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Abstract
Background: Sometimes, protocol amendments that change the inclusion and exclusion criteria
are required in clinical trials. Then, the patient populations before and after the amendment may
differ.

Methods: We propose to perform separate statistical tests for the different phases, i.e. for the
patients recruited before and after the amendment, and to combine the tests using Fisher's
combination test. After a significant combination test a multiple testing procedure can be applied
to identify the phase(s) to which a proof of efficacy refers. We assume that the amendment(s) are
not based on any type of unblinded data. The proposed method is investigated within a simulation
study.

Results: The proposed combination approach is superior to the 'naïve' strategy to ignore the
differences between the phases and pooling the data to perform just one statistical test. This
superiority disappears when there are hardly any differences between the two phases.

Conclusion: When one or more protocol amendments change the inclusion and exclusion
criteria, one should realize that the populations may differ. In this case, separate tests for the
different phases together with a combination test are a powerful method that can be applied in a
variety of settings. The (first) amendment should specify the combination test to be applied in order
to combine the different phases.

Background
Protocol amendments are often necessary in clinical trials.
Sometimes a change in the inclusion and/or exclusion cri-
teria is required. There are various reasons for a change of
the inclusion and exclusion criteria, some of them are
mentioned in the ICH E9 guideline [1] and by Cleophas
et al. [2]. On the one hand, newly emerging medical
knowledge can be one reason especially for long-term tri-
als, on the other hand, regular violations of entry criteria

and too low recruitment rates could also make changes
necessary. In any case, changes of the inclusion/exclusion
criteria have to be described in a protocol amendment.
Moreover, according to Cleophas et al. [2], the "amend-
ment should also cover any statistical consequences ...
and alterations to the planned statistical analysis".

When entry criteria are changed during the trial, the pop-
ulations before and after the amendment may differ.
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Chow and Shao [3] presented an example of a placebo-
controlled clinical trial in patients with asthma. Because
patient enrolment was slow the inclusion criteria were
relaxed. To be precise, according to the original protocol,
patients with a baseline FEV1 (forced expiratory volume in
liter per second) between 1.5 and 2.0 could be included.
The first amendment extended this range up to an upper
bound of 2.5, and the second amendment to an upper
bound of 3.0. Please note that the change in FEV1, i.e. the
difference between the value after treatment and that at
baseline, was the primary endpoint in this study.

Other examples of amendments that change entry criteria
were presented [4,5]. Svolba and Bauer's [4] example is a
two-armed, long-term trial that investigated the time until
relapse of cutaneous melanoma. In this study an amend-
ment to the protocol increased the inclusion limit for cho-
lesterol. Dubertret et al. [5] report the results of a phase III
placebo-controlled trial in patients with moderate-to-
severe plaque psoriasis. In this trial efalizumab, a human-
ized monoclonal antibody, was compared with placebo.
During the study the protocol was amended to modify the
inclusion criteria.

These examples show that amendments that relax or mod-
ify the entry criteria occur in different indications. Moreo-
ver, in the examples the entry criteria were changed once
or at least twice. In practice, the inclusion and exclusion
criteria are rarely changed very often.

As mentioned above, the actual patient population after
an amendment may deviate from the originally targeted
population [3]. For example, a modification of the accept-
able range of baseline values can change the variance of
the difference value after treatment minus baseline [6].
Usually, the difference in the populations before and after
the amendment is ignored in the statistical analysis. As a
consequence, the data are pooled; a procedure that can
introduce a bias and can decrease the power of the study,
maybe beneath the necessary power which was fixed
when planning the study.

Chow and Shao [3] proposed a method that takes the
potential differences in the populations before and after
an amendment into account. The main idea is to divide
the trial data according to the different treatment groups
and phases. A new phase is started after each amendment.
Thus, when there are K amendments K + 1 phases result

(K ≥ 1). For each combination of group (T for treatment
and C for control group) and phase (for phases 0, 1,..., K),
a single value for the endpoint y and value(s) the predictor
x (which may be of dimension greater than 1) are deter-
mined by e.g. computing the sample means. In the case of

K amendments one gets the points 

for the control group and  for the

treatment group. Then, weighted linear regression analy-
sis should be performed on the points for the control and
treatment group, respectively.

As mentioned above, changing inclusion and exclusion
criteria can change the target population. A change in the
target population, however, can cause a change of the effi-
cacy parameter. Therefore, we have K + 1 possibly differ-

ent null hypotheses, one for each phase. Let  be

the population mean of a normally distributed endpoint
in phase i in the treatment (control) group. Then, the i-th

null hypothesis is , i = 0, 1,..., K. The global

null hypothesis is the intersection of the different null

hypotheses: . Note that even if efficacy

is the same in all phases under the intersection null

hypothesis,  for i ≠ j is possible as long as

 holds for every i, i.e. when the mean difference

is constant over the phases, the population means may
differ between the phases under H0. The variances are

assumed to be equal for the two groups within each
phase. However, there may be differences in variability
between the different phases.

In case of one single amendment the procedure proposed
by Chow and Shao [3] reduces to a weighted regression
for two data points for the study and control group respec-
tively. If one then decides to model the effect for the orig-
inal target population (or the amended one) alone the
procedure yields the maximum likelihood estimate for
the mean for the first (second) population. One would
probably not use this estimate to test the intersection
hypothesis. For testing the intersection null, one would
have to use some other contrast as briefly mentioned by
Chow and Shao [3] on page 661.

As an alternative we propose a test procedure based on a
combination test. We suggest analysing the subpopula-
tions before and after the change, or, in general, the K + 1
subpopulations, separately and then combining the p-val-
ues of the test statistics. We use Fisher's combination test,
one of the methods that can be recommended according
to an extensive simulation study [7]. This test uses that,

under the null hypothesis, -2log(p1 � pk) has a  – dis-

tribution if the p-values pi are independent [8]. When the

intersection hypothesis H0 is true and the whole study is
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divided into two or more phases, then each  should be

true and the p-values pi are independent because each

patient contributes to one p-value only. Furthermore, it is
assumed here that the protocol amendment is independ-
ent from the p-values and hence cannot be based on any
type of unblinded data. This limitation is further dis-
cussed below.

In practice, it may or may not be appropriate to test only
the intersection null hypothesis, depending on the goal of
the trial. Rejecting the intersection null hypothesis does
not automatically permit to identify the population(s)
where the treatment is efficient. In order to justify to
which population (= phase) a proof of efficacy refers a
multiple testing procedure can be used [9-11]. A multiple

testing procedure that controls the multiple level α can
easily implemented when Fisher's combination test is
used as proposed above. In case of one single amend-
ment, when the combination test rejects the intersection

hypothesis, those individual null hypotheses  (i = 0, 1)

can be rejected for which the corresponding test gives a p-

value not exceeding α [12] (page 1034).

Methods
We performed a simulation study with normally distrib-
uted endpoints and one protocol change. This protocol
change takes place when half of the patients are recruited
(scenario 1) or when a third of the patients is recruited
(scenario 2). After the protocol change the variance was
inflated, thus the second phase had a larger variability. We
assumed a two group setting with one group being the
treatment group and the other being the control group.

The factor for the variance change in the second phase
(variance inflation factor) was always equal for both
groups. To be precise, we used the following variance
inflation factors: 1 (i.e. no change), 1.5, 2, 2.5, and 3. The
configurations of means for the simulations can be
divided into four groups:

1. Investigation of the type I error rate: 

= (0, 0, 0, 0).

2. Investigation of the power in the case of constant means
within groups and with a constant non-zero between-

groups mean difference s:  = (s, s, 0, 0),

for the shift (i.e. the mean difference) s the values 0.05,
0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.75,
0.80, 0.85, 0.90, 0.95, and 1.00 were used.

3. Investigation of the power in the case of

a. non-constant means, i.e. within the two groups,
means can differ between phases by

 and simultaneously

b. a constant between-groups mean difference

leading to  = (s, s + d, 0, d). For s as well

as for d the values 0.1, 0.5, and 1 were used.

4. Investigation of the power in the case of non-constant
means (i.e. within groups, means can differ between
phases) and a non-constant between-groups mean differ-
ence: The following special cases are presented in this

paper:  = (0.5, 0.2, 0, 0) for scenario 1

and  = (0.7, 0.2, 0, 0) for scenario 2.

In addition, we investigated the effect of a decrease in var-
iance. To be precise, we simulated data with a shift of 0.1,
0.5, or 1, respectively, and a reduction of the standard
deviation to 0.25, 0.5 and 0.75, respectively.

We used two possible strategies of evaluating the data. The
first strategy is simply pooling the data and performing a
one-sided t-test with the assumption of homoscedasticity
(which is in fact fulfilled). The second analysis is to per-
form a one-sided t-test for each of the two phases sepa-
rately and then using Fisher's combination test to obtain
an overall result. It should be noted that the combination
of p-values across populations is essentially a meta-ana-
lytic method. Regarding the combination test we present
results for testing the intersection hypothesis as well as for
identifying efficacy in at least one population. The latter
one will be abbreviated as "com & one" in the figures. For
all strategies the (empirical) α-level of the simulation was
determined as well as the (empirical) power of the test. All
simulations were performed with SAS (version 9.1) and
10 000 simulation runs, except for estimating the type I
error rate which is based on 100 000 simulation runs. We
set α = 0.05.

We use the following notation:

 : number of patients in control group before the

amendment,

 : number of patients in treatment group before the

amendment,

H0
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 : number of patients in control group after the amend-

ment, and

 : number of patients in treatment group after the

amendment.

In the first scenario all four sample sizes , ,  and

 are 50. In the second scenario, we have  =  = 25

and  =  = 50.

Results
Simulation study

Both, the pooling and the combination strategy must
hold the type I error rate because the tests' requirements
are fulfilled. The simulated type I error rates are presented
in Figures 1 and 2. Slight deviations from 5% are caused
by simulation errors. In contrast, when in addition to a
significant combination test the rejection of at least one

 is required, the size is reduced to approximately

0.045. However, it can be expected that the applied closed
testing procedure is conservative.

With regard to power, the results from the simulations
indicate that for small variance inflation factors simply
pooling the data and ignoring the fact that there are two
different variances yields a higher power than using the
combination strategy (Fig. 3, 4). In that case there is
hardly any difference between the two phases, therefore
one test with pooled data is more powerful than applying
a combination test [13]. However, when the standard
deviation is distinctly higher in the second phase (e.g.

 ≈ 1.58 times higher) the combination procedure is

either as good or it has a higher power than pooling. The
inflation factor needed to let the combination procedure
be more powerful than the pooling procedure was found
to be between 1.4 and 1.6 (Figures 3 to 6). Such an infla-
tion is not uncommon in real trials (see the example given
by Koch [10]).

Consider the absolute difference δa = βc - βp of the power
βc of the combination approach and the power βp of the
pooling approach: for very small shifts (e.g. 0.05 to 0.2) δa
was found to be between -2.41% and 3.01% (Figures 3,
4). For very big shifts (0.8 to 1.0) the power difference was
between -0.05% and 3.07% (Figures 7, 8). A bigger differ-
ence can be seen at medium shifts (0.2 to 0.75) where it
ranges from -3.35% to 7.11% (Figures 5, 6). Nevertheless, 

na
C
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T
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C nb

T na
C

na
T nb

C nb
T

na
C na

T
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i

2 5.

Type I error rate, scenario 2Figure 2
Type I error rate, scenario 2. Type I error rate of the 
pooling and the combination strategies for inflation of the 
standard deviation in scenario 2 (i.e. amendment is imple-
mented when a third of the patients have been accrued).

Type I error rate, scenario 1Figure 1
Type I error rate, scenario 1. Type I error rate of the 
pooling and the combination strategies for inflation of the 
standard deviation in scenario 1 (i.e. amendment is imple-
mented when half of the patients have been accrued).
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Power for medium shift, scenario 1Figure 5
Power for medium shift, scenario 1. Power of the pool-
ing and the combination strategies for inflation of the stand-
ard deviation in scenario 1 in the case of a medium shift (0.5).

Power for small shift, scenario 2Figure 4
Power for small shift, scenario 2. Power of the pooling 
and the combination strategies for inflation of the standard 
deviation in scenario 2 in the case of a small shift (0.1).

Power for small shift, scenario 1Figure 3
Power for small shift, scenario 1. Power of the pooling 
and the combination strategies for inflation of the standard 
deviation in scenario 1 in the case of a small shift (0.1).

Power for medium shift, scenario 2Figure 6
Power for medium shift, scenario 2. Power of the pool-
ing and the combination strategies for inflation of the stand-
ard deviation in scenario 2 in the case of a medium shift (0.5).
Page 5 of 9
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a trend can be observed for the absolute difference δa and
relative difference δr = (βc - βp)/βc compared to the vari-
ance inflation factor. In case of small factors the difference
is often negative, so pooling may be preferable. With
increasing factors, however, the differences are more and
more positive, i.e. the combination strategy is more pow-
erful.

When not only a significant intersection hypothesis, but
also efficacy in at least one population is required, the
power is smaller. Figures 3 to 8 also display the extent of
the reduction in power. According to our simulations this
reduction is not very large and it is noteworthy that the
combination strategy with the requirement to reject at

least one  can be more powerful than pooling (see Fig-

ures 5 to 8).

The power in case of  is shown in

Figures 9 and 10. Here, the combination procedure can be
distinctly more powerful than pooling: there is hardly any
difference in power when the standard deviation is the
same in both phases. But the larger the variance inflation
is the larger is the superiority of the combination strategy.
The difference is so big that even the combination strategy

with the additional requirement to reject at least one 

H0
i

µ µ µ µ0 1 0 1 0T T C C− = − ≠

H0
i

Power for big shift, scenario 2Figure 8
Power for big shift, scenario 2. Power of the pooling and 
the combination strategies for inflation of the standard devia-
tion in scenario 2 in the case of a big shift (1.0).

Power for big shift, scenario 1Figure 7
Power for big shift, scenario 1. Power of the pooling and 
the combination strategies for inflation of the standard devia-
tion in scenario 1 in the case of a big shift (1.0).

Power for medium shift, phases differ, scenario 1Figure 9
Power for medium shift, phases differ, scenario 1. 
Power of the pooling and the combination strategies for infla-
tion of the standard deviation in scenario 1 in the case of a 
medium shift (0.5). Within each group, means differ between 
the two phases by (A) 0.1, (B) 0.5 and (C) 1.0.
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is more powerful that pooling as far as the variance infla-
tion is approximately 1.5 or higher. Regarding Figures 9
and 10, please note that the stagewise t-tests are independ-
ent of the within-group means and depend on the mean
differences only. Thus, the power curves A, B, and C of the
combination test are theoretically equal and differ due to
simulation errors only. Furthermore, the dependence of
the overall t-test on the different within-group means is
only caused by an inflation of the standard error estimate.

Figures 11 and 12 show simulation results for the case
where the treatment effect is changed by the change of the
inclusion and exclusion criteria. The amendment might
extend the range of possible patients, in particular when
recruitment rates are low. In the then more heterogeneous
population a lower treatment effect can be expected.
Therefore, we considered the case of a lower treatment
effect after the amendment. The combination test works
well in this situation, even when efficacy in at least one
phase is required.

As mentioned above, we additionally investigated a
decreased variability in the second phase. For symmetry
reasons, the results are analogous and, therefore, not pre-
sented.

Discussion and conclusion
For small variance inflation in the second phase pooling
seems to be better than the combination strategy. This is
quite obvious because the populations before and after
the amendment hardly differ and, consequently, pooling
is admissible. For very small shifts and very big shifts no
big difference was found between the pooling strategy and
the combination test, even in the presence of a bigger var-
iance in the second phase. In the case of a small shift both
procedures have a very low power, so the small difference
in power may be not important. In the case of a big shift
both procedures have a very high power, and a small dif-
ference may be unimportant, too. However, in the case of
a medium shift the combination strategy was noticeably
more powerful than pooling, the difference in power was
up to 7.1%.

When the variability of the second phase is reduced a
moderate or large reduction leads analogously to superi-
ority of the combination strategy. Furthermore, the com-
bination strategy is particularly superior when

. Thus, the simulation study indi-

cates that the combination strategy is superior when a
substantial difference in variability between the two
phases exists. In addition, within a closed testing proce-

µ µ µ µ0 1 0 1 0T T C C− = − ≠

Power for changing between-group differences, scenario 1Figure 11
Power for changing between-group differences, sce-
nario 1. Power of the pooling and the combination strate-
gies for inflation of the standard deviation in scenario 1 in the 
case of a decrease of the between-groups mean difference 
from 0.5 to 0.2.

Power for medium shift, phases differ, scenario 2Figure 10
Power for medium shift, phases differ, scenario 2. 
Power of the pooling and the combination strategies for infla-
tion of the standard deviation in scenario 2 in the case of a 
medium shift (0.5). Within each group, means differ between 
the two phases by (A) 0.1, (B) 0.5 and (C) 1.0.
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dure it can be tested after a significant combination test
whether there is a significant efficacy within the separate
phases.

Moreover, a combination test has the advantage that it can
also be applied for any other types of data such as e.g.
non-normal, count or time to event data. The regression
approach [3] is more limited, and the pooling approach
may cause problems such as Simpson's paradox when
pooling count data from different phases.

We consider the case that an amendment changes entry
criteria because, for example, they are regularly violated,
because of low recruitment rates or because of external
information such as accumulating medical knowledge in
long-term trials. Of course, it is preferable to avoid
amendments during the trial. However, sometimes they
are necessary and if necessary, an amendment should
change the entry criteria as less as possible. As mentioned
above in the Introduction the amendment should also
cover the statistical consequences [2]. Thus, the amend-
ment should specify to separately analyse the different
phases and to combine the p-values with (e.g.) Fisher's
product test.

We do not consider data dependent adaptations. There-
fore, the amendment must be independent from the p-val-
ues and hence cannot be based on any type of unblinded
data. This limitation also applies to the approach of Chow
and Shao [3]. It should be noted that this limitation to
non-data driven amendments can be avoided by using the
conditional error rate principle of Müller and Schäfer
[14].

In our simulation study we assumed that the variance of
both treatment arms was equally affected by the amend-
ment. Different inflations of variances and/or location
shifts may increase the differences between the two
phases. These differences are probably much more prob-
lematic for the pooling than the combination strategy.

The populations before and after the amendment can dif-
fer. Thus, one may argue for performing a test of interac-
tion between phase (pre versus post-amendment) and
treatment. The multiple testing procedure mentioned
above, that can be used to investigate to which phase a
proof of efficacy refers, would be especially important
when a treatment by amendment interaction exists. How-
ever, we recommend performing the interaction test in an
exploratory manner only.

The focus of our paper in on hypothesis testing. We have
not addressed issues related to estimation of the treatment
effect which usually are also important in clinical trials.
Regarding estimation we refer to Brannath et al. [15]. The
methods presented in their overview [15] may also be
applied when there is no data dependent adaptation after
stage 1.

In summary, if there has been an amendment which
affected the entry criteria, we recommend using the com-
bination strategy. This suggestion holds in particular
when the variability of the endpoint may be influenced by
the amendment. Furthermore, the proposed procedure is
easy to apply and flexible as well.
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Power for changing between-group differences, scenario 2Figure 12
Power for changing between-group differences, sce-
nario 2. Power of the pooling and the combination strate-
gies for inflation of the standard deviation in scenario 2 in the 
case of a decrease of the between-groups mean difference 
from 0.7 to 0.2.
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