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Abstract
Background: The beta-binomial model is one of the methods that can be used to validly combine
event rates from overdispersed binomial data. Our objective is to provide a full description of this
method and to update and broaden its applications in clinical and public health research.

Methods: We describe the statistical theories behind the beta-binomial model and the associated
estimation methods. We supply information about statistical software that can provide beta-
binomial estimations. Using a published example, we illustrate the application of the beta-binomial
model when pooling overdispersed binomial data.

Results: In an example regarding the safety of oral antifungal treatments, we had 41 treatment
arms with event rates varying from 0% to 13.89%. Using the beta-binomial model, we obtained a
summary event rate of 3.44% with a standard error of 0.59%. The parameters of the beta-binomial
model took the values of 1.24 for alpha and 34.73 for beta.

Conclusion: The beta-binomial model can provide a robust estimate for the summary event rate
by pooling overdispersed binomial data from different studies. The explanation of the method and
the demonstration of its applications should help researchers incorporate the beta-binomial
method as they aggregate probabilities of events from heterogeneous studies.

Background
In clinical research and public health, it is frequently nec-
essary to combine findings from multiple interventional
or observational studies in order to address important
safety and efficacy questions. A single study rarely pro-
vides a definitive answer because of limited sample size
and the specific attributes of particular study populations.
The challenges of combining data from heterogeneous
studies are well described in the meta-analysis literature.
In the majority of meta-analysis reports, the outcome of
interest is a comparative risk estimate such as the odds
ratio, relative risk, or risk difference [1]. Absolute risks,
however, such as the proportion of clinical events among

a cohort of patients or the response rate among patients
receiving a certain treatment regimen, are important
measures for helping to guide clinical and public health
decisions. In the correct epidemiology and statistical ter-
minology, these so-called rates are really proportions, but
we will treat rates and proportions as equivalent in this
paper as this term is commonly used in medical product
safety research. Relevant methods to pool the absolute
risks are especially important in safety evaluation of med-
ical products as the risks for serious adverse outcomes are
often rare, and precise estimates of the probability of these
outcomes are crucial in the risk-benefit evaluation.
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In this report we describe the implementation of the beta-
binomial method to pool the absolute risks from overdis-
persed data. This method estimates a summary probabil-
ity of adverse events and is applicable in medical product
safety evaluation as it takes into account the heterogeneity
of studies. The application of the beta-binomial method
in drug safety settings was previously described by
Chuang-Stein in 1993 [2]. Here we aim to provide a
detailed description of the method and to update and
broaden its applications.

The general setting is that of a clinical trial or cohort study
of a specific exposure, such as: drug A with a sample size
of n resulted in x number of adverse events (e.g. liver
injury). Within each individual study the probability of
encountering x number of adverse events out of a sample
size of n is characterized by the binomial distribution. To
summarize multiple studies of the same exposure, we
need to account for their heterogeneity of the studies, for
they could differ in their sample sizes, clinical settings,
investigators, protocols, and prevalence of comorbidity
among study subjects. The assumption of one binomial
distribution that can describe the proportions of adverse
event from all the studies is not always valid. Numerous
factors, including ethnic difference, disease severity,
comorbid conditions, and concomitant medications can
contribute to the variation of the probability of interest,
thus requiring additional assumptions beyond the bino-
mial model. This phenomenon is often referred to as over-
dispersion [3,4]. Ignoring overdispersion when pooling
overdispersed data that are binomial in nature could
result in erroneous estimates of the probability of interest
and its confidence interval.

In the clinical trial literature, Chuang-Stein [2] proposed
using the beta-binomial model to combine binomial
event rates across multiple studies in an article titled "An
application of the beta-binomial model to combine and
monitor medical event rates in clinical trials." Despite its
sound statistical basis, this method has not been widely
used in clinical and public health research articles during
the years since its publication. Meanwhile, the application
of the beta-binomial model in other fields is becoming
more prevalent as it has been applied in fields as distant
as sensory analysis [5] and computational linguistics [6].
We utilized this method to estimate the risk of liver toxic-
ity among users of oral antifungal treatments [7] and
believe that it can be used more widely to help address
similar questions. In the rest of this article we describe the
statistical assumptions for the beta-binomial model, the
process of estimating the probability of interest, methods
to test for over-dispersion, and an example of its applica-
tion.

Methods
The Beta-Binomial distribution
Both Chuang-Stein [2] and Ennis [5] provide excellent ref-
erences for those who are interested in the history of the
beta-binomial model. Recall the definition of the bino-
mial distribution:

where x is the number of successes in a sequence of n inde-
pendent success/failure experiments, each of which has
probability p for success.

Let probability p follow a beta distribution (p|α, β), then

where Γ is the gamma function over the domain [0, 1]; α
and β are two positive parameters. The beta distribution
was selected in the past because of its flexibility (capable
of a wide range of shapes, see Figure 1) and its ability to
provide good approximations. As Skellam [8] stated as
early as 1948, "in practice we could, at least in most cases,
take this form of distribution as a convenient approxima-
tion." As a result, we arrive at a combination of the bino-
mial distribution with a beta density function:

where x takes on the values 0, 1, 2... n, and α and β are
positive. Note in equation (3) that n is the total number
of study subjects, and x is the total number of subjects
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Variety of shapes for beta distributionsFigure 1
Variety of shapes for beta distributions.
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with a certain adverse event, although what most investi-
gators are interested in is the proportion p that varies
between 0 and 1 and has the appearance of a continuous
distribution.

So let pi = xi/ni, i = 1,2, ... k, where i indexes the different
studies, xi is the number of events in the ith study and ni is
the sample size of the study. To reiterate, within the con-
text of multiple studies where each study with sample size
ni and binomial probability pi (e.g. for adverse events),
one binomial distribution cannot adequately describe the
additional variation when pi varies and thus the data are
fitted with a beta distribution with parameters (α, β), with
α > 0 and β > 0. Let μ = α/(α+β), θ = 1/(α+β), where μ is
the mean event rate (i.e., the expected value of a variable
binomial parameter p) and θ is a measure of the variation
in p. In short, we have constructed a two-stage model:

Xi | pi ~Bin(ni, pi)

pi~Beta (μ, θ),i.i.d

The mean and variance of X are nμ and nμ(1-μ){θ/(1+θ)}
[9]. One can view the term {θ/(1+θ)} as a multiplier of
the binomial variance. In other words, it models the over-
dispersion. Some authors (e.g. Kleinman [10]) prefer the
term γ where γ = θ/(1+θ) = 1/(α+β+1). Then the variance
is nμ(1 - μ) γ. In essence, one can derive the same infor-
mation from θ and γ about the beta-binomial distribu-
tion, so it is beneficial to know both and employ
whichever is more convenient for computation.

Estimation of Parameters
Two main methods, one involving moments and the
other involving maximum likelihood, are often used to
estimate the parameters μ and θ.

The Moment Estimates Method
In terms of actual data observed from different studies, let
pi = xi/ni, i = 1,2, ... k, where i indexes the different studies,
xi is the number of events in the ith study and ni is the sam-
ple size of the study. The ni's here are almost always une-
qual in clinical studies.

Let

where {wi} represents a set of weights and w is the sum of
all the weights [10].

Let also 

then the moment estimates of μ and γ are:

 and

where . To derive θ, we can simply perform the

following conversion:

θ = γ/(1 - γ)

Providing the proper set of weights is challenging because
{wi} is a function of the unknown parameter γ. Kleinman
[10] first offered an empirical weighting procedure and
suggested to set wi = ni or wi = 1 to obtain an initial approx-
imation of estimates of μ and γ using equation (4). Using
this estimation of γ to compute {wi}, one then can use
these "empirical" weights to arrive at a new estimate of μ.
In cases where γ estimates are negative, they are to be set
to zero. Chuang-Stein [2] proposed an improvement on
Kleinman's procedure by suggesting that the iteration be
carried further until the differences between two consecu-
tive sets of estimates for μ and γ are both smaller than
some predetermined value. The example that was given in
the paper [2] was 10-6.

Notations are simpler in cases where all ni's are equal,
then

The moment estimates of μ and γ are

 and

The Maximum Likelihood Estimates Method
As is written above, let pi = xi/ni, i = 1,2, ... k, where i
indexes the different studies, xi is the number of events in
the ith study and ni is the sample size of the study. The
maximum likelihood (ML) function involving α and β
can be written as
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where  is the beta function of α and β

and is used here to simplify equation (3). The log likeli-
hood function is then

where c is a constant. Next we will need to take the partial
derivative of the log likelihood function with respect to α
and β. The ML equations involving α and β are

where

The second derivatives of lnL are:

where

These second derivatives of the log likelihood function
can be used to form the Hessian matrix which, in turn, can
be used to derive the standard errors for the parameters.
An example will be given in a following section. Most
often μ is the main parameter of interest, and therefore we

present a direct estimation of it rather than proceeding
through α and β.

Define fx(x) (x = 0,1,2, ..., k) as the observed frequencies
of events from k trials. Then the likelihood of beta-bino-
mial can be also written as

Where P(x) has already been stated in (3). Let

 so that  is the total

sample size of all the individual trials combined.

The log likelihood function in terms of μ and θ is

where c is a constant and the ML estimators of  and 

are solutions of

These equations can be solved iteratively using the New-
ton-Raphson method [11].

Again, the second partial derivatives of the log likelihood
function can be used to form the Hessian matrix (H) at the
ML solution

which, after being inverted, can be used to derive the cov-
ariance matrix and the standard errors for the parameters:
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And the confidence intervals for  and  can be obtained

by

where Z1-α/2 is the 1-α/2 percentile of a standard normal
distribution function.

Once  and  are estimated, one can also derive  and

 from the relationships that μ = α/(α+β), θ = 1/(α+β). It

can easily be shown that the estimate of  is /  and

the estimate of  is (1 - )/ . If we substitute these esti-

mates for α and β in the beta-binomial model (3), then
the cumulative distribution can be calculated.

As we have shown above, either method can be used to
estimate the parameters of the beta-binomial distribution.
Readers who are interested in more details should consult
Griffiths [9] and Kleinman [10]. Researchers have imple-
mented the maximum likelihood estimation (MLE)
method in two popular commercial statistical software
packages. In addition, free statistical software, such as R
and WinBUGS, have methods for fitting the beta-bino-
mial model, but they require some programming.

One of those two popular commercial statistical software
packages is SAS (SAS Institute Inc., Cary, NC, USA). The
macro BETABIN written by Ian Wakeling [12] is freely
available. It borrows the existing SAS procedure
NLMIXED to provide a maximum likelihood estimation
of μ and θ. It provides not only the standard beta-bino-
mial model, but also Brockhoff's [13] corrected beta-bino-
mial model. Interested readers can also experiment
directly with Proc NLMIXED to fit the beta-binomial
model as others have done [14].

The other software is Stata (College Station, Texas). Gui-
marães provided the necessary computer commands for
beta-binomial estimations using the Stata command xtn-
breg with conditional maximum likelihood [15]. In addi-
tion, Guimarães emphasized the common knowledge
that the beta-binomial distribution was a special case of
the more general Dirichlet-multinomial (DM) distribu-
tion – with two parameters in this case. In the general
Dirichlet-multinomial distribution there are m parame-
ters, allowing far more than two (α and β) in the beta-
binomial distribution. In situations where one is indeed
concerned with multiple types of adverse events associ-
ated with the same exposure, expanding to the Dirichlet-

multinomial distribution is a logical solution. Technical
details of the multinomial model have been given by oth-
ers [15-17].

Test of overdispersion
Using the binomial model when the variability in the data
exceeds what the binomial model can accommodate
could result in an underestimation of the standard error of
the pooled event rate and thus increase the chance of a
Type I error. Ennis and Bi [5] described an experiment
with 10,000 sets of simulated overdispersed binomial
data where they found that the Type I error was 0.44 and
not the false assumption of 0.05. It is precisely because the
binomial model is unable to fit overdispersed binomial
data that the application of the beta-binomial is neces-
sary. So before one adopts the beta-binomial for the anal-
ysis of certain datasets, one must first examine whether
the data are overdispersed to the extent that the beta-bino-
mial model would be a better fit than the simple binomial
model. There are several ways to examine overdispersion.
We know that

where γ = 1/(1 + α + β). If we are able to estimate γ, we can
test whether γ is zero. If it is close to zero, then there is no
significant overdispersion, and the binomial model will
adequately describe the data. This test, however, has been
found to be less sensitive in detecting departure from the
binomial model because boundary problems arise as we
test whether a positive-valued parameter is greater than 0
(recall that α and β are positive parameters, and conse-
quently so are θ and γ) [5].

As one would expect, a likelihood ratio test can also be
used to test for overdispersion, but the same boundary
problem applies [18,19]. The null hypothesis is that the
underlying distribution is binomial while the alternative
hypothesis is that the distribution is beta-binomial. The
log-likelihood for the binomial model (interpreted to be
pooling the data from all studies without weighting) is

The likelihood ratio test is

χ1 
2 = 2 (LBB - LB) (16)

where LBB is the log-likelihood value for the beta-binomial
model (9) and LB is log-likelihood value for the binomial
model (15).
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Although a solution for the boundary problem has been
offered [20], there is no consensus on the optimal solu-
tion [21]. To avoid the boundary problem, we can use the
alternative – Tarone's Z statistic [22] – to test for overdis-
persion. This has been shown to be more sensitive than
the parameter test (e.g. test for γ being zero) and the log-
likelihood ratio test [5]:

where

This statistic Z has an asymptotic standard normal distri-
bution under the null hypothesis of a binomial distribu-
tion. In short, we recommend caution in using the
likelihood ratio test. It is better to combine it with Tar-
one's Z statistics. The Z statistics can also be used as a
goodness-of-fit test. It has been shown to be superior to
other goodness-of-fit measures [21]. We will be calculat-
ing Tarone's Z in our application example.

The Bayesian Approach
In the preceding sections we describe the beta-binomial
model within the frequentist framework of statistics.
Interestingly, in the Bayesian statistics field, the beta-bino-
mial model is commonly described in Bayesian statistics
textbooks as an example [23,24]. Since Bayesian statistical
methods are now increasingly used in clinical and public
health research, we hereby briefly describe the derivation
of the beta-binomial model in the Bayesian framework.
Some have noted that the Bayesian approach can provide
more accurate estimates for small samples [25,26].

Recall that the binomial distribution (in equation 1) is the
following:

Let the conjugate prior π(p|α, β) be a beta distribution
(i.e., if p in equation 1 follows the beta distribution)

where Γ is the gamma function. The beta priors are
selected because they are very flexible on (0, 1) and can
represent a wide range of prior beliefs. These are similar to

the reasons for selecting the beta distribution in the fre-
quentist framework. In addition, by starting with the beta
distribution as the conjugate prior, we ensure that the pos-
terior distribution is always a beta distribution, and thus
mathematically tractable for estimating the parameters.

For notational convenience, let μ = α/(α+β), M = α+β (i.e.
M = 1/θ), so that

In short, we again have a two-stage model:

Xi|pi~Bin(ni, pi)

pi~Beta (μ, M), i.i.d

In the Bayesian terminology, the beta prior distribution,
when updated with binomial data, gives a beta posterior
distribution. The Bayesian estimator can then be chosen
as the mean, median, or the mode of this marginal poste-
rior. In many situations, as long as the sample sizes are
reasonably large (n = 50 or more), our previous methods
of moment estimation and maximum likelihood are still
preferred in the Bayesian framework for the estimations of
mean and variance. There are other detailed mathematical
equations involved in Bayesian estimation of the beta-
binomial model for specific cases. Interested readers
could consult Lee and Sabavala [25] as well as Lee and Lio
[26].

Results
We will illustrate the application of the beta-binomial
method using an analysis that examined the adverse
effects of oral anti-fungal agents. Oral anti-fungal agents,
including terbinafine, itraconazole, and fluconazole, have
become the treatment of choice for onychomycosis and
dermatophytosis not responding to topical therapy. In
order to study the safety profiles of these agents, we
reviewed data from randomized and non-randomized
controlled trials, case series, and cohort studies that
enrolled patients having superficial dermatophytosis
(tinea pedis, tinea mannus, tinea copora, and tinea cruris)
or onychomycosis, aged 18 or above, receiving oral anti-
fungal therapy for two or more weeks. One outcome of
interest was the cumulative incidence of patients who
withdrew from the study because of adverse reactions [7].
Data for 41 treatment arms of terbinafine from 37 studies
(Table 1 and Appendix) are used as an example.

Event rates from different studies varied from 0 % to
13.89%. We apply the beta-binomial model with the
maximum likelihood method to estimate the pooled
event rates using SAS and SAS macro BETABIN. From all
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the eligible studies, we combine the data and obtain the
summary estimate of risks and its 95% confidence inter-
vals (CI).

The ML estimates for parameters μ and θ are  = 0.0344

and  = 0.0278. The estimate of the covariance matrix for

 and  is

In Table 2, we present different estimations of a pooled
proportion (event rates) using the binomial model and
the beta-binomial model. Using the binomial model, we
compute a binomial probability and variance as if all the
data were from a single study with a sample size of over
3,000. The pooled estimate is 3.70%, 8% higher than the
beta-binomial estimate of 3.44%. The standard error from
the collapsed data is 0.34%, misleadingly smaller than
that of the beta-binomial estimation of 0.59%.

The important issue naturally is the test of overdispersion
since that is the basis for preferring the beta-binomial

m̂

q̂

m̂ q̂

Cov( , )
. .

. .
.m q =

⎡

⎣
⎢

⎤

⎦
⎥

0 00004 0 00002

0 00002 0 00013

Table 1: Treatment arms of terbinafine included in pooled estimates

Treatment
Arm*

Sample Size
(No. of Patients – ni)

No. of Treatment
Termination Due to

Adverse Effect (xi)

Proportion of Treatment
Termination (pi = xi/ni)

1 184 7 3.80%
2 65 1 1.54%
3 33 1 3.03%
4 151 4 2.65%
5 24 0 0.00%
6 30 0 0.00%
7 20 0 0.00%
8 22 0 0.00%
9 50 4 8.00%

10 50 5 10.00%
11 18 0 0.00%
12 26 0 0.00%
13 72 0 0.00%
14 30 1 3.33%
15 16 0 0.00%
16 26 2 7.69%
17 95 8 8.42%
18 95 3 3.16%
19 186 0 0.00%
20 146 11 7.53%
21 142 2 1.41%
22 124 8 6.45%
23 56 1 1.79%
24 12 0 0.00%
25 50 0 0.00%
26 88 3 3.41%
27 48 0 0.00%
28 75 4 5.33%
29 76 0 0.00%
30 56 1 1.79%
31 153 9 5.88%
32 68 1 1.47%
33 120 13 10.83%
34 44 0 0.00%
35 84 0 0.00%
36 21 0 0.00%
37 145 3 2.07%
38 83 10 12.05%
39 68 3 4.41%
40 30 3 10.00%
41 120 3 2.50%

*Referenced separately in appendix
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model in these situations. Results from different methods
to evaluate overdispersion are presented in Table 2. As dis-
cussed in previous sections, θ and γ are indicators of over-
dispersion. They are significantly greater than zero in this
case (p < 0.05), indicating the presence of overdispersion.
We also conduct a likelihood-ratio test between the beta-
binomial and the binomial, and again the test shows that
there is significant overdispersion (p < 0.001). Finally, we
calculate Tarone's Z statistic, and the result is consistent
with other tests. It shows that the beta-binomial has better
goodness-of-fit than the binomial (p < 0.001). The fit that
the beta-binomial model gives for our example is also
graphically presented in Figure 2.

As we have shown above, under the beta-binomial model
the summary event rate is 3.44% with an estimated stand-
ard error of 0.59%. The θ is estimated to be 2.78% (Table
2), which gives an α estimate of 1.24 and a β estimate of
34.72. Once these parameters are estimated, we can use
the estimated beta-binomial model to examine the prob-
ability of observing, for example, 105 or more adverse
events in a new study of 1,000 subjects. Using equation 3,
that probability is 5% under our estimated beta-binomial
model.

Discussion
Along with the development of drugs, vaccines, and med-
ical products for unmet medical needs, more robust ana-
lytic methods are needed to quantify the risks associated
with the use of these agents, so that regulators and clini-
cians can rigorously assess the risk-benefit profiles of
medical products. While randomized controlled trials
have been established as the gold standard for efficacy
evaluation, comprehensive safety assessment requires a
collection of different methods. As any single trial is rarely
large enough to estimate precisely the probability of seri-
ous adverse events, large observational datasets or aggre-
gations of clinical trial results are necessary. A recent high
profile example [27] illustrated the need to combine
results from multiple studies to unearth safety signals that
may not be apparent in individual studies. Developing on
prior work by Chuang-Stein [2], we provide a more com-
prehensive background of the beta-binomial model, a
model that could have wider application in clinical and
public health research. In order to show new develop-
ments in the beta-binomial field over the past decade, we
explain and demonstrate that the beta-binomial method
can be used for the combination of heterogeneous studies
to estimate event rates.

Estimating the correct summary event rate based on heter-
ogeneous binomial data is so far the main reason for

Table 2: Estimation of proportion and tests of overdispersion

Methods Estimate Standard Error Lower 95% CI Upper 95% CI

Simple collapsed binomial 3.70% 0.34% 3.03% 4.34%
Beta-Binomial 3.44% 0.59% 2.28% 4.61%
Meta-analysis1 3.90% 0.61% 2.70% 5.09%

Test of Overdispersion

Estimate Standard Error Statistic p-value
Alpha 1.24 0.52 z = 2.40 0.02
Beta 34.7 15.08 z = 2.30 0.02
Theta 2.78% 1.20% z = 2.31 0.02
Gamma 2.71% 1.14% z = 2.38 0.02
Likelihood Ratio2 X1

2 = 129.91 < 0.001
Tarone's Z z = 7.95 < 0.001

Beta distribution for the binomial proportions based on exampleFigure 2
Beta distribution for the binomial proportions based on 
example.
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adopting the beta-binomial distribution. Once this is
accomplished, one might wish to examine whether spe-
cific attributes of the studies will have any meaningful
impact. The beta-binomial model can incorporate these
attributes into a regression model as covariates. For exam-
ple, the main purpose of the study might be to evaluate
the proportion of adverse events from all clinical trials
involving drug A. Different studies might have different
proportions of female subjects, and one may link the cov-
ariate, the proportion of female subjects, to the α param-
eter. In addition, different studies might include or
exclude certain comorbid conditions. The comorbidity,
defined as a binary variable, could also be included as a
covariate. One can then evaluate the likelihood of the
comorbidity increasing a specific side effect. As current
meta-regression methods are mainly applied to compara-
tive measures like relative risks, the advantage of the beta-
binomial model is that it can assess the correlation
between study attributes and absolute risks of events.

Traditional meta-analysis can also combine event rates
from heterogeneous sources by using the DerSimonian
and Laird method [28]. We applied this method to the
same dataset and placed the summary rate in Table 2, with
an estimate of 3.90% with a standard error of 0.51%. This
is in good agreement with our estimation using the beta-
binomial model. In medical product safety assessment,
however, being able to derive a clear probability distribu-
tion offers advantages that traditional meta-analysis can-
not, because the distributions allow the computation of
absolute risks or probabilities involved in decision analy-
sis. In the Bayesian framework, the beta-binomial model
also enables better incorporation of prior knowledge and
its associated uncertainty. In other words, even though
traditional meta-analysis can also combine event rates,
the adoption of the beta-binomial model can serve multi-
ple purposes.

Conclusion
In the process of pooling event rates from multiple stud-
ies, one must consider the existence of overdispersion and
the adequacy of the binomial model. In the example that
we have presented, we estimated the pooled proportion of
adverse events using the beta-binomial model. While we
mainly discussed the application in safety assessment, the
same method can be applied to assessment of efficacy of
treatment response [29].
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