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Abstract

Background: Assessing agreement in method comparison studies depends on two fundamentally
important components; validity (the between method agreement) and reproducibility (the within
method agreement). The Bland-Altman limits of agreement technique is one of the favoured
approaches in medical literature for assessing between method validity. However, few researchers
have adopted this approach for the assessment of both validity and reproducibility. This may be
partly due to a lack of a flexible, easily implemented and readily available statistical machinery to
analyse repeated measurement method comparison data.

Methods: Adopting the Bland-Altman framework, but using Bayesian methods, we present this
statistical machinery. Two multivariate hierarchical Bayesian models are advocated, one which
assumes that the underlying values for subjects remain static (exchangeable replicates) and one
which assumes that the underlying values can change between repeated measurements (non-
exchangeable replicates).

Results: We illustrate the salient advantages of these models using two separate datasets that have
been previously analysed and presented; (i) assuming static underlying values analysed using both
multivariate hierarchical Bayesian models, and (ii) assuming each subject's underlying value is
continually changing quantity and analysed using the non-exchangeable replicate multivariate
hierarchical Bayesian model.

Conclusion: These easily implemented models allow for full parameter uncertainty, simultaneous
method comparison, handle unbalanced or missing data, and provide estimates and credible regions
for all the parameters of interest. Computer code for the analyses in also presented, provided in
the freely available and currently cost free software package WinBUGS.

Background yield different empirical values. As such, evaluation of
Accurate measurement of the variable of interest is funda- ~ measurement quality is a central issue in deciding the util-
mentally important in any health research or practice set- ity of any instrument, method or observer [1]. Measure-

ting. However, it is widely recognised that measurements = ment validity and reproducibility are essential elements in
simultaneously made on the same subject or specimen by  determining this quality. Validity is the degree to which a
different instruments, methods or observers invariably =~ measurement measures what it purports to measure and
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reproducibility is the degree to which a measurement pro-
vides the same result each time it is performed on a given
subject or specimen [2]. Reproducibility is invariably
assessed using agreement analysis of within (intra) and
between (inter) instrument, method or observer measure-
ment comparison studies. For ease of exposition, we shall
refer to instrument, method or observer comparisons sim-
ply as method comparisons hereafter.

In measurement method comparison studies, the main
interest is to determine whether the measurements made
on the same subject or specimen by different methods can
be used interchangeably [3,4]. Typically, measurement
method comparison studies are motivated when newer,
less invasive, safer or cheaper measurement techniques
become available and we wish to assess the agreement
between them and some "gold standard" or existing tech-
nique. Lack of agreement between different methods is
inevitable, as all instruments measure with some error,
but the questions of interest is by how much do the meth-
ods disagree and is this difference important? Multiple
statistical strategies exist that can be used to assess this
form of agreement [3], including the Bland-Altman limits
of agreement approach [4-6], regression techniques [7,8],
nonparametric methods [6], and survival-agreement plots
[9]. As the Bland-Altman limits of agreement approach is
simple to employ, practical, and detects bias, it has
become the preferred method within health research in
recent years [3,10].

In its simplest form, the Bland-Altman limits of agree-
ment approach compares unreplicated paired measure-
ments between two methods over a number of subjects or
specimens [5]. A graphical depiction of differences
between paired observations versus their average is typi-
cally presented in a scatter-plot. Generally, superimposed
on the scatter-plot is a horizontal line indicating bias (cal-
culated as the mean difference between measurement

pairs, d ) and horizontal lines giving the 95% limits of
agreement (calculated, assuming the differences are
approximately normally distributed, using the standard

deviation of the differences, s, via d + 1.96 x 5). The limits
of agreement define the range within which 95% of the
differences between measurements by the two methods
are predicted to lie. The scatter-plot is used to determine
whether any patterns exist in the data, thereby potentially
violating the method's assumptions, or revealing whether
data transformation is necessary. A histogram of the
paired differences ordinarily accompanies the scatter-plot
and should be normally distributed. Only once these
checks are completed and assumptions satisfied can an
assessment be made to the acceptability of the quantified
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level of agreement for clinical or epidemiological pur-
poses.

At times, however, more than two measurement observers
or instruments are of particular interest and simultane-
ously assessed. For example, the research question that
motivated this paper was where should pedometers
(devices for counting steps) be positioned on children
(left hip, right hip, or the back) to give best agreement
with observed step counts (the 'gold-standard')? Most sta-
tistical approaches use separate pair-wise comparisons of
methods in these situations [6]. However, this situation
lends itself to a multivariate form of analysis.

Measurement repeatability is important in measurement
method comparison studies because it limits the amount
of agreement which is possible [5,8]. If methods have
poor repeatability then there is likely to be considerable
variation in repeated measurements on the same subject
or specimen thus resulting in poor agreement. Given this
importance of repeatability, Bland and Altman advocated
in their 1986 paper a design that allowed estimation of
both limits of agreement between two methods and coef-
ficients of repeatability for each method [5]. However, in
2003, these authors note, to their chagrin, that this
approach has not been widely adopted by researchers [4].

It might be opined that one of the primary reasons why so
few repeatable measurement studies have been under-
taken is due to the lack of readily available and easily
implemented statistical machinery for the analysis of such
data, especially if the number of replicates is unbalanced
or some data are missing. In an effort to circumvent this
problem, Bland and Altman in 1999 presented analytical
techniques similar to their limits of agreement approach
to quantify the repeatability of a method where the under-
lying values for subjects remain static over replications
(where values can be considered as being exchangeable)
using one-way analysis of variance methods and variance
component techniques [6]. They also described a method
for analysing replicated data in pairs where several pairs of
measurements are made by two methods on each subject
or specimen where the underlying true value changes
from pair to pair (here the measurement pairs are consider
non-exchangeable). While most of these methods are
straightforward and relatively easily implemented, some
of the assumptions are restrictive and potentially unrealis-
tic [3,8]. Moreover, should there been more than two
methods under consideration then the proposed tech-
niques are not easily generalised to simultaneously assess
these methods.

In 2004, Carstensen described more general regression
and variance component methods for the analysis of such
data [8]. While conceptually appealing, these methods
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can be difficult to implement thereby limiting their utility.
Recent energies by Carstensen and colleagues have been
to report simplified versions of his methods and develop
new techniques with greater practical utility [11].

Until now, there have been no published Bayesian meth-
ods focusing on measurement method comparison stud-
ies. This is perhaps surprising given the increased
utilisation of Bayesian techniques and their apparent suit-
ability to this type of problem. In a complementary anal-
ysis of repeated measurements of paired outcomes data, a
multivariate hierarchical Bayesian method has already
been successfully employed and many salient advantages
described [12]. Bayesian methods have the advantage of
embodying and yielding parameter distributions rather
than using point-estimates; the balance of the data is
unimportant, multiple methods can be compared simul-
taneously in a single analysis, they are readily imple-
mented and interpreted; and, they are easily generalised to
more complex study designs and hierarchies [12-14]. As
bounded prior distributions can be incorporated into
Bayesian analyses, sensible posterior distributions and
credible regions can be derived for all parameters of inter-
est, and many convergence or computational problems
associated with non-Bayesian methods can be eliminated.
Moreover, the methods are easily extended to include
informative prior distributions, allow covariates and sub-
ject subgroup structures to be incorporated, and provide
probabilistic subject specific and overall group results [12-
14].

Based on the limits of agreement approach framework,
this paper advocates assessing agreement in repeated
measurement method comparison studies using a fully
parametric multivariate hierarchical Bayesian approach.
Two models are proposed in this paper; the selection of
the appropriate analysis depends on the underlying values
of the variable of interest. Like that propounded by Bland
and Altman in 1999, one model assumes exchangeable
values for each subject while the other accommodates
non-exchangeable values [6]. Section 2 describes the two
related statistical models we employ. Using data previ-
ously presented and analysed by Bland and Altman [6]
and new data from Oliver and colleagues [15], we illus-
trate the use of the proposed models with numerical
results in Section 3. Concluding remarks are then pre-
sented in Section 4.

Methods

Specification of the hierarchical Bayesian models
Depending on the underlying values of the variable of
interest, two models are considered, namely: (i) an
exchangeable multivariate hierarchical Bayesian model
(HB,); and (ii) a non-exchangeable multivariate hierar-
chical Bayesian model (HB,).
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Exchangeable multivariate hierarchical Bayesian model
(HB))

Consider a measurement method comparison study that
is conducted usingm = 1,..., M methods, M>2 oni=1,..,
N subjects and that for each method and subject r = 1,...,
R,,; repeated measurements are made. Note that the

number of repeated measurements can vary by method
and subject, and measurements for the M methods need
not be made simultaneously as the underlying values for
subjects are assumed to remain static over all replications.
Let x,,;, denote the observed value obtained using method
m on subject i for replicate r. Suppose that the repeated
values on each subject within each method can be consid-

ered exchangeably (i.e. the order of x,,;;,..., X,z =~ values

for any given method m and subject i are interchangeable)
then an intuitive approach is to model the within and
between subject levels using a hierarchical model.

Exploiting the exchangeability assumption, we assume
that the first or observation level of the model can by rep-
resented by

KXinir ™ MVN(/umi' G))

where MVN(.,.) denotes a multivariate normal distribu-
tion, u,,; is the underlying mean value for method m and
subject i, and © is the M x M dimensional covariance
matrix made at this observation level. Further, we assume
that the second or subject level of the hierarchical model
can given by

Hpmi ™ MVN( Hm' Q)

where 6, is the overall population means for method m,
and Q is the M x M dimensional covariance matrix at the
subject level. To complete the full parameterization, prior
distributions need to be specified for 4,,..., 6, ® and Q
and will depend on the information available.

It is straightforward to see that the bias between any two
methods, y and z, such thaty=1,..,M,z=1,.., Mandy #
z, is given by

B()/, Z) = 9)/ - HZ.

Note that By, ;) = -B(, ,) and so it is convenient to limit y and
z,suchthaty=1,..,M-1,z=2,., M and y <z This formula-
tion of By, . implies that the distribution of bias remains
constant over the full measurement range for methods y and
z. If this assumption is found to be too restrictive, then it may
be relaxed provided sufficient information is available. We
note that the subjects chosen within the sample may not nec-
essarily themselves follow a normal distribution as measure-
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ment method comparison studies often select subjects that
give a wide distribution of the quantity measured rather than
some random selection. However, the population of subjects
that the selected subjects are drawn from can frequently be
assumed to follow a normal distribution and so this assump-
tion is often reasonable; although, with evidence to the con-
trary, other distributional forms may also be adopted.

The specification of the M x M dimensional covariance

matrix O at the first level forces the within subject variance

2

of measurements for method m (denoted by swithin(m))

and the covariance of measurements between two meth-

ods y and z (denoted by r(zy'z) ) to be identically distrib-

uted across all subjects i = 1,..., N. If there is good reason
to suspect that these assumptions are too restrictive or
flexible, then they can be modified or difference covari-
ance specifications formulated. For instance, with
exchangeable measurements made simultaneously across
methods then it makes intuitive sense for the off-diagonal
elements of the covariance matrix ® to be unrestricted.
However, should the measurements for the M methods be
made at different times, independently from each other,
then the off-diagonal elements of ® might be constrained
to 0. The M x M dimensional covariance matrix Q at the
second level gives the between subject variance (denoted

2 .
by Stetween(m) ) and covariance between methods.

Through simulation, this specification of the hierarchical
Bayesian model allows marginal distributions for a
number of parameters of interest to be easily determined,

thereby providing means for estimation of means and

2

credible regions. In particular, for model m the S within(m)

_ 2 _ . .
= O Spemeen(m) = omm and the intra-class correlation

coefficient ICC,, = Q,,,,/(Qn + ©,,,n) are readily obtained.
Although widely used, we note that the utility of intra-
class correlation coefficients in method comparison stud-
ies has been questioned [10]. To compare against non-
Bayesian approaches, it is also of interest to report the
within subject covariance of measurements between

methods y and z, T(Zyrz) =0

¥z

Non-exchangeable multivariate hierarchical Bayesian
model (HB,)

When we have repeated measurements by M methods
made simultaneously on the same subject where the sub-
ject's underlying value could be a continually changing
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quantity, we can estimate the limits of agreement by mod-
elling measurement pair differences [6].

As before, we let x,,;,, denote the observed value obtained
using method m (m = 1,..., M) on subjecti (i = 1,..., N) for
replicater (r = 1,..., R,;;) Now let
d(y, 2)ir = Xyir = Xzir

be the difference between observed values of two meth-
ods, yand z, such thaty=1,..,M-1,z=2,.., Mand y <z,
for subject i and repeated measure r. Note, here, that each
wave of repeated measurements are made simultaneously
by all M methods under investigation. Thus the number
of repeated measurements can vary by subject but not by
method within subject, and d;,, ,;, will be missing if either
or both x,;, and x,;, are missing.
For M different methods we have M!/2!(M - 2)! different
pair-wise comparisons. However, if there is no or negligi-
ble missing data for any of the M different methods, then
there are linear dependences in these differences over all
potential different pair-wise comparisons and only M - 1
comparisons are needed to determine the rest. For exam-
ple, if we have three methods J, R and S, then we have 3!/
21(3 - 2)! = 3 different pair-wise comparisons, namely: ] &
R, J &S, and R & S. However the pair-wise comparison of
R & S, for example, is dependent on pair-wise compari-
sons ] & Rand J & S, and so need not be explicitly mod-
elled. Indeed, if all three pair-wise comparisons were to be
simultaneously numerically simulated then it might be
expected that convergence would be poor and autocorre-
lation high in the relevant parameters. If there is non-neg-
ligible missing data for any of the methods, then care
must be given to determining which pair-wise compari-
sons should be modelled and their associated depend-
ences considered. In practice, if one method
systematically provided non-negligible missing data rela-
tive to other methods, then this would probably be
grounds enough to question the utility of this method.

Let us assume that there is no missing data for each of the M
methods and we model the pair-wise differences between
method y = 1 and methods z = 2,...,, M. All other pair-wise
comparisons we might consider can be derived from these M
- 1 comparisons. We assume that the differences d; ) are
(or transformed to be) normally distributed and the first
level of our hierarchical model can be represented by

d(l, 2)ir ™ MVN(A(L z)ir Z)

where 4, ,); is the mean difference between methods 1
and z for subject i, and X is the (M - 1) x (M - 1) dimen-
sional covariance matrix at the observation difference
level. Note here that the distributions of the measure-
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ments themselves x,,;, need not be normal, only the differ-
ences d(; ;-

Like before, we assume the second or subject level of the
hierarchical model can be given by

A, i~ MVN(vg, ), @)

where v(; ,is the overall mean difference between meth-
ods 1 and z, and @ is the (M - 1) x (M - 1) dimensional
subject level covariance matrix. Note that v, ) directly
gives the distribution of the bias B(;, ). Again, while the
selected subjects themselves may not necessarily be nor-
mal, the population from which they were selected fre-
quently can be assumed to be normal. Prior distributions
are required for vy 5),..., U1, vy, £ and @ to complete the
full parameterization, and will depend on the informa-
tion available.

This multivariate hierarchical Bayesian model (HB,) can

also be used in the situation when the subject's underlying
values can be considered exchangeably. However, in
implementing model (HB,) rather than (HB,), then some

parameters of potential interest that are unavailable, such

as within subject variance, s

within(m) 7 between subject var-

iance, sietwm(k) , the intra-class correlation coefficient,
ICC,, and the within subject covariance of measurements

between methods r(zy 2)- However, the variance between

individual measurements on the same subject is estima-
ble.

Results

Two separate examples are presented and analysed. The
first example which also appears in Altman and Bland is
that of systolic blood pressure measurements (mm Hg)
made simultaneously by two observers (J & R) using a
sphygmomanometer and an automatic blood pressure
measuring machine (S), each making three observations
in quick succession on 85 subjects [6]. The second exam-
ple which is presented by Oliver and colleagues examines
step counts for 9 pre-school children (aged between 3-5
years) ambulating along a straight 29 metre line at three
different speeds ("walk slowly like a snail", "walk nor-
mally", "run") measured simultaneously by an observer
and from three separate pedometers placed on the left and
right hip and on the back of each child [15]. The data for
both examples have been reproduced in Tables A1 and A2
(see Additional file 1).

In the first example each subject's underlying value was
not expected to change between repeated measurements
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and so we model this using both multivariate hierarchical
Bayesian models (HB, and HB,). In the second example
each subject's underlying value is dependent on pace, a
continually changing quantity, and so only the second
multivariate hierarchical Bayesian model (HB,) could be
employed.

Prior specifications

For the purpose of this paper, we use vague prior informa-
tion distributions throughout. For HB;, underlying
parameters 8, i = 1,..., N, were assumed to follow inde-
pendent normal distributions with zero mean and low
precision (0.0001), and the inverse covariance matrices
(®!and Q! respectively) followed a Wishart distribution
with degrees of freedom taken to equal each matrix's rank
and having diagonal elements set to 0.1, and off-diagonal
elements set to 0.005 [12,16]. Similarly, for HB,, underly-
ing parameters v(;, ;, z = 2,..., M, were assumed to follow
independent normal distributions with zero mean and
low precision (0.0001), and the inverse covariance matri-
ces (X1 and @) followed a Wishart distribution with
degrees of freedom taken to be their rank and having diag-
onal elements set to 0.1 and off-diagonal elements set to
0.005. However, if informative prior information is avail-
able, then this should be specified and modelled rather
than using these vague priors.

Computation

Preliminary checks of assumptions and the Bland-Altman
limit of agreement graphs were undertaken using Stata
version 9.2 [17]. Numerical results from the multivariate
hierarchical Bayesian models were derived from computer
simulation in WinBUGS [16] (see Additional file 2). Sim-
ulations of size N = 50,000 were run in four parallel
chains (with over-relaxation) after a burn-in period of
10,000 iterations and samples from every 10t iteration
thereafter was stored and utilised. Convergence in the
final samples was checked using visual plots of simulation
histories and the modified Gelman-Rubin statistic [18].
Reported 95% credible regions (95% CR) corresponded
to the 2.5 and 97.5 percentiles of the posterior distribu-
tion of the variable of interest.

Systolic blood pressure measurements example

Before implementation of the multivariate hierarchical Baye-
sian models, a check of the assumptions was undertaken. For
HB, the subject variances should be independent of their
mean for each method while for HB, the subject paired dif-
ference variances should be independent of the subject
paired difference means. Figure 1 presents this check for HB,
using box-plots of the subject standard deviations broadly
grouped into three categories by their means.

Perusal of Figure 1 reveals that observer ] and R have sub-

ject variances relatively independent from their means.
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Figure |

Box-plot of the subject's systolic blood pressure measurement standard deviations by their mean systolic
blood pressure measurements grouped into three categories (< 125 mm Hg, 125-174 mm Hg, and 175+ mm
Hg) for the two observers (J and R) and the automated machine (S).

This assumption of independence appears less reasonable
for the automated machine (S), particularly in the higher
mean grouping. Nonetheless, like Bland and Altman [6],
we consider this violation to be sufficiently small as not to
warrant data transformation investigations. Next we plot
the difference between the subject means for each pair-
wise method comparison against their average (Figure 2).
The assumption of independence again appears reasona-
ble in Figure 2. Notable also in this figure is that the
median and variability of the differences between observ-
ers ] and R is substantially less than those involving the
automated machine S.

Table 1 presents the mean estimate and associated 95%
CR of the overall population mean, 6,, within subject var-

. 2 . . 2
iance, s ipin(m) between subject variance, s, . en(m)- and

intra-class correlation coefficient, ICC,,, for systolic blood
pressure measured by two observers and the automated
machine (m =J, R and S). These estimates were derived
from HB; using WinBUGS program Ex.1 (see Additional

file 2). The estimates of s>

within(m) T€ similar but slightly
higher than the siithm(” =374, Siithin(R) - 38.0, and

siithm( s) = 83.1 reported by Bland and Altman for these

data [6]. As previously concluded by these authors, we can
see that both observers have considerably better repeata-
bility than the machine and that the observer perform-
ance is almost identical. Additionally provided by our

. 2 .
calculations are the Shetween(m) and ICC,, mean estimates

together with their associated 95% CR. From this we can
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Figure 2

Box-plot of subject's mean difference between systolic blood pressure measurements (mm Hg) by their mean
systolic blood pressure measurements grouped into three categories (< 125 mm Hg, 125-174 mm Hg, and
175+ mm Hg) for pair-wise comparisons (J and R), (J and S), and (R and S).

see that the between subject variability accounts for most ~ Estimates and associated 95% CR of bias, B, ,), together
of the measurement variance and reliability, as measured W}th estimates of the 95% limits of agreement for pair-
by the ICC,, is high for all methods, albeit relatively ~ Wise comparisons of systolic blood pressure for each pair-
wise comparison derived from both HB, and HB, are pre-

higher for ] and R compared to S. sented in Table 2.

2 2

Table I: Posterior mean estimate and associated 95% credible region (95% CR) of the overall population mean. Swithin(m) Sbelween(m)

Observer | Observer R Machine S
Post. mean (95% CR) Post. mean (95% CR) Post. mean (95% CR)
6, 126.9 (120.6, 133.5) 126.9 (120.5, 133.3) 142.6 (135.9, 149.3)
Skuizhin(m\ 37.7 (30.5, 46.6) 38.3 (31.0, 47.3) 83.9 (67.9, 104.0)
Shetween(m) 944.7 (697.3, 1278.0) 926.4 (683.3, 1254.0) 992.6 (727.9, 1351.0)
cc, 0.96 (0.95, 0.97) 0.96 (0.94, 0.97) 0.92 (0.89, 0.95)

2

Om, within subject variance, Swithin(m

) between subject variance, sbemeen(m) , and intra-class correlation coefficient, ICCm, for systolic blood
pressure measured by two observers and the automated machine (m =, R and S) from the multivariate hierarchical Bayesian method that assumes

the underlying values remain static (HBI).
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It can be seen from Table 2 that there was evidence of sys-
tematic bias between the observers and the machine but
not between observers. The observers read systolic blood
pressure measurements on average 15.7 mmHg lower
than the automated machine. In addition, Table 2
includes estimates and associated 95% CR of within sub-
ject covariance of measurements between methods r(zy'z)

for each pair-wise comparisons derived from HB;.

Figure 3 depicts plots of the 95% limits of agreement and
histogram of measurement differences for pair-wise com-
parisons of systolic blood pressure between the two
observers (J] & R) and between observer ] and the auto-
mated machine S (J & S). The comparison between
observer R and the automated machine S was very similar
to the (J & S) comparison and thus not shown. For the
comparison between ] and R, the points on the plot are
without obvious pattern and the histogram appears nor-
mal, consistent with the model's assumptions. However,
when investigating the ] and S comparison, there appears
to be a cluster of discordant observations while the major-
ity appear consistent with the statistical model's assump-
tions. Bland and Altman note that departures from
normality between method differences will not have a
great impact on the limits of agreement [6]. Nonetheless,
investigation and verification of the data would be useful
in such circumstances, as would sensitivity analyses (by
removing some of the extreme data and determining their
effect on the quantified level of agreement). Should the
analyses be sensitive to outlying values then alternative
methods of analysis need to be entertained, such as non-
parametric methods or survival-agreement plots [6,9].

The limits of agreement presented in Table 2 are similar
when each observer is compared to the machine. If differ-

http://www.biomedcentral.com/1471-2288/9/6

ences within these limits of agreement are not clinically
important, then we could use the two measurement meth-
ods interchangeably. In comparing observer ] with the
machine S, Bland and Altman calculate a bias of -15.6 and
95% limits of agreement of (-56.7, 25.4), similar to those
derived from our model.

A sensitivity analysis was undertaken by removing the 8
most aberrant data that appeared in Figure 3 and repeat-
ing the analysis. These 8 outlying measurements were all
recorded by machine S and were for all 3 repeated meas-
urements for subjects 78 and 80, and 2 of the 3 repeated
measures for subject 68. The subject clustered nature of
the aberrant data measured from the automated machine
S suggests that the device was not properly fitted or func-
tioning for these particular subjects and behoves further
investigation. For the observer J vs. machine S compari-
sons, the estimated bias and 95% CR was -13.1 (-15.8, -
10.4), little different from that reported in Table 2. The
95% limits of agreement was estimated as (-41.1, 15.2),
an interval width of 56.3 mmHg and some 31% less than
that reported in Table 2 for the full data. Similarly for the
observer R vs. machine S comparisons, the estimated bias
and 95% CR was -13.2 (-15.8, -10.6), and 95% limits of
agreement was estimated as (-40.7, 14.6), an interval
width also 31% less than that reported in Table 2. While
noticeable, these are not particularly large reductions in
the 95% limits of agreement interval widths.

Also included in Table 2 are the results from repeating the
analysis of the full systolic blood pressure data except now
employing the multivariate hierarchical Bayesian model
that uses paired differences (HB,). The bias estimates,
their associated 95% CR, and the 95% limits of agreement
are strikingly similar to those derived from HB, due to the
balance and completeness of the data.

Table 2: Estimates of bias, B, ,), and the associated 95% credible regions (95% CR) together with estimates of the 95% limits of
agreement for pair-wise comparisons of systolic blood pressure measured by the two observers and the automated machine (m=), R

and S) from two multivariate hierarchical Bayesian models.

Jvs.R
Mean (95% CR)

Rvs. S
Mean (95% CR)

Jvs. S
Mean (95% CR)

Bias, By, ,)
HB, 0.08 (-0.21, 0.37)
HB, 0.09 (-0.20, 0.37)
95% limits of agreement
HB, (-4.36, 4.56)
HB, (-4.39, 4.57)

Within subject covariance of measurements between methods T(

HB, 35.5 (28.5, 44.1)

y.z)

2k

-15.6 (-19.7, -11.6) -15.7 (-198, -11.7)
-15.4 (-19.5,-11.2) -155 (-19.5, -11.3)
(-56.2,25.1) (-56.0, 24.5)
(-55.9, 25.0) (-55.7, 24.6)

16.1 (7.7, 26.6) 17.4 (8.9, 27.1)

*Note: larger within subject covariance values are desirable.

HB, which assumes that the underlying values remain static and uses the raw data, x,,,, and HB, which assumes that the underlying values can

continually change and uses paired difference data, d, ,;-
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Scatter-plots of measurement differences against measurement averages with the 95% limits of agreement
superimposed (upper sub-plots) and histogram of measurement differences (lower sub-plots) for pair-wise
comparisons of systolic blood pressure between the two observers (J & R), and between observer J and the
automated machine S (J & S). The 95% limits of agreement appear in as the outer lines while the mean estimate of bias is

given by the intermediate lines in the upper sub-plots.

Step count measurements example

Step counts are believed to be dependent on the pace that
pre-school children ambulate. In this study the mean
(standard deviation) steps counted and recorded by the
observer was 60.9 (10.7) for normal pace, 47.2 (6.9)
when running, and 69.9 (7.8) at a slow walk. Because sub-
jects underlying values are a changing quantity, we analy-
ses these data using the non-exchangeable multivariate
hierarchical Bayesian model (HB,).

A plot of the subject paired difference variances against
the subject paired difference means provided no reason
to refute the assumption that observations at the first
level were independent (figure not shown). Implement-
ing program Ex.2 (see Additional file 2), estimates of
bias, B, ), and the associated 95% CR together with esti-
mates of the 95% limits of agreement for pair-wise com-

parisons of step counts measured by one observer (O)
and pedometers located on the left hip (P}), the right
hip (Pgy) and on the back (Pg) were yielded and appear
in Table 3.

The estimates of bias suggest that on average the pedome-
ters undercount the observer ascertained step count,
although the undercount is small for the left hip (P;;;) and
right hip (Pg;;) pedometers. Figure 4 presents the 95%
limits of agreement plot and histogram of measurement
differences for comparisons of step counts between the
observer and the left hip placed pedometer. The points on
the plot are without obvious pattern and the histogram
appears normal, consistent with the model's assumptions.
Plots and histograms for the other pair-wise comparison
were similar and also raised no concerns about the
model's assumptions (figures not shown).
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Table 3: Estimates of bias, B, ,), and the associated 95% credible regions (95% CR) together with estimates of the 95% limits of

agreement for pair-wise comparisons of step counts.

Bias, B(y, 2) 95% limits of agreement

Pair-wise comparisons (y, z) Mean (95% CR)

Ovs. Py -0.22 (-2.83,2.28) (-13.7,13.2)

O vs. Pry -0.89 (-3.48, 1.70) (-14.6, 12.8)

O vs. Py -2.66 (-5.39, 0.06) (-17.2, 11.9)

Py vs. Pry -0.67 (-3.12, 1.85) (-13.5,12.2)

Py vs. Pg -2.44 (-4.81, -0.05) (-14.9, 10.1)

Pry vs. Pg -1.77 (-3.72,0.14) (-12.0, 8.5)

Measured by one observer (O) and pedometers located on the left hip (P_y), the right hip (Pgy) and on the back (Pg) at three different paces
(normal walk, running, slow walking) on 9 pre-school children from HB, which assumes that the underlying values can continually change and uses

paired difference data, d(y'

z)ir*
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Scatter-plots of measurement differences against measurement averages with the 95% limits of agreement
superimposed and histogram of measurement differences for comparisons of step counts between the
observer and the left hip placed pedometer. The 95% limits of agreement appear as the outer lines in the left hand figure

while the mean estimate of bias is given by the intermediate line.
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The 95% limits of agreement interval widths for the
observer vs. pedometer step counts were approximately
27 steps for left hip (P;;) and right hip (Py;;) pedometers
and 29 steps for the back (Py) pedometer over observed
step counts that ranged on the 40 to 80 step interval.
Based on this information the researcher can now decide
whether differences within these limits of agreement are
important for the purpose of her investigation.

Discussion

There are many appropriate non-Bayesian methods for
assessing agreement [3], however no Bayesian methods
have yet been advocated or utilised. In this paper we
present and employ such a method that is based on the
Bland-Altman limits of agreement framework. This frame-
work was adopted because of its simplicity, practicality,
ability to detect bias and current popularity [3,10]. More-
over we concur with Bland and Altman in thinking that
there is no place for methods of analysis based on hypoth-
esis tests in assessing agreement [6]. We assert that agree-
ment is not something that is present or absent, but
something which must be quantified. Once quantified,
expert judgement should be used to determine whether
the estimated level of agreement is satisfactory or not for
the purposes of the researcher or practitioner.

Using this limits of agreement framework, multivariate
hierarchical Bayesian models provide an attractive altera-
tive to the existing suite of analytic methods in measuring
agreement using repeated measurement method compar-
ison studies. The proposed Bayesian models are flexible,
easily conceptualised and implemented (even when there
are multiple measurement methods) and provide results
that are intuitive and meaningful [12-14]. The ease of
implementation is not limited or complicated by the bal-
ance of replicates measurement numbers made on sub-
jects within or between methods. Moreover, the proposed
models can be extended to include different parameterisa-
tions and distributional forms, any prior information
available about the agreement of the methods under
investigation, and include regression approaches [12-
14,16]. For instance, in the second example, a regression
approach could have been adopted treating pace as a cov-
ariate.

Another salient strength of the proposed hierarchical
Bayesian models is that marginal distributions of the
parameters of interest are yielded, thereby allowing the
determination and reporting of location and scale (such
as credible interval) estimates. For instance, using the
exchangeable multivariate hierarchical Bayesian method
(HB,), the within and between subject variances and
covariance estimates and 95% credible regions were eas-
ily determined, as were intra-class coefficients. Because
of the complicated distributional forms of many of these

http://www.biomedcentral.com/1471-2288/9/6

statistical parameters, 95% confidence intervals are not
always readily available when using non-Bayesian statis-
tical methods. It is of interest to note that there was a
high degree of similarity between the estimates calcu-
lated and reported using Bland and Altman's methods
that could be directly compared to the estimates derived
from the implemented multivariate hierarchical Baye-
sian models with vague priors. This provides reassurance
and confidence for users of either or both statistical
approaches.

The properties associated with our advocated Bayesian
method are not always enjoyed when using non-Baye-
sian software. For example, when the SAS program pro-
posed by Carstensen and colleagues is employed for the
same (] & S) comparison provided in the first example,
the program fails to find a solution [11]. While
Carstensen and colleagues' Stata program does find a
solution, care must be taken in assigning indicator val-
ues (i.e. there is a need to order methods by their empir-
ical variance) and not all confidence intervals for the
parameters of interest are readily available. Moreover, it
is unclear how the code can be generalised to the com-
parison of M > 2 methods. In the non-exchangeable
measurement situation there is little in the literature
guiding non-Bayesian analysts. Bland and Altman out-
lined one method but the specifics were lacking and no
examples were provided here or elsewhere [6].

In developing the hierarchical Bayesian models, we
chose to employ multivariate likelihood functions.
There are many examples of multivariate hierarchical
Bayesian analysis of repeated measurements outcome
data already successfully employed in the medical litera-
ture [19-21]. We believe the utilisation of multivariate
models is better than the successive pair-wise compari-
son approach presented by Bland and Altman for a
number of reasons. These include the fact that there are
frequently more than two methods under consideration,
all information is analysed simultaneously (giving
greater power, and increased statistical robustness and
efficiency), marginal distributions of the parameters of
interest are easily derived without asymptotic approxi-
mation, and the probabilistic approach more closely
resembles to how researchers think. The modelling and
implementation of the multivariate hierarchical Baye-
sian model with vague prior information was also
straightforward. Using the freely available WinBUGS
software [16] and included computer programs, compu-
tations were generally completed within minutes. If,
indeed, one of the primary reasons why so few repeated
measurement method comparison studies have been
undertaken is due to the lack of statistical machinery
readily available for the analysis of such data, then we
hope our careful presentation of the statistical analysis
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and computer code for two examples will help circum-
vent this barrier for future researchers.

The proposed approach is not without its limitations.
However, many of the same limitations plague the previ-
ously described limits of agreement methods. The
assumption of normality may, at times, be untenable and
the data require transformation or different likelihood
distributions explored. The latter is perhaps hampered by
the available of multivariate normal, multivariate Student
t, Wishart and Dirichlet continuous multivariate distribu-
tions in WinBUGS [16]. However, as Bland and Altman
note, and seen within our example, departures from nor-
mality between method differences will not usually have
a great impact on the limits of agreement [6]. Nonethe-
less, investigation and verification of the data would be
useful in such circumstances, as would sensitivity analy-
ses, and alternative methods of analysis [6,9]. Finally, if
the number of subjects and replications is few (i.e. two
measurements per subject with some missing values),
there is little or no prior information, and the within and
between subject correlation high, then there may be con-
siderable autocorrelation in the WinBUGS numerical sim-
ulation. Careful attention needs to be given to the
simulation diagnostics, the length of the burn-in time and
use of the over-relaxed form of the Markov chain Monte
Carlo simulation method.

Conclusion

Repeated measurement method comparison studies
quantify the agreement between the various methods
under consideration and measure the agreement each
method has to itself. While both are fundamentally
important measures of agreement, few studies have
adopted the use of replicates to measure the latter. We
present two Bayesian methods of analysis that comple-
ment those already founded in the literature [6], one
which assumes that the underlying values remain static
and one assuming that the underlying values can change
between measurement waves. The models are easily
implemented and produce readily interpretable results.
We believe that these models will provide important addi-
tions to the current measurement method comparison
study analytic suite and hope that this will impel research-
ers to conduct such studies using replicated measurements
in the future.
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Additional material

Additional file 1

MS-EXCEL sheet of the data used for the two examples. This is a MS-
EXCEL 97-2003 file that includes two sheets (Example 1 and Example
2) which contain the data used for the examples. The sheet entitled Exam-
ple 1 gives the systolic blood pressure measurements made simultaneously
by two observers (] and R) and an automatic blood pressure machine (S),
each making three observations in quick succession. The sheet entitled
Example 2 gives step count for 9 pre-school children (aged between 3-5
years) ambulating along a straight 29 metre line at three different speeds
("walk slowly like a snail", "walk normally", "run") measured simultane-
ously by an observer and from three separate pedometers placed on the left
and right hip and on the back of each child.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2288-9-6-S1.xls]

Additional file 2

WinBUGS programs used for the two examples. In a Microsoft Office
Word 97-2003 document the two WinBUGS programs are presented
(Program Ex.1 or Program Ex.2). Program Ex.1 was used for the
exchangeable hierarchical multivariate Bayesian model (HB,) for com-
parison of systolic blood pressure measurements made by two observers and
an automated machine. Program Ex.2 was used for the non-exchangeable
hierarchical multivariate Bayesian model (HB,) for comparison of step
counts made by an observer and pedometers located in three sites (right
hip, left hip and back).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2288-9-6-S2.doc]
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