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Abstract

Background: Evidence-based medicine has been advanced by the use of standards for reporting
the design and methodology of randomized controlled trials (RCT). Indeed, without this
information it is difficult to assess the quality of evidence from an RCT. Although a variety of
statistical methods are available for the analysis of recurrent events, reporting the effect of an
intervention on outcomes that recur is an area that remains poorly understood in clinical research.
The purpose of this paper is to outline guidelines for reporting results from RCTs where the
outcome of interest is a recurrent event.

Methods: We used a simulation study to relate an event process and results from analyses of the
gamma-Poisson, independent-increment, conditional, and marginal Cox models. We reviewed the
utility of regression models for the rate of a recurrent event by articulating the associated study
questions, preenting the risk sets, and interpreting the regression coefficients.

Results: Based on a single data set produced by simulation, we reported and contrasted results
from statistical methods for evaluating treatment effect from an RCT with a recurrent outcome.
We showed that each model has different study questions, assumptions, risk sets, and rate ratio
interpretation, and so inferences should consider the appropriateness of the model for the RCT.

Conclusion: Our guidelines for reporting results from an RCT involving a recurrent event suggest
that the study question and the objectives of the trial, such as assessing comparable groups and
estimating effect size, should determine the statistical methods. The guidelines should allow clinical
researchers to report appropriate measures from an RCT for understanding the effect of
intervention on the occurrence of a recurrent event.

Background

Evidence-based medicine has been advanced by the use of
standards for reporting the design and methodology of
randomized controlled trials (RCT). Indeed, without this
information it is difficult to assess the quality of evidence
from an RCT. An increasing number of journals demand

that submissions adhere to the Consolidated Standards
for Reporting Trials (CONSORT) guidelines for improv-
ing report quality [1]. However, there are not yet available
guidelines for reporting results from RCTs in which the
subject may experience the same event multiple times
during follow-up. Examples of recurrent events include
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falls, fractures, certain cancers, infections, chronic disease
exacerbations, and hospitalizations [2-7]. Through a trial,
clinical researchers attempt to determine whether the
study outcome occurs more frequently in the intervention
group than in the control group. In such trials clinicians
are interested in a variety of questions, such as "How
many events does the intervention prevent, on average,
compared to the control?"; "Does the intervention
decrease the event rate over the study period compared to
the control?"; "What is the effect of intervention on the
rate of subsequent event among those who experienced
the preceding event?"; and "What is the protective effect of
intervention on the rate of higher-order events compared
to the control?"

Although a variety of statistical methods are available for
the analysis of recurrent events, reporting the effect of an
intervention on outcomes that recur is an area that
remains poorly understood in clinical research [8,9].
Appropriate statistical techniques are not always used to
analyze RCTs on recurrent falls [9]. Extensive work involv-
ing simulation studies based on varying event processes
and case studies have compared recurrent event methods
to illustrate their strengths and weaknesses [10-13]. Such
methods include the gamma-Poisson model, and several
extensions of the Cox proportional hazards model,
including the independent-increment, marginal, and con-
ditional models [14-20].

The purpose of this paper is to outline guidelines for
reporting results from a trial of treatment that prevents a
recurrent event. As an example, we are using the rationale
of a randomized trial on falls prevention. Falls are the
most common cause of injury among elderly people. One
in three persons over the age of 65 falls at least once each
year and this proportion increases to one in two people
over the age of 80 [21,22]. Almost half of those who fall
experience the event recurrently [23,24]. The goal of RCTs
is to reduce the occurrence of falls with specific interven-
tions strategies such as multi-factorial intervention,
strength and balance retraining, medication rationaliza-
tion and expedited cataract surgery.

In the Methods section we review the utility of regression
models for the rate of a recurrent event by articulating the
associated study questions, presenting the risk sets, and
interpreting the regression coefficients. Based on a single
data set produced by simulation, we report and contrast
results from statistical methods for evaluating treatment
effect from an RCT with a recurrent outcome in the Results
section. Finally, we summarize our guidelines for report-
ing evidence from RCTs on recurrent events.

http://www.biomedcentral.com/1471-2288/8/35

Methods

In this section, we relate study questions of interest in
RCTs to methods for modelling recurrent event data.
Recurrent event models were developed to account for
potential dependence among observations within a sub-
ject. One approach allows for unobserved heterogeneity
which is unmeasured, intraclass correlation where sub-
jects have constant but unequal probabilities of experienc-
ing the event [25]. Three other models, which were
developed for the analysis of continuous time recurrent
event data, are extensions of the Cox proportional hazards
model. They first fit a Cox model that ignores dependence
and then use the empirical sandwich estimator to adjust
standard errors for the parameter estimates [17,18,20].
Several authors argued for a conditional approach that
estimates the rate of kth event among those who have
already experienced (k - 1) events [18,26]. This approach
addresses the issue of constant susceptibility in a more
natural way than marginal models [18,27]: while the asso-
ciation between event times remains unspecified, the
event-specific rate functions condition on having had pre-
vious events.

There are substantial differences among the models
described in this section, but all estimate the effect of fac-
tors on the occurrence and time to event while accounting
for the dependence between observations. The methods
that we review model the rate function, A(t)-that is, the
average intensity of a recurrent event at a certain time. We
highlight differences in the model assumptions, risk sets,
and rate ratio interpretation. The data structure required
to fit each model is shown to illustrate the different risk
sets, indicating which patients are considered to be at risk
for events at certain times [25,28]. Examples of SAS code
(SAS System version 9.1 for Windows, SAS Institute Incor-
poration, Cary, NC, USA) to fit each model are also pre-
sented.

Mean cumulative function

"How many events does the intervention prevent, on aver-
age, compared to the control?" is one study question in an
RCT on recurrent events that could be addressed using the
mean cumulative function (MCF). The MCF shows the
population mean number of recurrent events by certain
times [29]:

MCE(t) = E{N(1)}.
where N(t) is a random variable for the number of events
that have occurred up to time t. The MCF curve changes as

a function of time and its derivative gives the rate func-
tion, that is

At) = % MCE(¢).
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The rate and intensity functions quantify different aspects
of the recurrent event process: the intensity is the instan-
taneous risk of a recurrent event and the rate is the average
intensity at time t [25,30]

A(t)dt = E[dN(1)],

where dN(t) denotes the number of events in a small
interval [¢, t + dt).

We interpret the difference in MCFs between the interven-
tion and control groups as an indicator of how many
events the intervention would prevent, on average, by a
certain time [31].

Gamma-Poisson model

A common study question for an RCT on recurrent events
is "Does the intervention decrease the event rate over the
study period compared to the control?", for which the
gamma-Poisson model has been used. The gamma-Pois-
son model evaluates the relationship between the number
of recurrent events and factors of interest when the data
deviate from the Poisson model [15,16]. This model
allows variation of the event rate among subjects in the
same group according to an unobserved random variable,
frailty, which defines how likely a subject is to experience
the event compared to the average rate [16]. When the
frailty follows a gamma distribution and a time homoge-
neous model is assumed then the marginal distribution of
the total number of events is negative binomial [15].

Suppose N;(t) counts the number of events that have
occurred up to time ¢ for subject i. Under the time-homo-

geneous, gamma-Poisson model, N,(t) has a Poisson dis-
tribution with rate function

(1) = 1y exp{ o + fAxi}, (1)

where z; come from a gamma distribution with density
function

1/6-1

exp(—u/6) ) (2)
r(1/6)01/°

In model 1, &, is the logarithm of the baseline rate for the
event, 4 is the unobserved frailty for subject i, x; is a cov-
ariate value for subject i, S is the regression coefficient,
and ¢ represents the time from start of observation.

flu)="*

The expected value and variance of the frailty random var-
iable is 1 and 6, respectively. Subjects with z; greater than
1 are considered more "frail" or more likely to experience
the event at a higher rate; whereas, those with g less than
1 are considered to experience the event at a lower rate
[16].
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Compared to the Poisson model which assumes the mean
and variance for the number of events are equal, the
gamma-Poisson model has an additional parameter
which allows for over-dispersion. For a given set of covari-
ates, this model assumes the expected number of events is
t exp(a, + ;) and the variance is t exp(¢, + ;) + 02
exp(ag + fr;)? [32].

The rate function of any event for subject i averaged over
the gamma-distribution is

(1) = exp{og + Bx;}[1+ Ot exp{agy + Bx;}] .
(3)

Subjects are at risk of an event until they are censored.
Suppose x; is a binary indicator of group membership,

with value 0 if subject i belongs to the control group and
1 if the intervention group. Then, exp () from model 3

estimates the common rate ratio of event in the interven-
tion group relative to the control. We interpret rate ratios
less than 1 as indicating the overall rate of event, that is
the rate of any event, in the intervention group is 100 |1 -

exp () |% lower than in the control.

The data structure for this model requires one record for
each subject, regardless of the number events experienced.
This record contains the total follow-up time and total
number of events per subject. The data structure required
for this model is illustrated through an example. Suppose
subject 1 in the control group experiences a recurrent
event at day 126, 216, and 314 from study start and is fol-
lowed up for 365 days. In addition, subject 2 in the inter-
vention group, who was followed for the same period of
time, had events at day 42 and 350. Under the time-
homogeneous gamma-Poisson model, the data for these
subjects are represented as shown in Table 1. In this data
set, pid is the subject identifier, time is the total follow-up
time, nevent is the total number of events experienced, grp
is the covariate for group membership, and logtime is the
natural logarithm of time.

For these data, SAS can be used to fit a time-homogeneous
gamma-Poisson model:

PROC GENMOD;

Table I: Data structure for the time-homogeneous gamma-
Poisson model

pid time nevent grp logtime
I 365 3 0 5.899
2 365 2 I 5.899
Page 3 of 12

(page number not for citation purposes)



BMC Medical Research Methodology 2008, 8:35

MODEL nevent = grp/LINK = LOG DIST = NEGBIN
OFFSET = logtime;

RUN;

A major limitation of the time-homogeneous gamma-
Poisson model is it assumes that the recurrent event rate is
constant over time, which is unlikely to hold in practice.
Extensions to this model have been made to relax the
independent increment assumption for recurrent events
and the specification of the within subject correlation
between recurrence times. For example, the general frailty
model assumes that the counting process is a non-homo-
geneous Poisson process given the frailty and covariates,
where the frailty is not restricted to follow a gamma distri-
bution [33]. The proportional mean and rate model
relaxed the non-homogeneous Poisson assumption for
the counting process and directly models means and rates
[17].

Independent-increment model

The study question "Does the intervention decrease the
event rate over the study period compared to the control?"
is also addressed by Lin's independent-increment model
for the rate of recurrent events [17]. Originally this model
was developed by Andersen and Gill to specify the inten-
sity of a counting process with a Cox-type link function
[14]. Lin et al. provided a rigorous formalization of the
marginal rate model, which relaxes the assumption that
the event history, F,(t), can be completely described by
time-dependent covariates, x;(t), thatis, [17,30]

E[dN,(1)|F,(0)] = ELAN,(D) | (D).

In contrast to Cox's model where subjects are at risk of an
event until its occurrence or they are censored, in the inde-
pendent-increment model subjects still remain at risk
after an event occurs. Unlike the gamma-Poisson model,
the independent-increment model does not assume the
recurrent event rate is constant over time. This model
assumes that the number of events in disjoint time inter-
vals are independent [27].

Under the independent-increment model, the rate func-
tion, A,(t), of any event for subject i is

(1) = Yi(1) Ao (t) exp{fx() }, (4)

where

1, if subjecti is under observation at time ¢

Y(t) = {

0, ifsubjecti is censored by time t.

In model 4, Y;is the at risk indicator of event for subject i,
Ao(t) is the baseline rate function for the event, x;is a cov-
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ariate value, which may be time-dependent but may not
contain elements of the event history, for subject i, fis the
regression coefficient, and t represents the time from start
of observation.

From model 4 we observe that both the baseline rate func-
tions, 4, and regression parameters, S, are assumed to be
COMMON across events.

Subjects are at risk of the an event until they are censored.
Suppose x; is a binary indicator of group membership,

with value 0 if subject i belongs to a control group and 1
if an intervention group. Then exp () estimates the com-

mon rate ratio of event for the intervention group relative
to the control. The rate ratio is assumed to be constant
over time and common across recurrent events. We inter-
pret rate ratios less than 1 as indicating the overall rate of

event in the intervention group is 100 [1 - exp(B)]%

lower than in the control. This model has a similar inter-
pretation to the gamma-Poisson model except we no
longer require the assumption of time-homogeneity or
gamma distributed frailty.

Under the independent-increment model, the data for
these subjects use the counting process format, where
each subject is represented by a set of time intervals and
event indicators. We illustrate these data in Table 2 using
the example described in the Gamma-Poisson model sub-
section. In this data set, pid is the subject identifier, tstart
is time of previous event or study start, tstop is time of
event or censoring, status is an indicator of event, and grp
is the covariate for group membership. Subject 1 experi-
enced 3 events and then was censored at the end of fol-
low-up, so there are 4 corresponding records for this
subject. In contrast, subject 2 experienced 2 events before
being censored, so there are only 3 records.

The corresponding SAS code to fit an independent-incre-
ment model is as follows:

PROC PHREG COVM COVS(AGGREGATE);

Table 2: Data structure for the independent-increment model

pid tstart tstop status grp

| 0 126 | 0

| 126 216 | 0

| 216 314 | 0

[ 314 365 0 0

2 0 42 | |

2 42 350 | |

2 350 365 0 |
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WHERE (tstart < tstop);
MODEL (tstart, tstop) * status(0) = grp/RISKLIMITS;
ID pid;

RUN;

Conditional models

RCTs on recurrent events provide insight into the study
question "What is the effect of intervention on the rate of
subsequent event among those who experienced the pre-
ceding event?", which a condtional model can address.
Pepe and Cai proposed the conditional model for the rate
of recurrent events, where subjects are not considered to
be at risk for event until all previous events have occurred
[18].

Under the total, follow-up time conditional model, the
rate function, 4;(t), of the jth event for subject i is

A;i() = Y;(1) A;(t) exp{Bx;(1)}, (5)
where

Yy(0) = {1, if (j — 1)th event occured by time ¢ and jth event has not for subject i
0,

From model 5 we observe that both the baseline rate func-

tions, 4;(t), and regression parameters, /3, can vary across

events. The covariate x; may not contain elements of the

event history.

if otherwise or censored at time ¢ for subject i.

In model 5, t represents the time from start of observation.
The conditional model can also be formulated in terms of
"gap time", the time from previous event:

At = Tyg(-)) = Yi(O) (¢ = Ty ) exp{B (1)},
(6)

where

1, if (j —1)th event occured by time ¢ and jth event has not for subject i

Yj(t) = {0,

and T,

if otherwise or censored at time ¢

) is the time of the event just prior to time t.

In contrast to the marginal model, subjects are considered
at risk for an event at time t only if the previous event
occurred before that time and they are still under observa-
tion. Suppose x; is a binary indicator of group member-

ship, with value 0 if subject i belongs to a control group
and 1 if an intervention group. Then, exp(f;) from

model 5 estimates the event-specific rate ratio of the jth

http://www.biomedcentral.com/1471-2288/8/35

event from study start in the intervention group relative to
the control, conditional on experiencing the previous
events. The event-specific rate ratio for the jth event from
model 6 represents the rate of the jth event from the time
of the previous event in the intervention group relative to
the control. We interpret rate ratios less than 1 as indicat-
ing that among those who experienced j - 1 events, the
intervention reduces the rate of the jth event by 100[1 -

exp(B;) |% compared to the control. While the condi-

tional model using total follow-up time compares sub-
jects who experienced the same number of events and
have the same follow-up from study start, the gap-time
conditional model compares subjects who have experi-
enced the same number of events and have the same dura-
tion since their previous event.

Fitting these conditional models relies on creating the
appropriate data sets. These data sets are illustrated
through the example presented in Gamma-Poisson model
subsection. Under the conditional model for total follow-
up, the data set for these subjects follows the counting
process format as shown in Table 3. Similar to the inde-
pendent-increment model (equation 4), the number of
records representing each subject depends on the number
of events experienced. The data structure differs from that
of the independent-increment model since we have a var-
iable for the event number.

Assuming that the most number of events observed per
subject was seven, the corresponding SAS code for fitting
a conditional, total follow-up time model is as follows:

PROC PHREG;

MODEL (tstart, tstop) * status(0) = groupl-group7/
RISKLIMITS;

groupl = grp * (event = 1);
group2 = grp * (event = 2);
group3 = grp * (event = 3);

Table 3: Data structure for the conditional model for total
follow-up time

pid tstart tstop event status grp

| 0 126 | | 0

| 126 216 2 | 0

| 216 314 3 | 0

| 314 365 4 0 0

2 0 42 | | |

2 42 350 2 | |

2 350 365 3 0 |
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group4 = grp * (event = 4);

group5 = grp * (event = 5);

group6 = grp * (event = 6);

group?7 = grp * (event = 7);

STRATA event;

RUN;
Under the conditional, gap time model, the data set for
these subjects requires times between adjacent events, as
shown in Table 4. Again, the number of records per sub-
ject depends on the number of events experienced. As
opposed to time intervals, times between subsequent
events are required.
Assuming that the most number of events observed per
subject was seven, the corresponding SAS code for fitting
a conditional, gap time model is as follows:

PROC PHREG;

MODEL gaptime * status(0) = groupl-group?7/RISK-
LIMITS;

groupl = grp * (event = 1);
group? = grp * (event = 2);
group3 = grp * (event = 3);
group4 = grp * (event = 4);
group5 = grp * (event = 5);
group6 = grp * (event = 6);
group?7 = grp * (event = 7);
STRATA event;

RUN;

Table 4: Data structure for the conditional model for gap time

pid gaptime event status
| 126 | |

| 90

|

|

oq
3
o

98
51
2 42
2 308
2 15

W NN —hNwN
— — —— O O OO

|
|
0
|
|
0
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In these conditional model data sets, pid is the subject
identifier, tstart is time of previous event or study start,
tstop is time of event or censoring, gaptime is the time to
event from previous event, event is the event number, sta-
tus is an indicator of event, and grp is the covariate for
group membership.

Marginal model

"What is the protective effect of intervention on the rate of
higher-order events compared to the control?" is an
important study question to help decide whether to start
treatment. This question is addressed by the marginal
model, proposed by Wei, Lin and Weissfeld, which allows
for different effects on each subsequent event [20]. This
model treats the ordered event like an unordered compet-
ing risk problem [27]. Estimates from the marginal model
have a practically useful interpretation which allows com-
parison between groups at treatment onset [34].

Under the marginal model, the rate function, 4;(t), of the
jth event for subject i is

A;i(8) = Y;(1) A;(1) exp{Bx,(1) }, (7)
where

1, ifjth event has not occured by time t for subject i

Y1) = {O

In model 7, Yy is the at risk indicator of the jth event for
subject i, A(t) is the baseline rate function for the jth
event, x; is a covariate value, which may be time-depend-
ent, for subject i, /3 is the regression coefficient for event j,
and t represents the time from start of observation. From
model 7 we observe that both the baseline rate functions,
Aoy and regression parameters, £, can vary across events.

if otherwise or censored at time ¢t for subject i.

Subjects are at risk of the jth event until it occurs or they
are censored. Furthermore, subjects are considered to be
at risk for the jth event even if they did not yet experience
the (j - 1)th event. Suppose x;is a binary indicator of group

membership, with value 0 if subject i belongs to a control
group and 1 if an intervention group. Then, exp (j;) esti-

mates the average event-number-specific rate ratio of the
jth event in the intervention group relative to the control.
We interpret rate ratios less than 1 as indicating the tran-
sition rate from O to j events in the intervention group is

100 [1 - exp(;) |% lower than in the control. The mar-
ginal event-number-specific rate ratios indicate whether
subjects in the intervention group will have fewer higher-

order events of a certain number from the time of treat-
ment onset [34].
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Table 5: Data structure for the marginal model

pid tstart tstop event status grp
0 126 | |
216
314
365
42
350
365
365

coocooooo
AW — A WN
————o00o0o0o

co——0o — —

2
2
2
2

The data structure required for this model is illustrated
through the example presented in the Gamma-Poisson
model subsection. We would like to study the effect of
intervention on the first four events. Under the marginal
model, the data set for these subjects show times of event
from study start for all events under study, as shown in
Table 5. In this data set, pid is the subject identifier, tstart
is time of study start, tstop is time of event or censoring,
event is the event number, status is an indicator of event,
and grp is the covariate for group membership. Both sub-
jects are represented by the same number of records,
namely four since we are interested in the first four events.

The corresponding SAS code to fit this marginal model is
as follows:

PROC PHREG COVS(AGGREGATE);
MODEL tstop *status(0)=group1-group4/RISKLIMITS;
groupl = grp * (event = 1);
group2 = grp * (event = 2);
group3 = grp * (event = 3);
group4 = grp * (event = 4);
STRATA event;
ID pid;
RUN;
Results
Using available statistical instruments for recurrent
events, we report results from a simple simulation study
of falls prevention to illustrate the utility of the methods.
Although each of the models being compared has already
been studied via simulation, we contrast reporting results
in the context of an RCT based on a single data set. The

measures discussed are the rate ratios from the recurrent
event models described in the Methods section. These

http://www.biomedcentral.com/1471-2288/8/35

include the common rate ratio, which compares the aver-
age rate of event in the intervention group to the control,
the conditional event-specific rate ratios, which summa-
rize the effect of intervention on a specific event condi-
tional on experiencing previous events, and the marginal
event-number-specific rate ratios, which summarize the
intervention effect on the transition rate of experiencing a
certain number of events from study start. In addition, we
report the event rate, a measure of the average number of
event accrued per person-time, and the mean cumulative
function (MCF), a measure of the average number of
events experienced per subject within a certain time.

We simulated recurrent falls in two groups, control and
intervention, using Matlab Version 7 software (see Addi-
tional file 1). Each group had 250 subjects, and all sub-
jects were followed for 365 days. Fall rates were based on
those observed in an RCT [35]. Times between falls were
assumed to follow an exponential distribution with falls
rates specified for each fall. In the control group the fall
rates for all falls were held constant at 7.7 falls per 1000
person-days. In the intervention group the fall rate was 5.3
falls per 1000 person-days for the first fall, and changed to
3.3 for all subsequent falls. Dependence within subjects
was modelled using a gamma frailty distribution with
density function given in equation 2 and variance 6 =
0.10. We report the effect of the first 4 falls only since
higher-order event-specific estimates are unreliable when
there are only a few subjects with a large number of falls
[25,27].

Event rates

After 1 year, the control group had 675 falls, nearly double
that of the intervention group with 373 falls. The total fol-
low-up time in each group was 91,250 person-days. The
average observed fall rates in the control and intervention
groups were 7.4 (95%CI 6.8-8.0) and 4.1 (95%CI 3.7-
4.5) falls per 1000 person-days, respectively. Compared to
the control group, the rate of falls in the intervention was
almost halved, a crude approximation of the anticipated
effect size. This effect size can be used to design RCTs on
recurrent events, specifically for determining the number
of subjects.

Mean cumulative function, MCF
Figure 1 shows the MCF by group, estimated by a non-par-
ametric estimator [36]:

— eq
MCE(t) = 2 I,
in=y i1

where ¢; is the number of events at time t, n,, is the

number of subjects at risk just beyond time ¢, and j

indexes the observed event times. A subject is at risk of
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Estimated mean cumulative function (MCF) of falls by group (upper panel), their difference (lower panel), and

95% confidence intervals.

event until the end of follow-up. At one year of follow-up,
an average of 2.7 and 1.5 falls per subject were experi-
enced in the control and intervention group, respectively.
Both MCFs were approximately linear, which indicates
that the rate of falls is relatively constant in each group
[31,36]. The control group experienced more falls and
had a higher fall rate than the intervention group. On
average, the control group experienced 1 more additional
fall by 301 days (Figure 1). From the MCF difference, we
observed that 1.2 falls were prevented per year on average
for each subject.

Common rate ratios

The time-homogeneous gamma-Poisson and independ-
ent-increment gave similar common rate ratio estimates
of 0.55 (95% CI 0.48-0.63) and 0.55 (95% CI 0.48-
0.62), respectively (Table 6). The gamma-Poisson and
independent-increment models both infer that the rate of
any fall in the intervention group is 45% lower in the
intervention group than control. In practice the assump-
tion of a constant recurrent event rate over time may not
hold, so the independent-increment model is preferred
over the time-homogeneous gamma-Poisson model.

These common rate ratios indicate that the intervention
had an impact on the risk of falls; however, it does not
inform whether the effect changes for subsequent events.

Conditional event-specific rate ratios

The majority of the control group experienced two falls
within 1 year of follow-up: 228, 180, 122, and 77 subjects
had fall 1, 2, 3, and 4, respectively. The number of falls in
the intervention group was lower: 202, 104, 45, and 18
subjects had fall 1 to 4, respectively (Table 7). Higher-
order events, up to 7 falls, were experienced by 38 subjects
in the control group; whereas, in the intervention group,
only 4 subjects had the highest-order event of 5 falls. In
the conditional model, the risk set for a subsequent fall

Table 6: Effect of intervention on recurrent falls, as measured by
common rate ratios and 95% confidence intervals

Effect Gamma-Poisson Independent-increment

1.00
0.55 (0.48, 0.63)

1.00
0.55 (0.48, 0.62)

Control
Intervention
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Table 7: Fall-specific characteristics for total events, number of subjects at risk, total follow-up in days, and crude rate ratios, as

indicated by the marginal and conditional total time models

Conditional model

Control Intervention
Event # events # at risk follow-up rate® # events # at risk follow-up rate¥ crude RRT
fall | 228 250 34,355 6.64 202 250 44,726 4.52 0.68
fall 2 180 228 24,361 7.39 104 202 30,264 3.44 0.47
fall 3 122 180 14,641 833 45 104 10,500 4.29 0.51
fall 4 77 122 9,673 7.96 18 55 4,301 4.19 0.53

Marginal model

Control Intervention
Event # events # at risk follow-up rate® # events # at risk follow-up rate® crude RRT
fall | 228 250 34,355 6.64 202 250 44,726 4.52 0.68
fall 2 180 250 58,716 3.07 104 250 74,990 1.39 0.45
fall 3 122 250 73,357 1.66 45 250 85,490 0.53 0.32
fall 4 77 250 83,030 0.93 18 250 89,791 0.20 0.22

* fall rate measured per 1000 person-days
TRR = rate ratio

consisted of only subjects who experienced the previous
falls, and total follow-up time decreased for later events.
The crude rate ratios indicate a similar intervention effect
on falls 2 and 3.

As expected, the rate ratios for the first fall from the con-
ditional models give identical estimates, 0.68 (95% CI
0.57-0.83), since the total follow-up time and gap time to
first falls refer to the same period (Table 8). For subse-
quent falls, the fall-specific rate ratios from the condi-
tional models overlap and remain relatively constant
ranging from 0.46 (95% CI 0.36-0.59) to 0.53 (95% CI
0.31-0.88). The rate ratio for fall 5, 0.38 (95% CI 0.13-
1.07), may be unreliable due to the number at risk for this
event, and effects could not be estimated for falls 6 or 7.
Among subjects who experienced preceeding falls, the
effect of intervention on the rate of the first four recurrent
falls did not differ (Wald g2 test = 6.6, df = 3, p = 0.08 for
total follow-up time model, and Wald y2test = 6.7, df = 3,
p = 0.08 for gap-time model).

For recurrent falls, the rate ratios from the conditional,
total follow-up time model indicate that conditional on
experiencing the previous fall, the rate of second, third
and fourth falls from study start are 54%, 47% and 50%
lower in intervention than control. The rates of falls from
the time of previous fall are 54%, 47%, and 47% lower in
intervention than control, as estimated from the condi-
tional, gap time model. The conditional models provide
evidence of the constant difference in recurrent fall rates

between the groups. The conditional fall-specific rate
ratios evaluate how the intervention affected the rate of
kth fall among those who experienced k - 1 falls.

For both the conditional total follow-up time model and
conditional gap time model, subjects are considered to be
at risk for an event only if the previous event occurred, so
subjects at risk may not consist of all who were intially
randomized. The number of subjects at risk for subse-
quent events should be reported to allow evaluation of
how different the treatment groups are from the start of
the study (Table 7).

Marginal event-number-specific rate ratios

In the marginal model, all subjects were considered to be
at risk for the 1st, 2nd, 3rd, 4th, and higher-order falls
regardless of experiencing previous events (Table 7). Sub-
jects are at risk for a specific fall until its occurrence or cen-
soring, so the total follow-up time accumulates over
subsequent falls. The crude rate ratios decrease with fall
events.

The fall-number-specific rate ratios decrease from 0.68
(95% CI 0.57-0.83) for fall 1 to 0.20 (95% CI 0.12-0.34)
for fall 4 (Table 8). For higher-order events, the rate ratio
for fall 5 was 0.10 (95% CI 0.03-0.27) and could not be
estimated for falls 6 or 7. The marginal model indicated
that there was a difference in the average effect of interven-
tion on the first four falls (Wald p2test =32.2, df = 3, p <
0.0001). Rate ratios based on the marginal model indi-
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Table 8: Effect of intervention on recurrent falls, as measured by fall-specific rate ratios and 95% confidence intervals

Effect Conditional, total follow-up time* Condetional, gap timet Marginalt
Control 1.00 1.00 1.00
Intervention
fall | 0.68 (0.57, 0.83) 0.68 (0.57, 0.83) 0.68 (0.57, 0.83)
fall 2 0.46 (0.36, 0.59) 0.46 (0.36, 0.59) 0.42 (0.33, 0.54)
fall 3 0.53 (0.38, 0.75) 0.53 (0.38, 0.75) 0.30 (0.21, 0.42)
fall 4 0.50 (0.30, 0.85) 0.53 (0.31, 0.88) 0.20 (0.12, 0.34)

*effects on recurrent falls were not different (32 = 6.6, df = 3, p = 0.08)
teffects on recurrent falls were not different (32 = 6.7, df = 3, p = 0.08)
teffects on recurrent falls were different (2= 32.2, df = 3, p < 0.0001)

cated that, on average, the transition rate from zero falls at
the start of treatment to one, two, three and four falls were
32%, 58%, 70% and 80% lower, respectively, in the inter-
vention group than the control. These rate ratios do not
imply that the effect of intervention increased with recur-
rent falls. Rather, the marginal fall-number-specific rate
ratios indicate that subjects in the intervention group will
have fewer events overall.

Given an objective of an RCT is to compare groups which
are similar in all aspects except for the treatment of inter-
est, it is appropriate to use the marginal model since all
subjects are considered to be at risk for each number-spe-
cific event from study start. In contrast, the groups being
compared to evaluate the effect of subsequent events in
the conditional models may not consist of all subjects ini-
tially randomized.

Discussion

Recurrent events arise in many contexts, such as falls in
seniors considered in this paper. In evidence-based medi-
cine there is increasing need for guidelines on what to
report in the analysis of recurrent events [8]. In the Results
section we have outlined briefly statistical methods for
evaluation of treatment effect from an RCT with a recur-
rent outcome. These should allow clinical researchers to
report appropriate measures from an RCT for understand-
ing the effect of intervention on the occurrence of a recur-
rent event.

We used a simulation study to relate an event process and
results from analyses of the gamma-Poisson, independ-
ent-increment, conditional, and marginal Cox models
[15-18,20]. We showed that each model has different
study questions, assumptions, risk sets, and rate ratio
interpretation, and so inferences should consider the
appropriateness of the model for the RCT. The gamma-
Poisson and independent-increment models compare the
common event rates between groups, with the assump-
tion of independence of the number of events across time
intervals being required in the latter, but not the former.
The conditional model distinguishes between first and

recurrent events, and conditions on having had previous
events. In contrast, the marginal model treats the events as
unordered, and all subjects are at risk for any event. In dif-
ferent trials the outcomes of interest and validity of
assumptions will differ. Our guidelines for reporting
results from an RCT involving a recurrent event suggest
statistical methods which correspond to the objectives of
the trial, such as addressing the study question of interest,
assessing comparable groups and estimating effect size.
First, the average event rate by intervention group is a
measure of the average number of events accrued per per-
son-time. These event rates serve an important role in
determining sample size and follow-up time for the
design of future RCTs involving recurrent events [37]. Sec-
ond, the MCF by intervention group provides a measure
of the average number of events experienced per subject
within a certain time. The MCF allows us to determine
how many events per subject the intervention would pre-
vent, on average, compared to the control group [31].
Third, the common rate ratio, as measured by the gamma-
Poisson and independent-increment models, quantifies
the average rate of event in the intervention group relative
to the control group. This rate ratio provides an estimate
of the common effect size, thereby indicating whether the
intervention had an impact on the event occurrence.
Fourth, conditional event-specific rate ratios, which quan-
tify the rate of the kth event in the intervention relative to
the control, conditional on experiencing preceding
events, should be reported. These rate ratios allow us to
evaluate how the effect of intervention changes, if at all,
on subsequent events. Lastly, we suggest reporting the
marginal event-number-specific rate ratios, which repre-
sent the rate of transitioning to higher-order events from
the start of treatment in the intervention group relative to
the control group. These rate ratios allow us to evaluate
the overall protective effect of intervention. For methods
used in the assessment of goodness of fit for each model
we refer the reader to the corresponding papers [17,27].

It has been argued that the average event rate might have
little relevance in the context of recurrent events because
this measure does not acknowledge dependence between

Page 10 of 12

(page number not for citation purposes)



BMC Medical Research Methodology 2008, 8:35

events experienced by a subject [38]. However, by apply-
ing appropriate statistical methods for recurrent events we
can make valid inferences on rates. Extensive simulation
studies based on varying event processes and case studies
have compared recurrent event methods to determine
their strengths and weaknesses [10-13].

Regression methods for the analysis of recurrent events is
not limited to modelling the rate of event. The mean
number of recurrences can be modelled using semi-para-
metric Cox models and parametric models [17,39]. Pro-
portional rates and proportional means models are
equivalent when the rate only depends on covariates that
do not directly impact the occurrence of event, namely
external covariates [17,40]. Regression models for the
intensity function, which condition on event history, are
also available [14,19]. However, in RCTs treatment may
affect event history, so conditioning on the event history
may underestimate the treatment effect [41].

Conclusion

Our guidelines for reporting results from an RCT involv-
ing a recurrent event suggest that the study question and
the objectives of the trial, such as assessing comparable
groups and estimating effect size, should determine the
statistical methods. Guidelines for reporting results from
an RCT involving a recurrent event should allow clinical
researchers to report appropriate measures for under-
standing the effect of intervention on the occurrence of a
recurrent event.
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