting DSS datasets would perhaps be better spent on increasing the surveillance
population size and geographic spread of DSSs and analysing and disseminating research findings.
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Background
The majority of people living in the world's poorest coun-
tries, where the burden of disease is highest, remain out-
side of any kind of systematic health surveillance [1-6].
Without appropriate population-based data it is not pos-
sible to reliably document the health status of popula-
tions or the progression of epidemiological transitions,
and there is virtually no capacity to evaluate interventions.
This can result in inappropriate or misplaced interven-
tions and direct valuable resources away from relevant
and effective health programmes.

Sample-based mortality surveillance addresses some of
these issues and is a useful method for monitoring trends
over time and differentials between sub-groups [7]. Based
on this, a number of Demographic Surveillance Sites
(DSSs) have been established in developing countries
over the past two decades. A DSS is a set of field and com-
puting operations to handle the longitudinal follow-up of
well-defined entities or primary subjects (individuals,
families, and residential units) and all related demo-
graphic and health outcomes within a clearly circum-
scribed geographic area [4,6].

As in any measurement process, a certain amount of error
is to be expected in DSS data. Measurement errors may
occur in a variety of ways: instrumental errors arising from
imprecise instruments or questionnaire limitations;
underlying variability leading to differences between rep-
licate measurements taken at different time points;
respondent errors arising through misunderstanding,
faulty recall or reporting bias; observer error, including
imprecision and mistakes; and data processing errors dur-
ing coding and data entry [8]. These errors can be catego-
rised into two groups: namely, systematic or random
errors, which are defined in the present paper as follows.

Systematic errors relate to the study design, methods and
tools utilised and may be more common in certain demo-
graphic groups or regions. For example, systematically
missing the deaths in a specific age or sex group, such as
infants, due to excessively long periods between surveil-
lance rounds combined with cultural reporting biases
introduces systematic errors. Excessive differential bias
(i.e. bias that does not affect everyone equally) is unac-
ceptable if realistic and useful estimates of infant mortal-
ity rates are to be made. It is essential, therefore, that the
design and routine operations of surveillance activities
consider all possible sources of error, attempt to detect
such errors and implement strategies to prevent or correct
shortcomings. It is best to pre-empt systematic errors, as
correcting them after data have been collected is often
extremely difficult and resource intensive. In practice this
demands thorough field testing and careful design of sur-
vey tools and methodologies.

Random errors occur independently of study design and
methods used, and are unrelated to the value of other var-
iables in the dataset. Divergence of an observation, due to
chance alone, leads to a lack of precision in the measure-
ment of an association. Key sources of random errors in
large databases are mismeasurement and mistakes in data
recording. For example, mistakes in recording data or
entering it into the database, such as transposition of
numbers, are random errors if they are unrelated to the
particular variable of interest and other characteristics of
that particular case. The accumulation of random errors in
longitudinal surveillance is potentially a major problem
that may invalidate the results of otherwise well-designed
studies. The effects of random error are reduced with
increasing sample size [9].

Measurement error often has some systematic and some
random components [9]. The problems that may result
from errors that occur when measuring exposure or out-
come variables generally relate to false population repre-
sentation and univariate regression dilution bias, whereby
estimated regression coefficients of single exposure-effect
estimates may be biased towards the null value of no
exposure effect, so that the magnitude of the association
between the exposure and the outcome will tend to be
underestimated – the association is said to be attenuated
[8-10]. The effect of random error in multivariate analy-
ses, with errors in a number of interrelated variables, can
lead to more complex, serious distortions in the estima-
tion of real exposure-outcome associations [11,12]. All
types of non-differential random measurement error
reduce the chance that true significant associations will be
identified; in other words they reduce statistical power [9].

To draw correct quantitative conclusions that can form the
basis for public health intervention necessitates that the
effects of measurement error are appreciated and
accounted for [11]. Sensitivity of data to error, often
termed 'robustness', is important in assessing the degree
of uncertainty associated with surveillance outputs [10].
Various methods are available to correct measurement
errors, the aim being to simulate true population profiles
and exposure-outcome effects which would be observed if
errors were eliminated [12-16]. In epidemiology and pop-
ulation measurements, however, a truly gold standard
measure can rarely be used for validation studies, and the
use of imperfect or 'alloyed' gold standards risks introduc-
ing more bias than they are correcting [17]. As such, cor-
rection techniques are seldom used in epidemiological
studies [18] and it is difficult to regain lost power using
statistical fixes [9].

For these reasons a significant amount of DSS operations
and resources are dedicated to data quality assurance
mechanisms. Checking completed surveillance tools for
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evident errors and omissions is a crucial aspect of this and
is often performed at every level of field organisation with
checks becoming more detailed as data progress through
the system [6]. Questionnaires with obvious errors or
omissions that cannot be corrected by supervisors are
returned to the field while those that are free of errors pro-
ceed to data entry, which in some settings is performed
twice to enhance data quality. Random duplicate house-
hold visits are often considered to be an additional impor-
tant aspect of data quality assurance. Of the 37 member
sites of the Indepth network (International Network of
field sites with continuous Demographic Evaluation of
Populations and Their Health), 19 describe scheduled
random re-visits of primary sampling units as a method of
data quality control, with the percentage of households
re-visited ranging from 2% (Agincourt DSS, South Africa)
to between 5 and 10% (Nouna DSS, Burkina Faso). Sev-
eral DSS sites that perform re-visits do not specify the per-
centage of the total population revisited [6,19].

There is surprisingly little literature relating to data quality
and error rates in DSSs. In their assessment of a computer-
ised approach to the management of an epidemiological
field trial in Farafenni DSS, Gambia, Rowan et al. (1987)
identified 383 errors in 13 fields of a weekly morbidity
surveillance questionnaire conducted over 18 weeks, giv-
ing an overall error rate of 0.29%. Almost three quarters
(71.8%) of these errors (n = 275) were correctable by staff
in the field office without having to refer back to the field.
A further 28.2% of the errors were correctable on referral
back to the field. Thus a total 96.3% of the errors were cor-
rectable, giving a final detectable error rate of 0.01% [20].

Despite the best efforts of DSS operations, it is unlikely
that measurement error can be completely eliminated. It
is therefore important to have some appreciation of the
implications of measurement error for DSS study results
and tolerable levels of errors and missing data. This paper
attempts to develop understanding of the effects of meas-
urement error on the results and conclusions drawn from
DSS data, with particular emphasis on mortality measure-
ments. In doing so, it is anticipated that the sensitivity of
DSS data to random errors and omissions can be deter-
mined. Such knowledge is of particular importance if the
outputs of population surveillance, or indeed other large
community-based surveys in developing countries, are to
be extrapolated and aggregated with realistic margins of
error and validity. This work also addresses the wide-
spread need for refined and evidence-based procedures in
demographic and health surveillance where endless re-
checking and multiple re-visits to households is an expen-
sive and time-consuming pursuit.

Methods
The Butajira Rural Health Programme (BRHP) in Ethiopia
has maintained a programme of epidemiological surveil-
lance in the Butajira district, some 130 kilometres south of
the capital, Addis Ababa, since 1987. The basic operations
of BRHP are typical of DSS systems and of the member
sites of the Indepth network [19]. Continuous commu-
nity-based surveillance of an open cohort population
sample is conducted through household surveys relating
to births, deaths and migrations, as well as socioeconom-
ics and living conditions. Given its wealth of data, BRHP
acts as a platform for more specific epidemiological and
public health studies. This study uses BRHP data collected
between 1st January 1987 and 31st December 1996. This
10-year dataset covers approximately 336,000 person-
years and has been used extensively to describe the popu-
lation of Butajira and patterns of morbidity and mortality
in the district [4].

Simple programmes were written using Microsoft Visual
FoxPro software to simulate versions of the 10-year Buta-
jira dataset containing random errors and omissions as
outlined in Table 1. Key parameters were selected for the
introduction of errors based on their obvious importance
in demographic and health surveillance and their estab-
lished significant associations with mortality in the Buta-
jira setting. A random selection of 10% or 20% of cases
was randomly assigned data values for sex (male or
female). Age in years is determined for each individual in
the dataset from the recorded date of birth and in a ran-
domly selected 10% of the cases this calculated age value
was increased by 10 or 20% of its 'true' value. Whether an
individual in the surveillance population died during the
10-year period is recorded in the dataset, and versions of
the dataset were generated whereby a randomly selected
10 or 20% of cases recorded as having died had informa-
tion about their death removed, thereby simulating
missed events. Literacy and the material used to construct
one's roof are important indicators of socioeconomic sta-
tus, which has well-established associations with mortal-
ity in the Butajira setting. Therefore simulated versions of
the gold standard dataset were created in which informa-
tion on whether an individual was literate was removed in
a randomly selected 10% of cases and the values 'corru-
gated' or 'thatched' were randomly assigned to a random
selection of 10% of the cases.

There are no standard procedures for this type of investi-
gation and therefore the parameter modification
described above is arbitrary. Nevertheless, the extent of
parameter modification in this study was influenced by
probable random error margins in routine DSS proce-
dures, which are unlikely to exceed 10% in most
instances, as well as by issues of presenting the results – in
our experiment, parameter modification of less than 10%
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failed to show any substantial differences in population
representation and mortality patterns. In reality, random
errors are unlikely to occur at a fixed rate and the introduc-
tion of set levels of error in this study was done to simplify
the modelling process, with no attempt being made to
represent systematic failures (which may have been possi-
ble by simulating age heaping or more random degrees of
misreporting).

Population age and sex composition and all-cause mortal-
ity rates were calculated for each dataset and results were
compared with the gold standard of the original 10-year
data to determine the extent to which the introduction of
errors affected the data's ability to represent the surveil-
lance population. Rate ratios relative to other groups
within a population are simple summary measures of
populations that identify the most vulnerable groups
within a population and are relevant to local users of sur-
veillance data for the purposes of public health planning
and priority setting. As such, multivariate Poisson regres-
sion models of mortality rate ratios for the 10-year dataset
as well as each of the simulated error datasets were created
to investigate the extent to which errors altered well-estab-
lished associations between the above parameters and
mortality.

Results
Figure 1 shows the population pyramids for Butajira
based on the gold standard data (Figure 1a) as well as the
erroneous datasets. A slight narrowing and increase in the
height of the population pyramid can be observed when a
proportion of age data are increased (Figure 1b). Very lit-
tle change in population composition can be observed
when the sex variable is randomised (Figure 1c) or when
errors are introduced in both age and sex variables (Figure
1d). Even with the combination of errors in age and sex at
the 20% level, the only clearly observable change in pop-
ulation composition is related to the rise in age (Figure
1e).

Figure 2 illustrates age-specific mortality rates based on
the gold standard data and data containing errors in age
and missed deaths. Random increases in age show little
affect on the age-specific mortality profile. Missing death
data have little noticeable affect on age-specific mortality
rates between the ages of 5 and 60 years where substantial
overlap of the lines representing the gold standard esti-
mate and the erroneous estimates can be observed. At
extremes of age, however, missing death information has
a more noticeable effect and a widening of the gap
between mortality rate estimates is noticeable.

Table 2 shows the univariate and multivariate Poisson
regression models of mortality rate ratios for all versions

Table 1: Overview of versions of the BRHP 10-year data showing parameters used, simulated errors and outcomes analysed.

Random Errors Introduced

Age Sex Deaths Literacy data Household Roof 
material

Analysis

'Gold Standard' No errors No errors No errors No errors No errors

1 10% increase in 
10% of cases

Population pyramids 
and mortality rate 

ratios
2 10% randomised in 

10% of cases
3 10% increase in 

10% of cases
10% randomised in 

10% of cases
4 20% increase in 

10% of cases
20% randomised in 

10% of cases

5 10% deaths 
randomly missed

Mortality rate ratios

6 10% randomised in 
10% of cases

10% deaths 
randomly missed

7 10% literacy 
randomly missing

8 10% of roofs 
randomised

9 10% increase in 
10% of cases

10% randomised in 
10% of cases

10% deaths 
randomly missed

10% literacy 
randomly missing

10% of roofs 
randomised
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Population age and sex distributions for BRHP dataset with: a) no errors ('Gold Standard'; b) 10% of age data increased by 10%; c) 10% sex randomized; d) 10% age data increased by 10% and 10% sex data randomised; 20% age data increased by 10% and 20% of sex data randomizedFigure 1
Population age and sex distributions for BRHP dataset with: a) no errors ('Gold Standard'; b) 10% of age data 
increased by 10%; c) 10% sex randomized; d) 10% age data increased by 10% and 10% sex data randomised; 20% 
age data increased by 10% and 20% of sex data randomized.
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of the dataset. All of the parameters show significant rela-
tionships with increased mortality in the gold-standard
data and continue to do so when errors are introduced.
Even when all errors are combined, the greatest change in
the rate ratios in the univariate analysis is +0.14 for the
thatched roof category and -0.14 for being in the oldest
age group, however, neither of these changes affect the sig-
nificant associations between the parameters and mortal-
ity.

Discussion
By assessing the implications of random errors and omis-
sions on population descriptions and mortality estimates
using surveillance data collected over a 10-year period in
BRHP, this study has addressed important issues regard-
ing the effects of measurement error on DSS study results.
In an attempt to determine the effect of random errors, the
original dataset was defined as a 'gold standard' which
could be used for comparing population and mortality
profiles when random errors were introduced into the
data. It is important to emphasise that the original 10-year
data is only described here as a gold standard for the pur-
poses of these experiments and in reality it is inevitable
that 10 years of accumulated demographic and epidemio-
logical data will have acquired unknown random errors as
well as possible systematic errors resulting from methods
used in the routine surveillance operations in Butajira.

It is also important to emphasise that this work entirely
separates random and systematic error and relates only to

the implications of random error in the sense that it is
assumed that any errors in measuring a variable are inde-
pendent of the value of other variables. Whilst, in practical
terms, missing 10% or 20% of deaths, for example, can be
considered a systematic failure, the errors modelled in this
study have been distributed randomly in the dataset – in
other words, having missing or incorrect data is unrelated
to any other factor in the dataset. In reality, some events
are intrinsically more likely to be missed (e.g. very early
deaths or deliberately concealed events) or misreported
than others and this was not factored into this investiga-
tion. Such systematic errors are a superficial indicator of
the quality of population data and are sensitive not only
to the respondent's ability to recall their ages or dates of
births accurately, but also to training procedures for enu-
merators, where staff may be explicitly discouraged from
recording rounded ages. Modelling such errors may have
diminished the generalisability and relevance of the find-
ings of this study to surveillance operations overall, as
they would need to relate to specific quality control pro-
cedures.

Population profiles from each version of the data repre-
sent Butajira's population composition well and differ-
ences between population pyramids based on datasets
with age and sex errors are subtle. The results also show
that 10% errors and omissions in six key parameters relat-
ing to mortality do not cause regression dilution bias to
any large degree. Even when all errors are combined no
major difference in rate ratios can be observed, although

Age-specific mortality rates from 10-year BRHP data with and without simulated errorsFigure 2
Age-specific mortality rates from 10-year BRHP data with and without simulated errors.
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this may simply reflect little confounding between varia-
bles. Missed deaths have a more noticeable influence on
age-specific mortality rates at the extremes of young and
old age due to the fact that the majority of deaths in Buta-
jira occur either within the first five years of life or during
'old age', and thus a 10% error involves a greater number
in absolute terms. This implies that, in Butajira, accuracy
of mortality measurement is perhaps more important in
these age bands than in the 5 to 60 years age groups. This
is likely to be due to the underlying disease characteristics
of Butajira district, where HIV infection remains relatively
low and mortality patterns reflect the resilience of com-
municable diseases as well as emerging non-communica-
ble diseases (NCDs), consistent with features of delayed
epidemiologic transition [21,22]. It is likely that in DSSs
in settings with differing disease patterns, such as Agin-
court DSS, South Africa, where the burden of HIV is large
and where both males and females in the 20–34 age group
are most at risk [23], or Purworejo DSS, Indonesia, char-
acterised by a high burden of NCDs [24], differing con-
cerns in relation to the detection and correction of errors
for mortality estimates in certain age groups may apply.
These priorities are likely to be influenced by localised

issues of age-heaping, reporting bias and patterns of dis-
ease.

An important concept in all DSS operations is the point at
which data are of sufficient quality to satisfy their
intended purpose. Sentinel surveillance, population-
based sample surveys and DSS activities in developing
countries are a surrogate for more widespread, routine
vital event surveillance. In settings where health budgets
are small, complete vital event surveillance remains unaf-
fordable and unrealistic. Nevertheless, it is these countries
that need 'good' data so that scarce resources can be used
appropriately. If the ultimate purpose of DSS operations,
therefore, is to characterise the demographic and health
profiles of localised populations in order to inform pol-
icy, when are 'good' data good enough for this purpose?
The simulated errors described here had no affect on the
results that would alter conclusions drawn from them,
thus the policy implications in terms of identifying vul-
nerable groups and designing and targeting appropriate
interventions should be negligible – perhaps this is a key
characteristic of good data. Given that simulated error
rates 1000 to 2000 times greater than that described by

Table 2: Multivariate Poisson regression models of mortality rate ratios, including different simulated errors, from 10-year BRHP 
data.

Parameter Category 'Gold 
Standard'

10% of deaths 
randomly 
missed

10% of ages 
increased by 

10%

10% of sex 
randomised

10% of literacy 
randomly 
missing

10% of roofs 
randomised

10% of all 
factors 

together

Age group: 20–49 Ref Ref Ref Ref
Under 20 2.17 

(2.00–2.34)
2.14 

(1.97–2.32)
2.21 

(2.04–2.38)
2.18 

(2.00–2.36)
50-plus 3.99 

(3.63–4.38)
3.90 

(3.53–4.31)
3.94 

(3.58–4.33)
3.85 

(3.49–4.25)

Sex: Female Ref Ref Ref Ref
Male 1.18 

(1.12–1.25)
1.17 

(1.11–1.25)
1.17 

(1.10–1.23)
1.16 

(1.10–1.23)

Literacy: Literate Ref Ref Ref Ref
Illiterate 1.28 

(1.21–1.36)
1.26 

(1.19–1.34)
1.28 

(1.21–1.36)
1.26 

(1.18–1.33)

Roof: Corrugated Ref Ref Ref Ref
Thatched 1.75 

(1.61–1.90)
1.78 

(1.62–1.94)
1.59 

(1.47–1.72)
1.61 

(1.48–1.76)

Multivariate: Under 20 2.20 
(2.03–2.38)

2.17 
(2.00–2.36)

2.25 
(2.08–2.43)

2.20 
(2.03–2.38)

2.20 
(2.02–2.38)

2.19 
(2.02–2.37)

2.20 
(2.02–2.40)

50-plus 4.05 
(3.68–4.46)

3.97 
(3.59–4.40)

4.01 
(3.65–4.42)

4.06 
(3.69–4.47)

4.00 
(3.61–4.42)

4.03 
(3.66–4.43)

3.86 
(3.47–4.30)

Male 1.15 
(1.09–1.22)

1.14 
(1.08–1.21)

1.15 
(1.09–1.22)

1.14 
(1.08–1.21)

1.16 
(3.61–4.42)

1.15 
(1.09–1.22)

1.15 
(1.08–1.23)

Illiterate 1.13 
(1.07–1.20)

1.11 
(1.04–1.18)

1.13 
(1.07–1.20)

1.13 
(1.07–1.20)

1.13 
(1.06–1.20)

1.16 
(1.09–1.23)

1.12 
(1.05–1.20)

Thatched 1.70 
(1.56–1.86)

1.74 
(1.59–1.91)

1.71 
(1.57–1.86)

1.70 
(1.56–1.86)

1.71 
(1.56–1.88)

1.54 
(1.43–1.67)

1.60 
(1.45–1.75)
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Rowan et al. (1987) had little effect on Butajira popula-
tion and mortality profiles and mortality outcome-expo-
sure associations, the benefits of attempting to eliminate
relatively small error rates is questionable, not least with
regard to how such efforts would affect conclusions and
policy decisions based on the data [20].

Nevertheless, random and systematic errors and differen-
tial bias arising from specific methodologies, as well as
sources of non-measurement bias, remain important con-
cerns for surveillance systems. Continued efforts to detect
such errors, investigation of their implications and strate-
gies to prevent or correct shortcomings must continue to
be given high priority in DSS operations. Furthermore,
supervisory visits and data quality checking are important
for providing constructive feedback to fieldworkers with
the aim of improving interview techniques, whilst dupli-
cate visits enable estimations of error rates.

The fact that large samples are insensitive to random error
is not particularly surprising [9-11]. Nevertheless it is
worth re-stating this fact within the context of DSS field
operations where the money and time currently spent on
endlessly correcting DSS datasets with diminishing return
as the 100% accurate dataset is approached, would per-
haps be better spent on increasing the size of surveillance
populations and the geographic spread of DSSs, or indeed
on analysing the data and disseminating findings.

Conclusion
The random introduction of errors and missing data in
key parameters in a large 'gold standard' dataset had little
noticeable affect on population and mortality profiles,
demonstrating a high level of robustness of DSS data and
tolerable margins of error that may exceed 20%. This
observation should not be taken as justifying poor quality
data, or sloppy quality control procedures. However, the
expense and practicality of detecting and correcting ran-
dom errors must be considered in relation to the benefits
of such efforts and the intended use of the data. Overall,
this simple investigation suggests that stakeholders in DSS
studies, as well as regional, national and global policy
makers, should use DSSs data with confidence.

Abbreviations
DSS – Demographic Surveillance Site; BRHP – Butajira
Rural Health Programme; Indepth – International Net-
work of field sites with continuous Demographic Evalua-
tion of Populations and Their Health; NCD – Non-
Communicable Disease; HIV/AIDS – Human Immunode-
ficiency Virus/Acquired Immunodeficiency Syndrome.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
EF: interpretation, drafting and revising manuscript; PB:
design, data manipulation and revision of manuscript;
YB: original data acquisition and supervision of BRHP
activities, as well as interpretation of findings and manu-
script revision. All authors read and approved the final
manuscript.

Acknowledgements
This work was undertaken within the Centre for Global Health at Umeå 
University, with support from FAS, the Swedish Council for Working Life 
and Social Research (grant no. 2006-1512).

References
1. Beaglehole R, Bonita R: Challenges for public health in the glo-

bal context- prevention and surveillance.  Scandinavian Journal of
Public Health 2001, 29:81-83.

2. Bonita R, Armstrong T: Surveillance of Non-communicable dis-
ease risk factors.   [http://www.who.int/mediacentre/factsheets/
2003/fs273/en/].

3. Byass P: Person, place and time- but who, where, and when?
Scandinavian Journal of Public Health 2001, 29:84-86.

4. Byass P, Berhane Y, Emmelin A, Kebede D, Andersson T, Hoberg U,
Wall S: The role of demographic surveillance systems (DSS)
in assessing the health of communities: an example from
rural Ethiopia.  Public Health 2002, 116:145-150.

5. Indepth: Founding Document.   [http://www.indepth-network.org/
core_documents/constituting_document_11_10_98.htm].

6. Indepth: Population and Health in Developing Countries, Vol-
ume 1: Population, Health and Survival.  Ottawa, IDRC; 2002. 

7. Setel PW, Sankoh O, Rao C, Velkoff VA, Mathers C, Gonghuan Y,
Hemed Y, Jha P, Lopez AD: Sample registration of vital events
with verbal autopsy: a renewed commitment to measuring
and monitoring vital statistics.  Bulletin of the World Health Organ-
isation 2006, 83(8):611-617.

8. Kirkwood BR, Sterne JAC: Essential Medical Statistics, 2nd Edi-
tion.  Oxford, Blackwell Science; 2003. 

9. Armstrong BG: Effect of measurement error on epidemiolog-
ical studies and occupational exposures.  Occupational and Envi-
ronmental Medicine 1998, 55(10):651-656.

10. Wong MY, Day NE, Bashir SA, Duffy SW: Measurement error in
epidemiology: the design of validation studies I: univariate
situation.  Statistics in Medicine 1999, 18:2815-2829.

11. Wong MY, Day NE, Wareham NJ: Measurement error in epide-
miology: the design of validation studies II: bivariate situa-
tion.  Statistics in Medicine 1999, 18:2831-2845.

12. White I, Frost C, Tokunaga S: Correcting for measurement
error in binary and continuous variables using replicates.  Sta-
tistics in Medicine 2001, 20:3441-3457.

13. White IR: Dealing with measurement error: multiple imputa-
tion or regression calibration?  International Journal of Epidemiology
2006, 35:1081-1082.

14. Cole S, Chu , Greenland S: Multiple-imputation for measure-
ment error correction.  International Journal of Epidemiology 2006,
35:1074-1081.

15. Espeland MA, Hui SL: A general approach to analysing epidemi-
ologic data that contain misclasification errors.  Biometrics
1987, 43:1001-1012.

16. Bashir SA, Duffy SW: The correction of risk estimates for meas-
urement error.  Annals of Epidemiology 1997, 7:154-164.

17. Spiegelman D, Schneeweiss S, McDermott A: Measurement error
correction for logistic regression models with an "alloyed
gold standard".  American Journal of Epidemiology 1997,
145:184-196.

18. Jurek A, Maldonado G, Church T, Greenland S: Exposure measure-
ment error is frequently ignored when interpreting epidemi-
ologic study results.  American Journal of Epidemiology 2004,
159:S72.

19. Indepth: International Network of Field Sites With Continu-
ous Demographic Evaluation of Populations and Their
Health in Developing Countries.   [http://www.indepth-net
work.org].
Page 8 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11484869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11484869
http://www.who.int/mediacentre/factsheets/2003/fs273/en/
http://www.who.int/mediacentre/factsheets/2003/fs273/en/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11484870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12082596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12082596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12082596
http://www.indepth-network.org/core_documents/constituting_document_11_10_98.htm
http://www.indepth-network.org/core_documents/constituting_document_11_10_98.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16184280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16184280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16184280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids= 9930084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids= 9930084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11746328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11746328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16847023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16847023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16709616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16709616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3427157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3427157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9099403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9099403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9006315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9006315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9006315
http://www.indepth-network.org
http://www.indepth-network.org


BMC Medical Research Methodology 2008, 8:13 http://www.biomedcentral.com/1471-2288/8/13
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

20. Rowan KM, Byass P, Snow RW: On-line tropical epidemiology -
a case-study from The Gambia.  Methods of Information in Medi-
cine 1987, 26:73-76.

21. Omran A: The Epidemiologic Transition: A theory of the epi-
demiology of population change.  Milbank Quarterly 1971,
49(4):509-538.

22. Ng N, Van Minh H, Tesfaye F, Bonita R, Byass P, Stenland H, Weine-
hall L, Wall S: Combining risk factors and demographic surveil-
lance: potentials of WHO STEPS and INDEPTH
methodologies for assessing epidemiological transition.  Scan-
dinavian Journal of Public Health 2006, 34:199-208.

23. Khan K, Garenne ML, Collinson MA, Tollman SM: Mortality trends
in a new South Africa: hard to make a fresh start.  Scandinavian
Journal of Public Health 2007, 35:26-34.

24. Ng N, Stenland H, Bonita R, Hakimi M, Wall S, Weinehall L: Prevent-
able risk factors for non-communicable diseases in rural
Indonesia: prevalence study using WHO STEPS approach.
Bulletin of the World Health Organisation 2006, 84:305-313.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1471-2288/8/13/prepub
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3587054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3587054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5155251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5155251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16581713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16581713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16581713
http://www.biomedcentral.com/1471-2288/8/13/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Results
	Discussion
	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Pre-publication history

