BIVIC Medical Research
Methodology

Research article

Analysis of neonatal clinical trials with twin births
Michele L Shaffer*12, Allen R Kunselman! and Kristi L Watterberg3

O

BiolVled Central

Address: 'Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA, 2Department of Pediatrics, Penn State College
of Medicine, Hershey, PA, USA and 3Department of Pediatrics/Neonatology, University of New Mexico School of Medicine, Albuquerque, NM,

USA

Email: Michele L Shaffer* - mshaffer@hes.hmc.psu.edu; Allen R Kunselman - akunselman@hes.hmc.psu.eduy;
Kristi L Watterberg - KWatterberg@salud.unm.edu

* Corresponding author

Published: 26 February 2009 Received: |7 September 2008

BMC Medical Research Methodology 2009, 9:12  doi:10.1186/1471-2288-9-12

Accepted: 26 February 2009

This article is available from: http://www.biomedcentral.com/1471-2288/9/12

© 2009 Shaffer et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: In neonatal trials of pre-term or low-birth-weight infants, twins may represent 10—
20% of the study sample. Mixed-effects models and generalized estimating equations are common
approaches for handling correlated continuous or binary data. However, the operating
characteristics of these methods for mixes of correlated and independent data are not well
established.

Methods: Simulation studies were conducted to compare mixed-effects models and generalized
estimating equations to linear regression for continuous outcomes. Similarly, mixed-effects models
and generalized estimating equations were compared to ordinary logistic regression for binary
outcomes. The parameter of interest is the treatment effect in two-armed clinical trials. Data from
the National Institute of Child Health & Human Development Neonatal Research Network are
used for illustration.

Results: For continuous outcomes, while the coverage never fell below 0.93, and the type | error
rate never exceeded 0.07 for any method, overall linear mixed-effects models performed well with
respect to median bias, mean squared error, coverage, and median width. For binary outcomes, the
coverage never fell below 0.90, and the type | error rate never exceeded 0.07 for any method. In
these analyses, when randomization of twins was to the same treatment group or done
independently, ordinary logistic regression performed best. When randomization of twins was to
opposite treatment arms, a rare method of randomization in this setting, ordinary logistic
regression still performed adequately. Overall, generalized linear mixed models showed the
poorest coverage values.

Conclusion: For continuous outcomes, using linear mixed-effects models for analysis is preferred.
For binary outcomes, in this setting where the amount of related data is small, but non-negligible,
ordinary logistic regression is recommended.
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Background

Introduction

Neonatal studies involving singletons and twin births
pose a unique correlated data problem. Data from single-
tons and twins whose siblings are not included in the
study (unmatched twins) meet the basic assumption of
independence, while the remaining complete twin births
have a hierarchical structure. In the absence of twin births,
classical statistical techniques are valid and appropriate.
In the absence of singletons, hierarchical methods that
account or adjust for the nested structure can be applied.
Failing to account for the hierarchical structure within
complete twin births may impact the estimate of target
sample size and the precision of treatment effect estimates
and/or decisions regarding treatment efficacy. Therefore,
these effects may need to be quantified and accounted for
in studies that involve both singletons and twin births. If
the proportion of infants from complete twin pairs is
small, e.g., less than 5%, there may be minimal impact.
Additionally, methods that account for correlation are
computationally more difficult and may fail if too little
data are available to adequately model or appropriately
adjust for correlation. Thus, in some circumstances, it is
possible classical statistical techniques may be sufficient
or preferred.

In the very low birth weight group (501-1500 g), 20% or
more of infants are products of multiple gestations, prima-
rily twins, due in part to the increasing number of pregnan-
cies resulting from assisted reproductive technology [1,2].
It is unknown whether twin outcomes are more similar
than unrelated individuals due to genetic similarity, or
more different than unrelated individuals because of
increased illness severity of one twin, usually the "B", or
second twin.

While ophthalmic studies also can produce data where a
small proportion of observations are correlated, there are
important distinctions between within-birth correlation
and between-eye correlation. All sets of eyes share identi-
cal genetic information, whereas only identical twins have
identical genetic makeup. Before the introduction of
assisted reproductive technology, 25-30% of twin births
were monozygotic [3]. Taking into consideration repro-
ductive technology, less than 10% of twin births in the
very low birth weight population are expected to be
monozygotic. Eyes from the same subject are commonly
expected to show greater similarity than eyes from unre-
lated subjects in reaction to a particular stimulus or dis-
ease [4-7]. However, while monozygotic twins may be
expected to show greater similarity, for dyzygotic twins
other factors such as sex, birth weight discordance, and
like-sex/unlike-sex pairing may be more important [8-10].
Thus, monozygotic twins represent one end of the spec-
trum of genetic similarity, rather than a representation of
the entire population of twins. It also should be noted
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that zygosity is not always known at birth and is not rou-
tinely collected for neonatal studies; however, classical
twin studies do assume different within-birth correlations
for monozygotic and dyzygotic twins [11].

Motivating example: The IVIG trial

The Randomized Clinical Trial of Intravenous Immune
Globulin to Prevent Neonatal Infection in Very-Low-Birth-
Weight (501-1500 g) Infants (IVIG) trial was a multi-
center, two-phase controlled trial of 2416 infants con-
ducted by the NICHD Neonatal Research Network [12].
Infants were randomized within 72 hours of birth to an
intravenous immune globulin (IVIG) group (1204) or a
control group (1212), stratified by birth weight (501-
1000, 1001-1550 g) and clinical center. Control infants
were given placebo infusions during phase 1 of the study (n
= 623) but were given no infusions during phase 2 (n =
589). Infants weighing 501 to 1000 g at birth were given
900 mg of immune globulin per kg of body weight, and
infants weighing 1001 to 1500 g at birth were given 700 mg
per kg within 24 hours of randomization. The infusions
were repeated every 14 days until the infants weighed 1800
g, were transferred to another center, died, or were sent
home from the hospital. Serum IgG levels (in mg/dL) were
measured at enrollment and before each infusion. The trial
reported a multiple gestation rate of 16% with twins rand-
omized independently as individuals; pregnancies of three
or more fetuses were excluded from the study. Thirteen per-
cent of the infants enrolled in the study were twins whose
siblings also were enrolled. The primary outcome was the
development of confirmed nosocomial infection, includ-
ing septicemia, meningitis, or urinary tract infections, dur-
ing the first 120 days of life. Secondary outcomes included
mortality and neonatal morbidity, assessed in terms of
duration of ventilator support, frequency of bronchopul-
monary dysplasia, and duration of hospitalization.

Analytic approaches

Gates and Brocklehurst compared methods of analysis for
binary outcomes in randomized controlled trials where
the unit of randomization was the mother (or equiva-
lently, birth) [13]. The methods compared were 1) assum-
ing independence among infants, 2) analyzing outcomes
per mother, 3) randomly selecting one infant from each
multiple birth for inclusion in the analysis, and 4) cluster
trial methods. Cluster trial methods were found to be
advantageous for outcomes that are most appropriately
analyzed by infant rather than mother. However, these
methods cannot be applied in clinical trials where infants
from multiple pregnancies are randomized independently
or to opposite treatments and do not allow adjustment for
covariates.

Gates and Brocklehurst suggested that more complicated
statistical techniques such as mixed-effects models and
generalized estimating equations (GEE) are more difficult
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to apply and understand [13]; however, both methods are
readily available in several comprehensive statistical pack-
ages, including SAS (SAS Institute Inc., Cary, North Caro-
lina, USA), R (R Foundation for Statistical Computing,
Vienna, Austria), Stata (StataCorp LP, College Station,
Texas, USA), and SPSS (SPSS Inc., Chicago, Illinois, USA).
Both methods allow adjustment for covariates and permit
consideration of additional randomization schemes.

Linear mixed-effects models (LMEM) introduced by Laird
and Ware allow for both correlation of outcomes and het-
erogeneity of variance for continuous outcomes [14]. The
structure of the correlation between observations is mod-
eled through the specification of a "within-subject," or
here within-birth correlation matrix. For binary out-
comes, a generalized linear mixed model (GLMM) can be
used by adding a random term to an ordinary logistic
regression model which induces a within-birth correla-
tion [15,16]. GLMM have been reviewed more recently by
Molenberghs and Verbeke and Hedeker and Gibbons
[17,18].

Rather than explicitly modeling the within-birth correla-
tion, GEE can be used to obtain a robust sandwich estima-
tor of the standard error for the treatment effect, which
can be used for hypothesis testing or confidence interval
construction [19,20]. GEE are applied using a working
correlation matrix to account for correlated outcomes and
yield consistent, but not necessarily efficient, estimators of
the model parameters. The within-birth correlation is
treated as a nuisance, or something to be adjusted for, but
is not of primary interest.

One difference between the mixed-effects models and
marginal models, including GEE, is that the treatment
effects estimated from the marginal models show the
effect of treatment averaged over the population of sub-
jects, while mixed-effects models provide conditional esti-
mates obtained by conditioning on the random effect.
There is no difference in scale for LMEM and the corre-
sponding marginal models, so this distinction is often
ignored; however, there is a difference in scale for nonlin-
ear models, such as the logistic regression model [18]. The
estimates obtained from the GLMM formed by adding a
random effect to the ordinary logistic regression model
can be marginalized using the formula

B = Bre /(c*? +1)1/? (1)

where o 18 the marginalized parameter estimate, B RE 18
the parameter estimate from the GLMM which includes a
random effect, 72 is the estimated variance of the random
effect, and ¢ =163 /(157) [21].
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While these established methods exist for handling corre-
lated data, it is unknown which methods are optimal for
studies that may have as little as 10% of the individuals
related.

For ophthalmic data, Glynn and Rosner compared ordi-
nary analysis of variance (ANOVA) and a special case of
the linear mixed-effects model for continuous outcomes
and logistic regression and GEE for binary outcomes using
two observational studies where all patients contributed
outcomes from both eyes [22]. Additionally, 50% of sub-
jects had one eye randomly deleted from each of the data
sets to examine the effect of having a smaller proportion
of related data. Confidence intervals were appropriately
wider and standard errors larger when the correlation was
taken into account. Glynn and Rosner presented further
comparisons of logistic regression and GEE for binary out-
comes under six conditions based on one of the previ-
ously considered observational studies [23]. One
thousand simulated data sets were used for each condi-
tion. Type I error rates and power for logistic regression
were found to be inferior to GEE. While eyes from the
same subject were assumed to be more similar than unre-
lated eyes, the range of correlation covered by the six sim-
ulated data sets was not clear.

Leite and Nicolosi proposed a weighted logistic regression
method to account for the correlation between eyes for
binary outcomes [24]. The weighted approach, which is
similar to GEE in that variance is inflated by a factor that
is a function of the between-eye correlation, was com-
pared to ordinary logistic regression. Since eyes from the
same subject were assumed to be more similar than eyes
from unrelated subjects, simulations studies were con-
ducted across a range of positive correlations (0.1-0.9),
and the correlation was allowed to differ by an exposure
(or treatment) that had only two levels. Two sample sizes
were considered, 100 per group and 40 per group. The
unit of randomization was the subject so that both eyes
received the same treatment. One thousand simulated
data sets were used for each case. The simulations showed
inflated type I error rates for ordinary logistic regression,
while the weighted approach performed well over the
range or correlations considered.

The purpose of this paper was to determine if and when
mixed-effects models or GEE were operationally superior
to classical statistical techniques that assume independ-
ence for two-armed, neonatal clinical trials with continu-
ous or binary outcomes, while taking into account the
randomization scheme.

Methods
Simulation studies were conducted using SAS Version 9 to
operationally compare linear regression (one-way
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ANOVA when no covariates are present), LMEM, and GEE
for continuous outcomes and ordinary logistic regression,
GLMM, and GEE for binary outcomes in two-armed clin-
ical trials.

With i = 1, ..., n total subjects, the TTEST procedure was
used to fit regression models of the form

Vi=a+ XiB+ ¢ (2)

where y; is the response for subject i, « is the intercept
parameter, X; is the treatment group indicator variable for
subject i, £ is the treatment effect parameter, and ¢ is the
error for subject i. Using restricted maximum likelihood
estimation [25], the MIXED procedure was used to fit
LMEM of the form

yi=Xif+¢ (3)

where y; is the n; x 1 response variable for birth i, X; is the
n; x 2 design matrix for birth i, B is the 2 x 1 parameter vec-
tor which includes the intercept and one treatment effect
parameter, and ¢; is the n; x 1 error vector. g; is assumed to
be normally distributed with zero mean and a compound
symmetric variance-covariance matrix. The procedure
LOGISTIC, specifying the maximum likelihood method
based on iteratively reweighted least squares [15], was
used to fit ordinary logistic regression models of the form

log| —Li=D)
1-P(yi=1)

where y, is the binary response for subject i that can take
thevalue 0 or 1, a is the intercept parameter, X;is the treat-
ment group indicator variable for subject i, £ is the treat-
ment effect parameter, and ¢ is the error for subject i.
Using marginal maximum likelihood [26], the NLMIXED
procedure was used to fit GLMM of the form

}=a+Xiﬂ+s,- (4)

P(yij=1)

9 =g+ X BtV e 5
1_P(yij=1) a 1]ﬁ Vi gl] ( )

Table I: Parameter values for simulation studies
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where y;; is the binary response for subject j within birth i
that can take the value 0 or 1, « is the intercept parameter,
Xj; is the treatment group indicator variable for subject j
within birth i, s the treatment effect parameter, &;is the
error for subject j within birth i, and v;is the random birth
effect, assumed to be normally distributed with mean 0
and variance 72. The GENMOD procedure was used for
the GEE approach, assuming an exchangeable structure
for the working correlation [21].

A variety of scenarios were considered, varying the rand-
omization scheme for complete twin pairs, sample size,
proportion of infants from complete twin pairs, correla-
tion within twin births, and effect size. Values of parame-
ters used in the simulation studies are shown in Table 1,
and 10,000 data sets were generated for each simulation
case. Operating characteristics collected included type I
error rate, coverage, median bias, mean squared error, and
median width. All tests were conducted at the 0.05 level of
significance and 95% confidence intervals were com-
puted.

For continuous outcomes singleton and unmatched twin
data were generated using a normal distribution. The
mean and variance of the normal distribution were deter-
mined by the standardized effect sizes shown in Table 1.
Complete twin pair data were generated using a bivariate
normal distribution for which the correlation is set by the
correlation assumed within twin pairs.

For binary data singleton and unmatched twin data were
generated using a binomial distribution. Complete twin
pair data were generated using Rosner's extension of the
beta-binomial model [27]. Conditional on the treatment
assignment, the marginal probability of an infant from a
complete twin pair having an event was the same as the
probability of a singleton or unmatched twin having an
event.

A permuted blocks approach was used for randomization.
Treatment assignments for complete twin pairs depended
upon the randomization scheme. When twins were rand-
omized as individuals, the process was the same as for sin-

Simulation parameter

Values

Randomization of complete twin pairs
Total sample size
Proportion of infants from complete twin pairs
Continuous outcomes
Standardized effect size
Within-birth correlation
Binary outcomes
Treatment effect, measured on log scale
Log odds ratio measuring within-birth correlation

Same arm, independently, opposite arms
250, 500
0.1,0.2

0,05, 1, 1.5
0,0.25,0.5

-1,-05,0
-2,-1.5,-1,-0.5
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gletons and unmatched twins. When complete twin pairs
were always assigned to the same treatment or opposite
treatments, a treatment assignment was generated for a
single twin in the pair, automatically determining the sec-
ond twin's assignment.

If convergence problems were encountered for the GLMM
or GEE approaches with binary data, an ordinary logistic
regression analysis was performed. In order to make the
results comparable for the GLMM approach, the parame-
ter estimates were marginalized using equation (1).

Results and discussion

Simulation studies

Selected simulation results for treatment effect hypothesis
testing for continuous outcomes are shown in Additional
file 1. Generally, the median bias was small, regardless of
the values of simulation parameters considered. Mean
squared error decreased as the sample size increased; oth-
erwise, there was little change in mean squared error with
regard to the other simulation parameters. When there
was no within-birth correlation, ANOVA and LMEM per-
formed similarly with regard to coverage and median
width, regardless of the randomization method, sample
size, proportion of twins, and effect size. GEE showed
poorer coverage than either ANOVA or LMEM when there
was no within-birth correlation, producing confidence
intervals that had smaller median width. When within-
birth correlation was present and randomization of twins
was to the same arm, GEE tended to be a compromise
between ANOVA and LMEM with regard to coverage and
median width. LMEM showed the best performance with
regard to coverage and median width. When within-birth
correlation was present and randomization of twins was
done independently or to opposite arms, GEE showed the
poorest performance with respect to coverage. When ran-
domization of twins was done independently, LMEM
showed the best performance for all but the largest sample
size and within-birth correlation. However, the differ-
ences between ANOVA and LMEM in these cases were
modest. When randomization of twins was to opposite
treatment arms, LMEM provided coverage values closer to
the nominal value, while producing confidence intervals
with smaller median width. ANOVA produced confidence

Table 3: Analysis of day 14 1gG levels (mg/dl) for the IVIG trial
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Table 2: Worst performance values for estimation of within-
birth correlation for continuous outcomes

Operating characteristic

Randomization Method Mean bias Median bias
Same LMEM -0.014 0.019
GEE 0.053 0.050
Independent LMEM -0.020 0.014
GEE 0.047 0.042
Opposite LMEM -0.015 0.020
GEE 0.060 0.059

intervals that were too wide with coverage beyond the
nominal level. Generally, no method performed very
poorly; the coverage never fell below 0.93, and the type I
error rate never exceeded 0.07. The worst performance val-
ues for estimation of within-birth correlation for continu-
ous outcomes are shown in Table 2. Overall, LMEM
provided a less biased estimate of within-birth correlation
than GEE.

Mathematically, one can show under simplified condi-
tions for continuous data that the mean and variance of

the estimated treatment effect, Y7 — Y., for a two-armed

clinical trial are given by

E(Yy =Ye) = py - pic,

V(Yy - Y¢) = V(Yy) + V(Ye) - 2Cou(Yr, Ye)

o?/n+c?/n—0=20%/n, when p = 0 regardless of randomization,
02+ 021 = 2 1= 201 = 2ppp [ 1,

when randomized to opposite arms,

=1 (@2t prnp [ 1) + (02 + Pryinp [ 1) = 0 = 262 1+ 2p 50 [ 1,
when randomized to the same arm,

(02 /14 Priuinp | 20) + (2 1+ Priyin | 20) = Pruinp [ 1= 20 [,
when randomized independently,

where o2 is the variability of the outcome variable, n is the
sample size per group, pp,, i the proportion of infants
from complete twin pairs, and p is the correlation within
twin births. Simplifying assumptions include treatment
allocation that is perfectly balanced, equal numbers of
complete twin pairs within treatment arms, and treatment

Birth weight stratum Analysis Estimated correlation Estimated treatment difference Standard error 95% Confidence interval

501 to 1000 g ANOVA N/A 194.05 10.47 (173.50,214.61)
LMEM 0.41 194.24 10.42 (173.78,214.71)

(n = 743 babies) GEE 0.44 194.34 10.37 (174.02,214.65)

1001 to 1500 g ANOVA N/A 177.23 10.21 (157.20,197.26)
LMEM 0.54 179.79 10.03 (160.11,199.47)

(n = 1267 babies) GEE 0.36 178.74 10.06 (159.03,198.46)

Randomization was done independently for twins. The multiple gestation rates were 15% and 16% for the 501 to 1000 g babies and 1001 to 1500 g

babies, respectively.
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Table 4: Analysis of bronchopulmonary dysplasia for the IVIG trial
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Birth weight stratum Analysis Estimated correlation Odds ratio Standard error 95% Confidence interval

501 to 1000 g Logistic N/A 0.912 0.122 (0.702,1.185)
GLMM 0.438 0.898 0.127 (0.649,1.146)

(n =903 babies) GEE 0.361 0.901 0.122 (0.691,1.175)

1001 to 1500 g Logistic N/A 0.944 0.155 (0.683,1.303)
GLMM 0.537 0.923 0.138 (0.651,1.194)

(n = 1509 babies) GEE 0.557 0.882 0.155 (0.626,1.244)

Randomization was done independently for twins. The multiple gestation rates were 15% and 16% for the 501 to 1000 g babies and 1001 to 1500 g

babies, respectively.

allocation in the proportions 0.25, 0.25, and 0.5 for con-
trol-control, treatment-treatment, and control-treatment,
respectively, when twins are randomized independently.
Thus, the over- or under- estimation of the variability is at
most 2/n, which is small when n is large.

Selected simulation results for treatment effect hypothesis
testing for binary outcomes are shown in Additional file 2.
Regardless of the simulation parameters, there was little dif-
ference between ordinary logistic regression and GLMM with
respect to median bias and mean squared error. When rand-
omization of twins was to the same treatment arm, GEE
tended to produce estimates with greater median bias (in
absolute terms) and mean squared error; however, this pat-
tern did not persist when randomization was done inde-
pendently or to opposite treatment arms. Ordinary logistic
regression showed the best performance with respect to cov-
erage when randomization of twins was to the same treat-
ment arm, and the sample size was 250. When the sample
size was 500, GLMM showed better performance, but ordi-
nary logistic regression still performed well. There were cases
when randomization of twins was to the same treatment arm
where GEE produced wider intervals with lower coverage,
which is consistent with the bias finding. GLMM showed the
poorest performance with respect to coverage, producing
confidence that had smaller median width, when randomi-
zation of twins was done independently or to opposite treat-
ment arms, regardless of the other simulation parameters.
Ordinary logistic regression showed the best performance
with respect to coverage when twins were randomized inde-
pendently, while the median width was not markedly differ-
ent from the intervals produced by GEE. When
randomization of twins was to opposite treatment arms,
ordinary logistic regression and GEE performed similarly
with respect to coverage and median width. No method per-
formed very poorly; the coverage never fell below 0.90, and
the type I error rate never exceeded 0.07.

When using GLMM, the intraclass correlation coefficients
(ICCs) were estimated using

2/t +7?/3) (6)

which is applicable for a logistic model with normally dis-
tributed random effects [18].

The median ICCs were 0, and the mean ICCs were very
small. When using GEE, the mean and median correla-
tions estimated using Pearson residuals were negative.
Thus, neither approach provided a useful measure of
within-birth correlation for twin pairs.

The IVIG trial revisited

Analyses of day 14 IgG levels using ANOVA, LMEM, and
GEE and separated by birth weight group are shown in
Table 3. Overall, within birth weight groups the estimated
treatment differences (IVIG group - control group) were
similar. Given the relatively large treatment differences in
both birth weight groups, the small changes in standard
error did not affect the inference. In all cases, infants
treated with IVIG showed significantly higher levels of IgG
at day 14.

Analyses of bronchopulmonary dysplasia using ordinary
logistic regression, GLMM, and GEE and separated by
birth weight group are shown in Table 4. The estimates
from GLMM have been marginalized using (1) to allow
direct comparisons with the other results. Overall, within
birth weight groups the estimated odds ratios were simi-
lar, and the small changes in the standard error did not
affect the inference. It is interesting to note that the stand-
ard error did not change within birth weight group when
comparing the ordinary logistic regression and GEE anal-
yses; however, the odds ratio did change. In all cases,
infants treated with IVIG had lower odds of bronchopul-
monary dysplasia, although these results were not statisti-
cally significant.

Conclusion

For continuous outcomes, using LMEM is recommended
in comparison to either ANOVA or GEE, taking into con-
sideration the following operating characteristics: median
bias, mean squared error, coverage, and median width.
Additionally, LMEM provide a measure of the within-
birth correlation which may be of clinical interest. These
results show there is little penalty to estimating a correla-
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tion within twin births, even when none is present. Given
that we only need to estimate one additional parameter
for the within-birth variance-covariance matrix, this result
is not unexpected. Also, the mechanism of randomization
does not markedly change the operating characteristics of
LMEM. As the differences in variability of the estimated
treatment effect for the three randomization schemes con-
sidered is small when the sample size is large, this result is
logical given the sample sizes considered.

For binary outcomes, overall in the setting of these analyses
were the amount of related data is small, but non-negligible,
ordinary logistic regression is recommended in comparison
to either GLMM or GEE. While these results may appear
inconsistent with the results of the simulations for continu-
ous outcomes, the relative amount of information available
to estimate the correlation within twin births is less with
binary outcomes than with continuous outcomes. Thus, one
explanation is that the estimates of treatment effects
obtained by ignoring the correlation within twin births and
using ordinary logistic regression are better than estimating
treatment effects in the presence of a poor estimate of corre-
lation. Additionally, as estimates from GLMM require mar-
ginalization in order to make them comparable to the
estimates derived from ordinary logistic regression and GEE,
the confidence intervals considered were estimated using
delta method. There may be operationally superior methods
of deriving confidence intervals that would improve the per-
formance of GLMM.

In the absence of covariates, LMEM are recommended for
the analysis of continuous outcomes and in this limited
setting ordinary logistic regression for binary outcomes.
Future work includes sensitivity analyses to investigate the
impact of adding covariates such as sex and birth weight.
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